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So, we start a new module, microwave networks, and scattering matrix. So, in this, we will 

cover the following contents, impedance and equivalent voltages, and currents, N-port 

microwave networks, impedance, admittance, and scattering matrix representations. And 

reciprocal and lossless networks, also we will discuss the transmission matrix. 
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So, let us start over a discussion with impedance and equivalent voltages and currents, what 

happens at microwave frequencies, measurement of voltage or current is not practical unless a 

clearly defined terminal pair is available. So, this terminal pair we call it a port and such 

terminal pair may exist for TEM type lines that means transverse, electromagnetic wave 

propagation only but does not exist in a strict sense for not TEM lines. 

And therefore, the voltage and current is a measure of level of electrical excitation of a circuit 

does not play a primary role at microwave frequencies. However we can introduce the concept 

of equivalent voltages, equivalent currents, and impedances and which is helpful in extending 

the circuit theory concepts to microwave network. 
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Let us illustrate the same by an example 

The figure shows a co-axial transmission line 

𝐸⃗ =
𝑉0

ln
𝑏
𝑎

𝑒−𝑗𝑘0 𝑧

𝜌
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𝑘0 = 𝜔√𝜇0𝜖0 

𝑉0 is the potential difference between the inner and outer conductor 

 

 

For transmission lines supporting TEM waves, the voltage and current are uniquely related to 

the transverse electric and magnetic fields, respectively. And let us illustrate this by an 

example. So, we show a section of a coaxial transmission line, so we have a coaxial 



transmission line within a radius a and the outer radius b, now this radial lines these are the 

electric field and the magnetic field lines are shown by this circle. 

Now for such line, we can find out the electric field to be v naught by log of b by a into e to 

the power minus Jkz by rho. So this electric field is directed along rho, and here k naught is 

omega root Mue Naught epsilon Naught. Voltage V Naught is the potential difference between 

the inner and the outer conductor. 
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Voltage wave associated with the electric field is 

𝑉 = 𝑉0𝑒
−𝑗𝑘0𝑧 

The magnetic field is given by  

𝐻⃗⃗ =
𝑌0𝑉0

ln (
𝑏
𝑎)
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𝜌
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Current wave associated with the magnetic field is 

𝐼 = 𝐼0𝑒
−𝑗𝑘0𝑧 
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𝑏

𝑎
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So, for the same transmission line, we can associate a voltage wave with the electric field, and 

this is given by V is equal to V Naught every to the power minus j k Naught z. similarly for 

this type of coaxial conductor the magnetic field is given by, H is equal to Y Naught V Naught 



divided by log of b by a, e to the power minus jk z by rho by a phi. So, the magnetic field the 

current associated with the magnetic field can be written as I is equal to I Naught e to the power 

minus j k Naught z. please not that Y not is the characteristic admittance and I Naught is given 

by Y V Naught 2 Pi log of b by a. so, once we define these equivalent voltages and currents 

and relate them to the electric and magnetic fields. 
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We can calculate also the power that is going through such coaxial transmission line and power 

is given by integration of the pointing vector over the cross-section of the transmission line. 

And once it is evaluated we get, Pi Y Naught V Naught square log of b by a. if we find the 

power from the current and voltage wave that means I and V which we have just defined, then 

half Re VI complex conjugate this also gives the same quantity Pi Y Naught V Naught square 

by log b by a. so, we can see that whatever power we calculate using this field equations, if we 



consider the equivalent voltage or current equation, the same power flow is evaluated on the 

coaxial lines. 
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• Voltage depends on the position 𝑥 

 

 

So, these voltages and currents can essentially represent in an equivalent manner transfers 

electric and magnetic fields. And also we find that Z Naught is equal to V Naught by I Naught, 

which is the characteristic impedance. So, when we have a TEM transmission line and we have 

a clearly defined pair of terminals. It is relatively easy to introduce the equivalent voltage and 

currents. Because these voltages and currents, these are well defined. When we go to a single 

conductor system like waveguide where propagation mode is non- TEM. We face difficulty in 

defining such voltages and currents, so this we illustrate. 

