
Microprocessors and Interfacing

Prof. Shaik Rafi Ahmed

Department of Electronics and Electrical Engineering

Indian Institute of Technology, Guwahati

Lecture – 16

Example I

(Refer Slide Time: 00:36)

In the last class we had discussed about the address expansion of the memory. Now we

will discuss about the data expansion of the memory, data expansion of memory.

Suppose, you will be given 32 by 4 or 32 by 2 memories are available. If you want to

construct 32 by 8 memory. Here, I am fixing this number of address lines because only I

want to expand the data after that I will discuss about both expansions ok. Here 32 by 2,

32 by 2 means; we will be having 2 bit data bus and 5 bits address bus 32 is nothing, but

2 raise to the power of 5. So, 5 address lines A4 to A0.

This is 32 by 2 and two data lines D1 to D0. Of course, there is chip select and the read

write bar will be there this will be have some chip select signal normal chip select will be

active low as I have told and read bar write bar depends upon whether the memory is

read only memory or read write memory. Now, if I take 32 by 8, the only difference is

the number of address lines remain same, 32 by 8, this also will have 5 bit address lines

A4 to A0 and data will be 8 bit, D7 to D0.

This also will be having some chip select signal. Now basically here is 8 by 2 is the

number of 32 by 2 memory is required to construct 32 by 8, because this 32 is constant,

this we have 8, we have 2, we required the 8. So, the number of 32 by 2 memories

required will be simply 8 by 2 which is equal to 4, then how to construct this? For that

you take four 32 by 2 memories.

(Refer Slide Time: 03:28)

Simply connect all the chip selects together, all the 4 memories will be selected

simultaneously. So, this is having same number of address lines, 5 address lines A4 to

A0 you connect to connect to A4 to A0 of all the remaining memories. How to connect

together, this is 32 by 2, this is 32 by 2, this is 32 by 2, this is 32 by 2, this is overall chip

select signal of the required 32 by 8 memory.

So, here in this, this will give 2 bits of the data D0 to D1 or you can call as D1 to D0

MSB and LSB first you have to represent MSB and then LSB. This will give D3 to D2,

this will give D5 to D4, this will give D7 to D6, total overall this will be 8 bit data bus

D7 to D0. This is how we can expand the data lines. Now how to expand both address

and data lines ok. Now, this overall this will acts as 32 by 8 memory.

(Refer Slide Time: 06:42)

Address and data expansion. Suppose, you are given 8 by 2 memory required is say some

32 by 8 memory. Now we have this is 8 and this is 32, address also you have to expand

and this is 2 this is 8, data also you how to expand ok, you have to expand both. First, let

us consider only this address expansion, hence we have discussed in the earlier class. So,

in order to expand the address, so you have take the decoder. So, how many such first

you construct 32 by 2, first you construct 32 by 2, later I can easily expand this to 32 by

8 ok.

To construct these 32 by 2 memory, so as you have told that we require 4 such 8 by 2

memories. This is one of 8 by 2 memory, this is number 2. You can call this as a number

1, number 2, number 3, number 4. So, each one will be having, because 8 is the number

of locations, 2 raised to the power of 3 is 8. So, 3 bits of the address bus. A2 to A0, you

have to connect to A2 to A0 of all the address lines and data lines will be this will give 2,

this will give 2, this will give 2 and so on.

This will be having 2 bits of the data line you can give otherwise at the bottom this will

give 2 bits of the data line, this will give 2 bits of the data line, this will give 2 bits of the

data line, this will give 2 bits of the data line, each one will be having individual chips

select signals. We can represent chip select bar, so we can have a bubble here.

Now, how to select chip selects of these signals? As we have discussed in this earlier

class, you have to use 2 to 4 decoder. So, here this 32 by 8, we will be having 5 address

lines, here we have 3 address lines, the remaining 2 address lines we have to use as a

inputs for the decoder. 2 to 4 decoder A4, A3, this Y0 bar, I am using active low as you

have told Y1 bar, Y2 bar, Y3 bar. So, in the earlier class we have also discussed about

this that for the first 8 combinations this A4 A3 will be 0 0, for the next 0 1, next 1 0,

next 1 1.

So, Y0 bar has to be connected to the chip select of the first 8 by 2 memory. Similarly

Y1 has to be connected to the next one, Y2 has to be connected to the next and Y3 to

last. So, in this way we can select 32 locations, the first one will give 8, second one will

give 8, third one will give 8, fourth one will give 8. So, all together is 32 locations, but

because this is 8 by 2, each I mean memory will give only 2 bits of the data ok.

This will give 2 bits of the data, we can call as D0 to D1 or D1 to D0, this will give 2 bits

D1 to D0, this will give D1 to D0, this will give D1 to D0. But I want 8 bits of the data.

