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We now cover these two topics, attenuation in rectangular waveguides and attenuation in

circular waveguides. We start with formulating the attenuation in rectangular waveguides.
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Power flow in the guide for TE,( mode can be
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Note that for a propagating mode, f is real,

We will restrict our discussion for the dominant TE1o mode only, and for TE1o mode we have
seen the longitudinal H z is given in this form, and we have the transverse field component E
y and H x and E x, H y and E z equal to 0. Now, we can calculate the power flow inside the
waveguide as half real part of E cross H star is the pointing vector and then dot the area dx dy

and a z is the unit vector for this elemental area.

So if we evacuate this expression we get an expression for the power that flows inside the
waveguide because of the dominant TEio mode, and this can be written as omega mu a cube b
by 4 pi r square real part of beta and A 10 magnitude square. Please note that when the wave

will propagate inside the waveguide beta will be a real quantity.
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» Power loss per unit length due to finite wall conductivity is
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where,

R, = wall surface resistor

¢ =contour encloses the inner perimeter of the guide walls.



» Surface currents are present in all four walls, but from symmetry, the currents on the
side walls are identical and also currents on the top and bottom walls are same
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» Power loss per unit length due to finite wall conductivity is

Rxf 212
P=— | dl
! 2 ( Ull

(4

where,

R, = wall surface resistance “

¢ =contour encloses the inner perimeter of the guide walls.

» Surface currents are present in all four walls but from symmetry, the currents on the side walls are
identical and also currents on the top and bottom walls are same

Now, let us see what causes attenuation inside the waveguide. We have calculated the field
components inside the rectangular waveguide considering the walls to be a perfect conductor.
In practice this conductors will have finite conductivity, and a small amount of power will be
lost on the metallic walls of the waveguide. Further, another source of attenuation is because
of the loss in the dielectric media feeling this waveguide, for the timing we are assuming this

dielectric inside the waveguide to be a perfect dielectric it does not dissipate any power.

Now, how we calculate the power that is lost on the waveguide walls, this power loss per unit
length due to finite conductivity is given by P | is equal to R s by 2 c is the contour and J
magnitude of surface current squared into dl. Now wherefrom this surface current comes? We
know from the boundary condition that the magnetic fields for TE1o mode that means H z and
H x they will be discontinuous on this metallic boundary, and we can calculate the surface

current that is induced on the walls of the waveguide by n cross H.

R s is the wall surface resistance, and c is the contour that encloses the inner perimeter of the
waveguide walls. Now, once we are able to find out J s we can evaluate this integral, and this
will give us the power loss per unit length, and from there we can find out the attenuation

constant.

Now, the surface currents will be present in all the four walls, but from the symmetry, the

currents on the sidewalls will be identical, and similarly the currents on the top and bottom



walls their magnitude will be the same and therefore, what we can do? Since we are evaluating

mod J square we can evaluate only on two walls and multiply this by 2.
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» Surface current on the left side wall is:
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The surface current on the left side wall is given by J s is equal to n cross H evaluated at X is
equal to 0. Now, if we look at the expression of the field component then H x becomes 0 at x
is equal to O since the H x dependence with x is given by sign pi x by A, and therefore x is
equal to 0 it becomes 0. So, from the x is equal to 0 walls we have only H z, and the vector that
is perpendicular vector to this wall is a x and therefore we can write the induced surface current
to be equal to minus ay A 10 e to the power minus j beta z.



Similarly, surface current on the bottom wall is contributed by both H x and H z component
and for the bottom wall the unit normal vector is a y and therefore once we evaluate this
expression a y cross a X H x at y equal to 0 plus a z H z at y equal to 0 and substitute the
expression for H x and H z then we get this as the surface current on the bottom wall. So once
you have the surface current densities calculated on the top and the bottom wall, and then we

can utilize this expression in calculating the power loss per unit length.
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Thus, the rectangular components of the surface current can expressed as:
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Thus, the rectangular components of the surface current can expressed as:
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So now we have the Jsy, Js x and J s z these current densities are as given and therefore if we
substitute these quantities then we get and evaluate this integral we get the expression for power
loss per unit length on the waveguide walls and this is given by Rs mod A 10 square b plus a

by 2 plus beta square a cube by 2 pi square.
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The attenuation constant is given by
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The attenuation constant is given by For TE; mode, k; = -== === = and B? = k* - k?
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Now, this is the power loss per unit length and the attenuation constant is given by power loss
at z is equal to 0 divided by 2P naught. Now, this P naught here we have already computed this
P naught here will be the power of the dominant TE1o mode which we have calculated, and
therefore if you substitute these expressions then we get an expression for the attenuation

constant alpha.



Now, further simplification is possible by considering that omega mu can be written as omega
root mu epsilon into root mu by epsilon, which is equal to k eta, eta is the intrinsic impedance
of the dielectric and once you substitute that we get the equation of this form. Now, for TE 10
mode the cut-off wavelength is lambda c is related to cut-off wave number k c as 2pi by lambda

¢ and lambda c is 2a.