Let us consider dominant TE10 mode of a rectangular waveguide and this electrical field 

distribution as we show in the figure, nowhere if you consider, if we want to calculate the 

voltage what do we will do, we will integrate this electric field from y equal to 0 to y equal to 

b, that means along y and once we substitute the expression for the UI and integrate we find 

that, the same integration. Now has a term sin Pi x by a, so for x is equal to 0 the voltage is 

evaluated to 0. Whereas x is equal to a,  we will get again the voltage to be 0. 

We will have a peak voltage in the middle so, what we find that, if we consider this type of 

single conductor transmission line like waveguide, we cannot uniquely define the voltage and 



the voltage will vary depending upon what this voltage is evaluated. So, voltage depends on 

the position x for this type of waveguide. 
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Transverse magnetic field is related to transverse electric field as 𝑍𝑤ℎ̅ = 𝑎𝑧̂ × 𝑒̅ 

 

Now, next is how we can introduce actually the equivalent voltages and currents, in this type 

of waveguiding systems. So we note the following properties of the propagating modes in 

waveguides. The power transmitted is given by integral involving the transverse electric and 

magnetic fields only. So, when it comes to computation of power of the inside the waveguide 

mode it essentially involves the transverse electric and magnetic fields. In a loss-free 

waveguide supporting several propagating modes. 

Power transmitted is the sum of individual modes, then the transverse field varies with distance 

along the guide according to a propagation factor e to the power plus minus j beta z.  and the 

transverse magnetic fields are related to the transverse electric field as Zw, which is the 

waveguide impedance, and h is the transverse magnetic field az cross e bar. So, these properties 

of the waveguide propagation will make use of in defining equivalent voltages and currents. 

So these properties essentially suggest that equivalent and voltage and current can be 

introduced proportional to the transverse electric and magnetic field.  



So, whenever we define equivalent voltage and current, we try to relate those voltages and 

current to the transverse electric and magnetic field components. 
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Now equivalent voltage, current, and impedance for waveguides can be defined in different 

ways as these quantities are not unique for non TEM lines. however, if we use the following 

consideration then, sum uniformity can be maintained, the voltage and current are defined only 

for particular waveguide mode. So, every waveguide mode is essentially represented similar to 

a transmission line. These are defined so that voltage is proportional to the transverse electric 

field and current is proportional to the transverse magnetic field. 

(Refer Slide Time 11:30) 

 



Equivalent voltages and currents should be defined in such a way their product gives the power 

flow of the waveguide mode. So, as we are defining these voltages and currents, equivalent 

voltages and currents for individual modes. Now that to be introduced in such a manner the 

voltage and current, when they are taken computation of power they will actually correspond 

to the power flow of that particular waveguide mode. 

The ratio of voltage to current for a single traveling wave should be equal to the characteristic 

impedance of the line. Now impedance may be chosen arbitrarily, but usually selected as equal 

to the wave impedance of the line. Sometimes z Naught is said equal to Zw, or else it is 

normalized to unity. 
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Equivalent voltage and current waves can be written as: 

𝑉(𝑧) = 𝑉+𝑒−𝑗𝛽𝑧 + 𝑉−𝑒𝑗𝛽𝑧 

𝐼(𝑧) = 𝐼+𝑒−𝑗𝛽𝑧 − 𝐼−𝑒𝑗𝛽𝑧 

𝑍0 =
𝑉+

𝐼+
=

𝑉−

𝐼−
 

 

(𝑍0 can be made equal to 𝑍𝑤 or normalized to unity) 

 

 

So, the equivalent voltage and current waves can be written as V z is equal to V plus e to the 

power minus j beta z plus V minus e to the power j beta z. and I z can be written as I plus e to 

the power minus j beta z. minus I minus e to the power j beta z. and we define the characteristic 

impedance z Naught to be equal to V plus by I plus or V minus by I minus. and as we have 



said, z Naught can we made equal to Zw the wave impedance of the waveguide mode or it is 

normalized to unity.  

(Refer Slide Time 13:17) 

 

Now let us consider an N port microwave network, so this is the schematic of an N port 

microwave network, the port may be any type of transmission line or transmission line 

equivalent of a single propagating mode. So we can see that if it is a TEM transmission line we 

can define this port directly or if it is a waveguide type port then, we have a transmission line 

equivalent of a single propagating mode. If the physical port of a network is a waveguide 

supporting more than propagating mode.  