So, I have to connect 4 such chips together. As I have told this is data expansion. So, we

have to use 4 such chips. The only thing is chip select of all these 4 parallel chips has to

be connected together.

This is another 8 by 2 memory, another 8 by 2 memory we have to connect A2 to A0 of

all these memories together. Only chip select is different and data is different and this

will give 2 bits of the information D3 to D2 and this will give D5 to D4, this will give D7

to D6.

Similarly, here also you have to connect 4 such chips whose chip select has to be

connected together, here also you will be having 4 whose chip select has to be connected

together, here also 4. So, totally we need 16 such 8 by 2 memories to get 32 by 8. So,

normally these type of questions will be asked in some competitive exams. So, to

construct 32 by 8, how many 8 by 2 memories are required?

Here the answer is 16 8 by 2 memory, so I have to simply connect this chip select to here

also, take this chip select connect together all. Similarly, here also all the chip selects you

have to connect together, here also you have to connect all the chips selects together.

Whereas address lines of all the A2 to A0 of all the 16 8 by 2 memories will be common,

similarly read bar write bars also will be common.

This is about both address and data expansion ok. So, we need a decoder wherever the

address expansion is required, decoder type of the thing and whenever you require the

data expansion, similarly just you have to just connect the all the chips selects together

you have to connect in parallel ok. So, with this memory concept we will go to the

memory interfacing to 8086, memory interfacing to 8086.

(Refer Slide Time: 16:36)

As I have discussed in the earlier classes while discussing about this pins of 8086, there

is one signal called BHE signal, BHE bar, BHE bar which is called bus high enable. So,

because 8086 is a 16 bit microprocessor, we can access 16 bit of the data simultaneously.

But, if I take the memory location, each memory location is capable of storing only 8 bit

of the information.

So, the total maximum memory of 8086 is maximum memory of 8086 is 1 megabyte

starting with 00000 H to all Fs FFFFF H, this is the maximum memory ok. But each

location is capable of storing only 8 bits of information. Then the question is how to

access 16 bit of the data? So, if you want to access from the 2 consecutive locations it

will take 2 clock cycles.

But in one clock cycle, if I want to I mean; access 16 bit of the data because there are

many operations where 16 bit data is required. So, in that case in order to get the 16 bit

of the data in single clock cycle, we have to divide the memory into banks ok. Now I

have to divide this into this 1 megabyte into 2 halves ok. So, 1 megabyte is nothing, but

1024 kilobytes ok. So, half of this one will be 512 kilobytes each. So, we will be having

memory banks, this is even bank or odd bank 512 kilobytes, we can call this one as even

bank this is 512 kilobytes odd bank.

So, all the even addresses will be present here. The first address itself is even address 0 0

0 0 0 and then the next address will be 0 0 0 0 2, 0 0 0 0 4 and so on. So, what will be

last address F F F F F H will be odd address. One above this one is F F F F E H is even

address. So, this will be having 512 kilobytes of even address and this will be having 512

kilobytes of odd address. What is the first odd address? 0 0 0 0 1 H, then the next one is

0 0 0 0 3 H, 0 0 0 0 5 H and so on, the last one will be F F F F F H.

Now, we know that for even addresses A0 is 0. If I take A19 to A19 to A0, A19, A18 so

on up to A1 A0 for all even addresses. This A0 is equal to 0 for even address and this is

equal to 1 for odd address. So, in order to select this even bank, we are going to connect

this even bank chip select bar to A0, this is chip select bar of even bank because this

active low signal whenever A0 is equal to 0, then only even bank has to be selected ok,

this has to be connected to A0.

Similarly, chip select bar of odd bank has to be connected to this bus high enable BHE

bar. Whenever BHE bar is 0, then the odd bank will be selected whenever A0 is 0, even

bank will be selected ok. Now, based on this A0 and BHE bar, we have 4 different

operations. So, the form a table here A0 BHE bar. If it is 0 0, what does it mean? Both

even bank and odd bank will be selected what type of data transfer will take place.

Data transfer will be word, word transfer. Either this can be read or write operation ok.

Both the banks will be selected, this will give 8 bit, this will give 8 bit, total 16 bit a

word. This is 01 A0 is 0 means; this is even bank BHE bar is 1 means; bus high enable is

not enabled which is disabled. So, this will be only 1 byte from even bank. So, the even

bank will give the data bits as this is even bank will give this data bits D7 to D0 and odd

bank will give data as D15 to D8 ok.

This will be D7 to D0, the byte will be available on the data lines D7 to D0 if A0 is 0

BHE bar is 1. If A0 is 1, BHE bar is 0 then also 1 byte, but 1 byte from odd bank means;

data lines are D15 to D8. If both are ones ok, no transfer occurs, no data transfer will

takes place. Because, both will be disabled ok, there will no data transfer ok. So, based

on this we can connect the memory to the microprocessor.