So, k ¢ can be written as pi by a, and we know that beta square is equal to k square minus k ¢
square. So, if we now substitute this beta square by k square minus lambda by a whole square
then expression for alpha becomes as shown here, and on simplification, it becomes alpha equal
to R s 2pi square b plus k square a cube divided by k eta beta a cube b. So, this is the expression

for the attenuation constant in a rectangular waveguide.
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Further,
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We can put this attenuation constant expression, starting with this expression. We can if you
take this a cube outside we can put the equation for alpha in this particular form and we find
that for a TEiomode type propagation this factor ka can be written as pi f by f ¢ and therefore

alpha can be written as R s k divided by beta eta b 1 plus 2 b by a f by f ¢ whole square.

So, here in this particular expression, we have expressed alpha in terms of the operating
frequency and cut-off frequency. Please note that attenuation constant is a function of
frequency and f is greater than f ¢ here, of course, we will have another frequency-dependent
term, which is beta. So, in general as the frequency of operation in a waveguide is varied the

attenuation constant changes.

Please note that our entire derivation is based on the fact that the attenuation on the waveguide
walls is very very small, and we have computed the surface current density in terms of the field
components H x and H z which were evaluated considering that there is no attenuation on the
waveguide walls. We have seen how we can calculate the attenuation constant for a rectangular
waveguide, which is propagating TEio mode and when we consider only the losses in the

waveguide walls.
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Attenuation in a circular waveguide

Now, let us try to find out the attenuation constant in a circular waveguide in a similar manner.
So, we will restrict or discussion to the dominant TE11 mode in the circular waveguide, and as
before, we will assume that the dielectric region within the waveguide is lossless whatever

attenuation takes place that is because of the power loss in the waveguide wall.
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The attenuation due to lossy waveguide conductor for TE;; mode in a circular waveguide can

be found as follows:
For B = 0, the TE,, field equations can be written as
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The attenuation due to lossy waveguide conductor for TE;; mode in a circular waveguide
can be found as follows:

For B = 0, the TEy, field equations can be written as

H,(p.9,2) = (Asin0)]; (k.p)e /P

-jopdH, =jop "
b= 70 s Ohlkne

0H,

By = klz wﬂa—_kLmuA sin@J; (kp)e /P
aH,

H, = k;l} ﬂASanl(kcp)e i

St "—— “ A cos 0 (kep)e P

So, while calculating the different field components for a circular waveguide, we have seen the
phi dependence of the field can be written as either sin n phi or cos n phi and in general it is
given by A sin n phi plus B cos n phi. Now, let us consider that B is equal to 0 and we write

the field components for the TE1; mode that means n is equal to 1.

So, we can write H z as a function of rho phi and z as A sin phi J 1 k c rho e to the power minus
J beta z and once we have written H z in this manner we can find out the e rho component, it is

only a substitution of H z here and finding out the derivative with respect to phi.

Similarly, we can find out E phi component by substituting H z and finding the derivative with
respect to rho and similarly we can find out the magnetic field components H rho and H phi.
So, once we have all these field components computed, now we can find out the power that

propagates along the circular waveguide for the dominant TE11 mode.
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The attenuation due to lossy waveguide conductor for TE;; mode in a circular waveguide can
be found as follows:

For B = 0, the TE;, field equations can be written as
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The attenuation due to lossy waveguide conductor for TE;; mode in a circular waveguide
can be found as follows:

For B = 0, the TEy, field equations can be written as
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So, the power P naught can be written as half real part of E cross H star is the pointing vector
and then integrating this pointing vector from rho equal to 0 to rho equal to a and phi is equal
to 0 to phi equal to 2pi and this is the unit area a z rho d rho d phi and once this is expanded we
find that the power can be actually computed in terms of E rho, H phi, E phi, and H rho and we
can substitute the expressions for E rho, H phi, E phi and H rho from the already found out

expressions.
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And once we do this substitution and do some simplification then we get the power P naught

for that TE11 mode is given by this expression.
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So, as before once you have found out the power for the TE11 mode. Now, we proceed to
calculate the power loss on the conductor walls per unit length and that can be found out as R
s by 2 phi is 0 to 2pi mod of J square where J is the current induced on the circular waveguide

wall because of the tangential magnetic field components, so mod J s square ad phi.

And this can be found out in terms of H phi and H z square and once you substitute H phi and
H z then we get this expression for the power loss per unit length of the circular waveguide.
And once you have P | and P j rho evaluated we know that attenuation constant alpha c it is

given by P | by 2P naught.

So, we substitute P | and P naught from these two expressions we have just derived and after
doing some simplification we get alpha ¢ as shown in this expression R s k ¢ to the power 4 a
square plus beta square divided by eta k beta a and then this is p dash 11 square which is the

first root of the derivative of first-order Bessel function minus 1.

So, once we have this expression we can for a given frequency and waveguide dimensions we
can find out the attenuation constant alpha c, and for a given length of the waveguide we can
then calculate by how much the power will get attenuated as it travels down the line. So, in

summary in this module we have covered the waveguides rectangular and circular waveguides.

We have seen the wave propagation in this type of waveguides, and we have studied what are
the different modes which occur and we have seen which one is the dominant mode when it
comes to a rectangular waveguide and a dominant mode in a circular waveguide. We have also
seen how we can calculate the attenuation in the waveguide considering the finite conductivity

of the waveguide walls.



So, this gives a comprehensive statement on different aspects of wave propagation in the
waveguide. In the next module we will start our discussion on microwave networks and
particularly scattering parameters, which are very much useful in designing microwave

circuitry.