So in any case, it might happen that the single physical port is supporting more than one 

propagating mode.  In such cases the modes can be accounted by considering additional 

electrical ports. So, we can increase the number of ports accordingly. Now once we have the 

equivalent voltages and currents defined at the Nth port we define a terminal plain TEM.  

For example, this is the t1 terminal plain and also the equivalent voltages and currents for both 

incident and reflected waves. Now what we do, this terminal plain essentially serves as the 

phase reference for these waves. So, if we shift the terminal plain there will be a change of 

phase, and we can define these terminal plains for each of the ports as shown, and we have this 

V1 plus I1 plus these are the waves that is going into the network through this port and V1 

minus and minus I1 minus. These are the waves which are coming out of the port. 

And we have already mentioned that these terminal plains are important for providing phase 

reference for voltage and current phases. So, this is how we have defined an N port microwave 



networks, let us now see some practical circuits where this type of multiport microwave 

network actually occur. 
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For example, here we show a 2 port network which is essentially a filter and this towards the 

ports, similarly we can consider a case of a power divider, here the input signal incident on this 

port is split between these 2 ports, so that it divides the power and it is a 3 port device. Similarly, 

we consider a waveguide version of a magic T which is a 4 port device and if we consider the 

microstrip or plainer version, this is called a hybrid coupler so you can see it also has 4 ports. 

So, you can see that physical microwave circuits or networks will have one or more number of 

ports and how we define the voltages and currents In these ports? These are through if there 

TEM lines we directly define or if they are non TEM lines we can always have an equivalent 

voltage which is related to the transverse electric field and equivalent current which is related 

to the transverse magnetic field components. 
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At the nth terminal plane, 

𝑉𝑛 = 𝑉𝑛
+ + 𝑉𝑛

− 

𝐼𝑛 = 𝐼𝑛
+ − 𝐼𝑛

− 

The impedance matrix [𝑍] of a microwave network relates this voltage and currents 

[

𝑉1

𝑉2
⋮

𝑉𝑁

] = [

𝑍11 𝑍12 ⋯
𝑍21

⋮
𝑍22

⋮

⋯
⋮

𝑍𝑁1 𝑍𝑁2 ⋯

  

𝑍1𝑁

𝑍2𝑁

⋮
𝑍𝑁𝑁

] [

𝐼1
𝐼2
⋮
𝐼𝑁

] 

[𝑉] = [𝑍][𝐼] 

Similarly the admittance matrix [𝑌] can be defined as. 

[

𝐼1
𝐼2
⋮
𝐼𝑁

] = [

𝑌11 𝑌12 ⋯
𝑌21

⋮
𝑌22

⋮

⋯
⋮

𝑌𝑁1 𝑌𝑁2 ⋯

  

𝑌1𝑁

𝑌2𝑁

⋮
𝑌𝑁𝑁

] [

𝑉1

𝑉2
⋮

𝑉𝑁

] 

[𝐼] = [𝑌][𝑉] 

Note that: 

[𝑌] = [𝑍]−1 

 

 

So, we have at the Nth terminal plain Vn is equal to Vn plus Vn minus so, this is essentially 

obtained by putting Z is equal to 0. And In becomes equal to In plus minus In minus. And the 

impedance matrix Z of a microwave network relates these voltages and currents. So, for an N 

port network, we can define V1, V2, Vn these are the voltages at pots 1, 2 and N and I1, I2, In 



these are the currents at pots 1,2 and up to n. and these 2 vectors, they are related by a matrix 

which  is called the impedance matrix Z. Z11, Z12, Z1n, Z21 like that Zij are entries for this matrix. 

So, we have in the compact form we can write V is equal to Zi where V is a vector Z is a matrix, 

and i is the vector. In the same manner we can define another matrix, which is called the 

admittance matrix y here, I1, I2, In they are defined as a matrix y multiplied by the vector 

voltage vector V., and we can see that Z and Y they are inverse of each other. 
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We note that 

𝑍𝑖𝑖 =
𝑉𝑖

𝐼𝑖
|
𝐼𝑘=0,𝑘≠𝑖

 

Therefore, 𝑍𝑖𝑖 is the input impedance seen at port i when all other ports are open circuited. 