(Refer Slide Time: 24:59)

I will give one example, interface 8 kilobytes of EPROM and 8 kilobytes of RAM to

8086, this is an example. We have EPROM and RAM. So, I have discussed about this

ROM which is read only memory. But what is EPROM is? ROM, there are different

types of the ROMs, which is called PROM programmable read only memory, this P

stands for programmable.

So, at the time of manufacturing itself, the manufacturer will store the data which we

cannot change ok. So, in case of erasable programmable read only memory, EPROM

means; here it is not possible to erase the data whereas, here this E stands for erasable

programmable read only memory. How to erase the data? We have 2 techniques to erase

the data, we can use either ultra violetically erasable or electrically erasable.

So, ultra violetically means; if I take this memory IC in the ROM, you can see in your

laboratory also on electrically erasable RAM, you can find a small quartz window at the

center of this IC say this is a quartz window. If I expose this window to the ultraviolet

rays with the some definite wavelength for particular time, then the contents will be

erased, but the drawback of this type of a ultra violetically erasable programmable read

only memory is; suppose if I have some four locations each location is capable of storing

2 bits or 4 bits of information 1 0 1 1 1 1 1 1, 0 0 0 0 0 0 0 1 say.

These are the 4 addresses 0 0 0 1 1 0 1 1 are the addresses. Suppose, if want to erase only

this bit I want to erase only single bit that is not possible in case of ultra violetically, the

entire data will be erased that is the drawback of this one. So, to avoid that there is

another technique called electrically erasable programmable read only memory. This is

call electrically EPROM, electrically erasable programmable read only memory. This is

also can be called as E square PROM one E stands for electrically, second E stands for

erasable programmable read only memory.

Here this is possible to, I mean; erase a single bit or a single location or the entire

memory. Here you can program accordingly depends upon the our requirement. So, this

is how this E square PROM one of the popularly used read only memory for many of the

applications. So, here I am using this EPROM this can be by default you say E square

PROM, then we have random access memory. So, 8 kilo bytes of EPROM 8 kilobytes of

random access memory.

So, the first step here is you have to I mean a choose appropriate memory locations, out

of this 1 megabyte of the memory locations this is the total memory location is 1

megabyte starting with 0 0 0 0 0 H to F F F F F H. We can use any portion of this one for

EPROM, any portion of this for RAM ok. If it is not mentioned in the statement.

Sometimes, so it will be given in the statement itself that you interface 8 kilo bytes of

EPROM from say some F 0 0 0 0 H to F 1 F F F H. So, in that case you have to connect

in that particular place only. If nothing is given, you can choose any of this space for

EPROM and some space for RAM ok. But the usual practice is, so whenever the

microprocessor is reset, then it will point to address F F F F 0 H upon reset the

microprocessor starts at these address. The I P and C S will be so, chosen that so, chosen

that it will go to this particular address.

That is why normally the last portion of the memory, you have to use for EPROM ok.

So, here I am using the last 8 kilobytes of this one for EPROM. This is 8 kilobytes, this

is for EPROM. So, the last address is F F F F H, what will be starting address if it is 8

kilo byte. So, in earlier also we have discussed about this how to I mean obtain knowing

the starting address, how to know the ending address or knowing the ending address how

to know the starting address. I will review the same thing again, 1 kilobyte is nothing but

1024 bytes ok.

1024 is decimal value what is hexadecimal equivalent of 1024, 1024 if you want to

convert into hexadecimal you have to divide with 16. So, what will be this quotient and

remainder? 1024 16 5s is 18, 16 6s is 96, then 96 remainder is 664, 4 is the quotient, 64

and remainder will be 0. Then, if I divide again 16, 16 4s are 64, 0 is the remainder, 16

4s are 0 is the 16 sorry, 0s 16 0s 4 is the remainder.

Now you have to stop here, until you get quotient as 0, then you have to read from

bottom to top. So, 1024 decimal is equal to 4 0 0 hexa decimal. So, 1 kilobyte means

total it will be 4 0 0 H. Suppose, if I start with 0 0 0 0 0 H 1 less than this, 1 less than this

will be 0 0 3 F F H. This will represent 1 k. Because, 0 to 3 F F F means total 4 0 0

because you are including 0. So, 0 to 9 is 10, 10 numbers.

So, starting with 0, if you want 4 0 0 H, the ending address will be 1 less than this. 1 less

than 4 0 0 is 3 F F because, if I add 1 to 3 F F, this will be F plus 1 is 1 0 F plus 1 is 1 0 4

0 0 ok. So, if I subtract 1 from 4 0 0 it will be 3 F F F.

(Refer Slide Time: 34:14)

So, we have to remember that now, 0 0 0 0 0 H to 0 0 3 F F H is 1 kilobyte ok. If I want

2 kilobytes, it will be 1 kilobyte plus 1 kilobyte ok. This is only 1 kilobyte. So, what is

the next address of 0 0 3 F F H. So, this is the ending address starting of another kilobyte

will be 1 plus this address. So, this will be 0 0 4 0 0 to get 1 k. So, for 0 0 0 0 H, we are

adding 3 F F F to get 1 K. If the starting address is 0 0 4 0 0 H, 0 0 4 0 0 H for 1 K, the

ending address will be you have to simply add 0 0 3 F F H.

So, this will be F F 7 0 0. So, the ending address will becomes 0 0 7 F F H only 1 F. So,

this is another 1 K, if I start with 0 0 4 0 0 H. Then total from here to here is 1 K plus 1

K, 2 K which is 0 0 0 0 0 H to 0 0 7 F F H, this will be 2 K, this total this one will be 2

K. Similarly, if I want 4 K, this is 2 K 0 0 0 to 0 0 7 F F is 2 K, the next address to this

one is 0 0 8 0 0 H, 0 0 8 0 0 H. So, how to get another 2 k? You have to add 7 F F F. So,

0 0 8 0 0 plus 0 0 7 F F. This will be F F F 0 0.

So, this to 0 0 F F F H will be another 2 K, if I start with 0 0 8 0 H this is another 2 K.

So, if I start with 0 0 0 0 0 H and if I end with 0 0 F F F H, then this will be this 2 K, this

2 K, this is 4 K simply adding F F F will give 4 K. If I want 8 K so, what is the next

address another 4 K, 0 1 0 0 0 H, if I add one to this 0 0 F F F H to get the next address F

plus 1 is 10 F plus 1 is 10 F plus 1 is 1 0.

So, this will be 0 1 0 0 0 H and to get the ending address for the 4 k, you have to simply

add F F F. If I add F F F here this will be 0 1 F F F H. So, ending address will be 0 1 F F

F H, this is another 4 K. If I start with 0 0 0 0 0 H and if ending address is 1 F F F F H

then this is total 8 K.

So, like that you can extend ok. So, this is for starting of 0 0 0 0 0 H, ending is 0 0 3 F F

[FL], this is 1 K, here I am going to summarize 1 K, 2 K, 4 K, 8 K up to 8 K. So,

normally, we will use maximum of 8 K or you can go for even higher also in a similar

manner. So, 0 0 0 0 0 H to 0 0 3 F F F H will be 1 kilobyte and I will start with all zeros

only 0 0 0 0 H to for 2 K it will be 0 0 7 F F H. This will be 2 K and if I start with same 0

0 0 0 0 H and if I end with for 4 K this will be 0 0 F F F H this will be 4 K I am starting

with 0 0 0 0 0 H ending with 0 1 F F F H will be 8 K.

Similarly, if I want 16 K, this will be next address will be 0 2 0 0 0 plus 1 F F F, 0 1 F F

F H this will be 0 3 F F F H. This will be 0 0 0 0 0 H to 0 3 F F F H will be 16 K and 32

K will be the next one is 0 4 0 0 0 to you have to add 0 3 F F F this will be 0 7 F F F. So,

0 0 0 0 0 H to 0 7 F F F H and 64 kilobytes we know 4 Fs. Starting with 0 0 0 0 0 H to 0

F F F F H. This is the table which will give 1 K, 2 K, 4 K, 8 K, 16 K, 32 K, 64 kilobytes

starting with 0 0 0 0 0 H ok.

(Refer Slide Time: 41:09)

So, with this data. So, I come back to that interfacing of 8 kilobytes of EPROM, 8

kilobytes of RAM, random access memory. So, if I want to choose this as a last address

last I mean a space of this one F F F F F H, the last portion of the memory. This 1

megabyte of memory, the last 8 kilobytes I want to use for EPROM.

This is 8 kilobytes. So, this ending address is F F F F F H. So, what in the starting

address for 8 K it should be 1 F F F, we have to add 1 F F F. So, we have to subtract 1 F

F F from here. So, 1 F F F means; this will be F E 0 0 0 H is it clear. So, F E 0 0 0 H, is

the starting address to get the 8 K, we have to add 0 1 F F F H. So, this will be F F F 1 0

sorry, E F this will be F, so 4 Fs right.

Similarly, so, the address one below this one is this I want to use for another 8 K for

RAM, Random Access Memory ok. So, what will be starting and ending address ending

address will be F D F F F minus 0 1 F F F will be the starting address, this is ending

address, ending address is only less than this which is F D F F F and starting address,

you have to subtract 1 F F F will be 0 0 0 C F so, F C 0 0 0 H. So, these are the addresses

of this RAM and EPROM ok.

So, to interface this RAM and EPROM in this locations, what did the hardware circuitry

required and how this connections has to be made. So, I will discuss in the next class.

Thank you.