Similarly, 

𝑍𝑖𝑗 =
𝑉𝑖

𝐼𝑗
|
𝐼𝑘=0,𝑘≠𝑗

 

is the transfer impedance between port i and j when all other ports are open circuited.  

In the same manner, 

𝑌𝑖𝑗 =
𝐼𝑖
𝑉𝑗

|
𝐼𝑘=0,𝑘≠𝑗

 

i.e. 𝑌𝑖𝑗 can be determined by driving port j with voltage 𝑉𝑗 and short circuiting all other ports 

and measuring the short circuit current at port i. 

For a reciprocal network, [𝑍] and [𝑌] are symmetric i.e. 

[𝑍] = [𝑍]𝑡 

and 

[𝑌] = [𝑌]𝑡 

 



 

Now how we define these parameters? For example if we consider Zii like Z11 diagonal 

elements, Z11, Z22, Z33 so it is Vi by Ii and when Ik is equal to 0k is not equal to I. so if I go to 

the definition, for example, Z11 will be V1 by I1 when I2, I3 up to In they are all zero. And 

therefore Zii is the input impedance seen at the port I when all other ports are kept open-

circuited. 

Similarly, Zij is Vi by ij, and all Ik equal to zero for k not equal to j, and this will give the 

transfer impedance between port i and j even all other ports are open-circuited. So these z 

parameters, are open circuit parameters that means if we have to measure Z11 we will have to 

keep all other ports other that port1 open-circuited. In the same manner we can find Yij and 

you can determine by drawing port j with voltage Vj and short-circuiting all other ports, and 

measuring the short circuit port at port I. 

Now for a reciprocal network, the impedance and admittance matrix is symmetric that means 

we can write Z is equal to Z transpose and Y equals to Y transpose. By reciprocal network we 

mean that it will not contain any active devices ferrites or plasmas and if a network contains 

any of these elements it cannot be modeled as a reciprocal network.So we have seen that for a 

reciprocal network, the Z and y matrices are symmetric. Let us now consider a lossless network. 
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If the network is lossless 

𝑅𝑒[𝑃𝑎𝑣] = 0 

𝑃𝑎𝑣 =
1

2
[𝑉]𝑡[𝐼]∗ =

1

2
([𝑍][𝐼])𝑡[𝐼]∗ =

1

2
[𝐼]𝑡[𝑍][𝐼]∗ 

since, [𝑍]𝑡 = [𝑍] for a reciprocal network. 

∴ 𝑃𝑎𝑣 =
1

2
[𝐼1 𝐼2 … 𝐼𝑁 ] [

𝑍11 𝑍12 …
𝑍21

⋮
𝑍22

⋮

…
…

𝑍𝑁1 𝑍𝑁2 …

   
𝑍1𝑁

𝑍2𝑁

⋮
𝑍𝑁𝑁

] [

𝐼1
∗

𝐼2
∗

⋮
𝐼𝑁
∗

] 

𝑃𝑎𝑣 =
1

2
[𝐼1 𝐼2 … 𝐼𝑁 ] [

𝑍11𝐼1
∗ + 𝑍12𝐼2

∗ + ⋯+𝑍1𝑁𝐼𝑁
∗

𝑍21𝐼1
∗ + 𝑍22𝐼2

∗ + ⋯+𝑍2𝑁𝐼𝑁
∗

⋮
𝑍𝑁1𝐼1

∗ + 𝑍𝑁2𝐼2
∗ + ⋯+ 𝑍𝑁𝑁𝐼𝑁

∗

] 

 

 

So, if a network is lossless then, what we can write, we can write that the real part of the average 

power to be equal to 0. Now how we can calculate this average power, we can actually find the 

product of V, and I conjugate at each port, which in the matrix from we can write Vt transpose 

of V into I complex conjugate. And then once we substitute V is equal to Zi and then using the 

property of transverse we can write I transpose, it should be z transpose, but since z is 

symmetric, therefore, we can write I transpose Z, I complex conjugate. 
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𝑃𝑎𝑣 =
1

2
[𝐼1 𝐼2 … 𝐼𝑁] [

𝑍11𝐼1
∗ + 𝑍12𝐼2

∗ + ⋯+𝑍1𝑁𝐼𝑁
∗

𝑍21𝐼1
∗ + 𝑍22𝐼2

∗ + ⋯+𝑍2𝑁𝐼𝑁
∗

⋮
𝑍𝑁1𝐼1

∗ + 𝑍𝑁2𝐼2
∗ + ⋯+ 𝑍𝑁𝑁𝐼𝑁

∗

] 

=
1

2
[𝐼1(𝑍11𝐼1

∗ + 𝑍12𝐼2
∗ + ⋯+𝑍1𝑁𝐼𝑁

∗ ) + 𝐼2(𝑍21𝐼1
∗ + 𝑍22𝐼2

∗ + ⋯+𝑍2𝑁𝐼𝑁
∗ )

+ ⋯ 𝐼𝑁(𝑍𝑁1𝐼1
∗ + 𝑍𝑁2𝐼2

∗ + ⋯+ 𝑍𝑁𝑁𝐼𝑁
∗ )] 

𝑃𝑎𝑣 =
1

2
∑ ∑ 𝐼𝑚𝑍𝑚𝑛𝐼𝑛

∗

𝑁

𝑛=1

𝑁

𝑚=1

 

 

 

 

Now, this can be expanded, as shown. We can have I transpose as a rho vector, then the Z 

matrix and I conjugate as the column vector. Now once we find out this product, matrix 

product we can put the average power expression in this form and starting from this form, if 

we now find out the product of this rho with this column we can write the expression for 

average power in the form soon. And we can see that each term within this bracket first 

bracket, it is once summation and then it is been multiplied by I1, I2 so, we can write p over 

each as a summation of m to n, as a summation of m is equal to 1 to n,, n equal to 1 to n ,Im 

Zmn In conjugate.  

(Refer Slide Time 26:09) 

Since 𝐼𝑛s are independent, let us set all port currents to zero except for 𝑛𝑡ℎ port current. 

∴ 𝑅𝑒[𝑃𝑎𝑣] = 0 

⇒ 𝑅𝑒(𝐼𝑚𝑍𝑛𝑛𝐼𝑛
∗) = 0 

∴ |𝐼𝑛|
2. 𝑅𝑒(𝑍𝑛𝑛) = 0 

∵ 𝐼𝑛 ≠ 0 

𝑅𝑒(𝑍𝑛𝑛) = 0 



Let us now consider that all port currents except 𝐼𝑚 and 𝐼𝑛 are zero. Then  

𝑅𝑒(𝐼𝑚𝑍𝑚𝑛𝐼𝑛
∗ + 𝐼𝑛𝑍𝑛𝑚𝐼𝑚

∗ ) = 0 

⇒ 𝑅𝑒{(𝐼𝑚𝐼𝑛
∗ + 𝐼𝑛𝐼𝑚

∗ )𝑍𝑚𝑛} = 0 

𝐼𝑚𝐼𝑛
∗ + 𝐼𝑛𝐼𝑚

∗  is real and in general non zero. 

∴ 𝑅𝑒(𝑍𝑚𝑛) = 0 

Therefore, 𝑅𝑒(𝑍𝑚𝑛) is zero for any m and n. 

 

 

 

Since, In’s are independent, let us set all port currents to be zero, except for the Nth port. 

Therefore, this essentially when only 1 port is exited this double summation term results into 

these terms Im Znn In s term, and this can be written as mode of In square real part of Znn is 

equal to zero. Since we have In not equal to 0. So, we find that real part of Znn is equal to zero. 

That means the diagonal elements, the real part of the diagonal elements of the Z matrix they 

are zero. 

Let us now consider the off-diagonal elements, and to calculate this, let us now consider that 

all port currents except Im and In are zero. Then in the same manner we can write Im Zmn In 

conjugate, plus In Znm Im conjugate real part of this is equal to zero.  Now this can be written 

as real part of Im In conjugate plus In Im conjugate Zmn is equal to zero since we have the matrix 

which is symmetric. Now this quantity Im In conjugate plus In Im conjugate this quantity is 

always real. 



If you expand Im and In in terms of real and imaginary part and find out the expression this will 

a real quantity. And in general, it will be none-zero, so we can say that real part Zmn is equal to 

zero. And therefore, real part of Zmn is zero for any m and n, therefore if we consider a lossless 

network, the elements of Z must be purely imaginary, and in the same manner elements of Y 

can also be shown to be imaginary. So, this property that, the elements of a lossless reciprocal 

Z or Y matrix they are purely imaginary. We will see some examples later on. 

(Refer Slide Time 29:50) 

[𝑍] = [

𝑗2 0.2 𝑗3
4 −2 0.5
𝑗 1 𝑗4

]                       

Neither lossless nor reciprocal    

[𝑍] = [

𝑗2 4 𝑗3
4 −𝑗2 𝑗0.5
𝑗3 𝑗0.5 4

] 

Reciprocal but not lossless 

[𝑍] = [

𝑗2 𝑗0.2 𝑗3
𝑗4 −𝑗2 𝑗0.5
𝑗 𝑗 𝑗4

] 

Lossless but not reciprocal 

[𝑍] = [

𝑗2 𝑗4 𝑗3
𝑗4 −𝑗2 𝑗0.5
𝑗3 𝑗0.5 𝑗4

] 

Both reciprocal and lossless 

 

 



Now, let us see some Z matrices for different types of networks, for example if you take this 

network, here we find that it is neither lossless nor reciprocal. Because it has entries which are 

real, and it is not symmetric. So, this Z matrix is neither lossless nor reciprocal. Similarly, if 

you take this matrix it is lossless but not reciprocal because we have all the elements to be 

imaginary. This gives an example of a Z matrix, which is reciprocal but not lossless, and this 

is the case where the Z matrix is both reciprocal and lossless. 

(Refer Slide Time 31:07) 

Let us illustrate how we can find equivalent voltages and currents for TE10 mode in a 

rectangular waveguide. 

For TE10 mode in a rectangular waveguide, when waves travelling in both +z and –z direction 

are present, the transverse field components can be written as: 

𝐸𝑦 = 𝐴+ sin
𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 + 𝐴− sin

𝜋𝑥

𝑎
𝑒𝑗𝛽𝑧 

= (𝐴+𝑒−𝑗𝛽𝑧 + 𝐴−𝑒𝑗𝛽𝑧) sin
𝜋𝑥

𝑎
 

We have,  

ℎ̅(𝑥, 𝑦) = 𝑎̂𝑧 ×
𝑒̅(𝑥, 𝑦)

𝑍𝑤
 

where, ℎ̅ and 𝑒̅ are transverse field components and 𝑍𝑤 is the wave impedance. 

∴ We can write 

𝐻𝑥 = −
1

𝑍TE
(𝐴+𝑒−𝑗𝛽𝑧 + 𝐴−𝑒𝑗𝛽𝑧) sin

𝜋𝑥

𝑎
 

The power for the incident wave is given by 

𝑃+ =
1

2
∫ ∫

|𝐴+|2

𝑍TE

𝑏

0

𝑎

0

sin2
𝜋𝑥

𝑎
𝑑𝑥𝑑𝑦 

=
𝑎𝑏

4𝑍TE

|𝐴+|2 

 



 

We discussed equivalent voltages and currents. so, let us consider an example to illustrate how 

we can find those equivalent voltages and currents. A particular, for a propagating mode in a 

waveguide. So, to illustrate this we consider TE10 mode propagation in a rectangular 

waveguide, and for a TE10 mode in a rectangular waveguide, when the waves traveling in both 

plus Z and minus Z directions are present the transverse field components we can write in this 

form a plus sin Pi x by a this is the variation of the field component ui, e to the power minus j 

beta z. and this is the wave traveling in the plus Z directions and a minus sin Pi x by a, e to the 

power j beta z. this gives the wave traveling in the minus z-direction. 

So, we can put in this form, and we know that the transverse magnetic and electric field 

components, they are related by this equation, h transverse is az cross e transverse by Zw where 

Zw is the waveguide impedance, and these relations holds when we consider the wave is 

propagating along z. so, from this relation, once we have written ui we can write the expression 

for Hx to be equal to minus 1 by Z TE, a plus e to the power minus j beta z. plus a minus e to 

the power j beta z, sin Pi x by a, so, the power for the incident wave. 

Let us denoted by p plus and from this ui and Hx component we can find this power to half 0 

to a, 0 to b, if you integrate this a plus square Zt sin square Pi x by a, that means over the cross-

section of the waveguide then this will give us the power in the incident wave, and once we 

evaluate this integral, we get p plus to be equal to ab divided by 4 ZTE a plus mode square 



(Refer Slide Time 34:43) 

Writing in the form of equivalent voltages and currents. 

𝑉(𝑧) = 𝑉+𝑒−𝑗𝛽𝑧 + 𝑉−𝑒𝑗𝛽𝑧 

𝐼(𝑧) = 𝐼+𝑒−𝑗𝛽𝑧 − 𝐼−𝑒𝑗𝛽𝑧 

=
1

𝑍0
(𝑉+𝑒−𝑗𝛽𝑧 − 𝑉−𝑒𝑗𝛽𝑧) 

∴ 𝑃+ =
1

2
𝑉+𝐼+∗ 

Let 𝐶1and 𝐶2 be two constants such that 

𝑉+ = 𝐶1𝐴
+         𝐼+ = 𝐶2𝐴

+ 

𝑉− = 𝐶1𝐴
−         𝐼− = 𝐶2𝐴

− 

We have seen that 

𝑃+ =
𝑎𝑏

4𝑍TE
|𝐴+|2 and 𝑃+ =

1

2
𝑉+𝐼+∗ 

∴
𝑎𝑏

4𝑍TE

|𝐴+|2 =
1

2
𝑉+𝐼+∗ 

=
1

2
|𝐴+|2𝐶1𝐶2

∗ 

Let 𝑍TE = 𝑍0 

∴
𝑉+

𝐼+
=

𝐶1

𝐶2
= 𝑍TE 

 

 

Now we can also write equivalent voltages and currents. so, Vz can be written as V plus e to 

the power minus j beta z. plus V minus e to the power j beta z. and Iz can be written as I plus 



e to the power minus j beta z, minus I minus e to the power j beta z, and this Iz can also be 

written in terms of the voltages V plus and V minus. So, from these expressions if we consider 

the incident power P plus then, it is given by half V plus I plus conjugate, and now let us 

consider that to constant C1 and C2 which relates this V plus with a plus and V minus, with a 

minus, I plus with a plus and I minus with a minus, a plus a minus, these are the as we have 

seen, these are the magnitude of the transverse field components. 

Now, we have 2 expressions for P plus 1 evaluated from the fields. Another evaluated from the 

voltage and current. And if we equate these 2 then, we can write ab by 4 ZTE a plus mod square 

is equal to half V plus I plus conjugate, nowhere what do we can look, we can replace V plus 

I plus in terms of C1 A plus and C2 A plus. So, if we do that then this becomes half A plus 

modular square C1, C2 conjugate. 

And let us as we said during over discussion of equivalent voltages and currents. Z Naught can 

be either set to be equal to Z TE or it can be normalized to unity. Let us set Z Naught equal to 

Z TE. In that case, we have V plus divided by I plus is equal to C1 by C2 and equal to ZTE. 

(Refer Slide Time 38:11) 

For real 𝐶1and 𝐶2, we can solve 

𝐶1 = √
𝑎𝑏

2
 

and 

𝐶2 =
1

𝑍TE

√
𝑎𝑏

2
 

With 𝐶1and 𝐶2 fount out, we can find 𝑉+, 𝐼+, 𝑉− and 𝐼− in terms of amplitude 𝐴+ and 𝐴−. 

 



 

So, if we consider C1, C2 to be real, from the previous 2 equations, that means ab by 4 ZTE is 

equal to half C1, C2 conjugate, and C1 by C2 equal to ZTE. From this 2, we can find out C1 to be 

equal to under root ab by 2, and C2 will be 1 by ZTE, under root ab by 2. So, with C1, C2 known 

what we can do, we can find V plus I plus, V minus and I minus in terms of amplitude A plus 

and A minus. 

(Refer Slide Time 39:13) 

 

Let us now consider another example, let us consider a rectangular waveguide of dimensions, 

a is equal 2.5 centimeter and b is equal to 1.25 centimeter and, let the waveguide be a field with 

air for z less than 0, and the dielectric material with epsilon r is equal to 2.25 for z greater than 

0. So, this is shown here, so in this part it is airfield, in this part of the waveguide it is dielectric 

field, now let us apply the concept of equivalent transmission line model to computed reflection 



coefficient for the TE10 field incident on the interface from z less than zero, so that means what 

we are assuming, a wave is incident from this side from the waveguide air field waveguide and 

then part of this incident wave we will get reflected, because there will be a change in 

impedance here. And partly it will get transmitted. 

So, let us try to find out the reflection coefficient for this system assuming that the propagating 

mode is TE10 and the frequency of operation is 7.5 giga hertz. Now for the given guide 

dimensions, one may verify that at 7.5 giga hertz only TE10 mode propagates, in both the 

portions of the waveguide and that can be verified by calculating the cut off frequencies for 

different modes in both the waveguide. So, we will find that at 7.5 gigahertz only TE10 mode 

will get excited and higher-order modes will have cut off frequencies higher than 7.5 giga hertz 

in both the guides. 

(Refer Slide Time 41:39) 

Cutoff wavelength for 𝑇𝐸 10 mode in a rectangular waveguide is given by 2𝑎. 

 𝑘𝑐 =
𝜋

𝑎
= 125.66 m−1    𝑘0 = 2𝜋𝑓√𝜖0𝜇0 = 157.1 m−1 

𝛽𝑎 = √   𝑘0
2 − (

𝜋

𝑎
)
2

= 94.3 m−1 and 𝛽𝑑 = √   𝜖𝑟𝑘0
2 − (

𝜋

𝑎
)
2

= 199.35 m−1 

𝑍0𝑎 =
𝑘0𝜂0

𝛽𝑎
=

157.1 × 377

94.3
= 628.1 𝛺 

𝑍0𝑑 =
𝑘𝜂

𝛽𝑑
=

√𝜖𝑟𝑘0√
𝜇0

𝜖𝑟𝜖0

𝛽𝑑
=

𝑘0𝜂0

𝛽𝑑
=

157.1 × 377

199.35
= 297.1 𝛺 

𝛤 =
𝑍0𝑑 − 𝑍0𝑎

𝑍0𝑑 + 𝑍0𝑎
= −0.36 

 



 

Now, the cut off wavelength for TE10 mode in a rectangular waveguide, it is given by 2a and, 

therefore we can find out the cut off wave number kc is 2 Pi by lambda c which becomes equal 

to Pi by a, and for the given dimension a it can be calculated to be 125.66 per meter. Similarly, 

k Naught is 2 Pi f root Mue Naught epsilon Naught and that can be calculated for the given 

frequency 7.5 giga hertz to be 157.1 per meter. So once we know k Naught we can find out 

beta a, the propagation constant in the airfield waveguide and that will be given by k Naught 

square minus Pi by a whole square, and if we substitute the values we will get the value of beta 

a to be 94.3. 

Similarly, when beta e the inside the dielectric waveguide is calculated, there it is instead of k 

Naught it is k square, and therefore, it will be epsilon r into k Naught square, and it comes out 

to be 199.35 per meter. Now the wave impedance z Naught a for the TE10 mode in the air part 

of the waveguide. It can be found out to be k Naught Eta Naught Eta Naught is the intrinsic  

impedance of the free space divided by beta a, and once these values are substituted, Eta Naught 

is 377 ohm. 

So, it comes to be 628.1 ohm. Similarly z Naught d inside the dielectric portion of the guide 

can be found out as, k Eta by beta d, k we can write root epsilon  rk Naught and Eta can be 

written as Mue Naught by epsilon r epsilon Naught. So this root epsilon r cancels and z Naught 

d is given by k Naught Eta Naught y beta d, so once again once, we substitute these values, we 

get this to be equal to 297.1 ohm. We know that the reflection coefficient gamma will be,  z 

Naught d minus z Naught a divided by z Naught d plus z Naught a and once we substitute the 

values for z Naught a and z Naught d. the reflection coefficient comes out to be minus 0.36. 



So, this is how we can apply the concept of equivalent transmission line voltages and currents. 

For a single propagating mode and we can calculate the reflection coefficient at the interface 

of this ARN dielectric.  


