
Microwave Engineering 

Professor Ratnajit Bhattacharjee 

Department of Electronics and Electrical Engineering 

Indian Institute of Technology Guwahati 

Lecture 05 

Rectangular and Circular Waveguides 

 

In module one, we introduced a brief history of microwave and then we discussed different 

microwave frequency bands and also introduced the concept of microwave transmission lines. 

Then we have seen the lumped element representation of microwave transmission line. Thereafter, 

we developed the telegrapher’s equation then we discussed the wave propagation on a transmission 

line.  
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Then we discussed the lossless lines and special cases of lossless terminated lines. So then we 

discussed lossy transmission lines and also discussed the distortionless line. Thereafter, we 

introduced a graphical tool which is called Smith chart, and we discussed the basics of Smith charts 

and how this Smith chart can be utilized in solving transmission line problems. 

In module two, we discussed waveguides, we briefly described the different modes of wave 

propagation, TEM and TE and TM and then we discussed how we could have TE and TM mode 

of propagation in rectangular waveguide, their cutoff frequencies. Next we discussed TE and TM 

modes in a circular waveguide, and we derived expression for cut off frequency of such modes in 



a circular waveguide, and finally in this module we discuss the attenuation of waves in rectangular 

and circular waveguides. 
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In this lecture, we will cover the following contents. a brief introduction to waveguides. This will 

be followed by discussion on TEM, TE and TM waves. Then we discussed the TE mode in 

rectangular waveguides then we consider the propagation of TM mode in rectangular waveguide. 

So a waveguide is a metallic tube which is used to guide electromagnetic waves. This is in the 

most basic form. Of course, there are other forms of waveguides, also there like dielectric 

waveguides.  

But we will discuss only the hollow metallic waveguides. In a waveguide, electric and magnetic 

fields are confined to space within the guide by the surrounding conducting wall. It is possible to 

propagate several modes of EM waves within a waveguide. These modes correspond to solution 

of Maxwell’s equation for particular waveguide geometry.  
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Now let us see the most commonly used form of waveguides, which are rectangular waveguide, 

having a cross-section that is rectangular and circular waveguide, having a cross-section circular. 

Please note that we are only showing the outline of the waveguide. In a practical waveguide, these 

metallic walls will have finite thickness and these dimensions a and b or the radius a, what we are 

showing here, these are the inner dimensions.  
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Now, TEM or transverse electromagnetic wave, it refers to a wave propagation where electric and 

magnetic fields are transverse to the direction of propagation. For example, if you consider, z-axis 



representing the direction of propagation then for a TEM wave both 𝐸𝑧 and 𝐻𝑧 components will 

be 0. So, the electric and magnetic field will be confined on the XY plane and may have 𝐸𝑥 𝐸𝑦 or 

𝐻𝑥 𝐻𝑦  component.  

For example, if you consider a coaxial transmission line, there the propagation mode is TEM. We 

have E row component and H phi component, and there is no 𝐸𝑧 or 𝐻𝑧 component. In the same 

manner, transverse electric or TE, in that case, 𝐸𝑧 component is 0 and 𝐻𝑧 is not 0. So, in a transverse 

electric wave or a TE wave, 𝐸𝑧 component will always be 0. So electric field is transverse to the 

direction of propagation and the axial component of the magnetic field 𝐻𝑧 will not be 0.  

Similarly, in transverse magnetic case, a 𝐻𝑧component will be 0 (())(inaudible: 06:31) and the 𝐸𝑧 

is not equal to 0.  
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Now, while doing the waveguide analysis, we assume that the waveguide boundaries are perfectly 

conducting and the dielectric region that is enclosed within this metallic boundary, they are perfect 

dielectric. That means we are not considering initially, any power loss that takes place, either at 

the walls of the waveguide or within the dielectric. When we consider practical waveguides, there 

will be small loss of power both in the metallic walls and within the dielectric, and later we will 

see how we can estimate such losses. 



It should be emphasized here that, in a hollow waveguide, it is a single conductor geometry, it 

cannot support a TEM wave. This is because suppose 𝐸𝑧 is equal to 0, then in order to support a 

transverse magnetic field, you require current in the longitudinal direction. Waveguides being 

single conductor does not have such current components, and therefore this guide of waveguiding 

structures cannot support TEM waves. Coaxial cable is a two-conductor system, and that is why it 

can support TEM wave propagation. 
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 In our analysis we assume time harmonic fields with 𝑒𝑗𝜔𝑡 dependence. 

 In the source free region, within the waveguide, 

𝛻 × 𝐸⃗ = −𝑗𝜔𝜇𝐻⃗⃗  

𝛻 × 𝐻⃗⃗ = 𝑗𝜔𝜖𝐸⃗  

 For a wave propagating along z-direction, the z dependence can be written as 𝑒−𝑗𝛽𝑧. 

 For such dependence 
𝜕

𝜕𝑧
 results in to a multiplication by a factor (−𝑗𝛽). 

 



 

So, in a metallic waveguide, our solution for the EM waves will be either TE or TM. So in order 

to find the solutions, we assume that the fields are time-harmonic, that means time dependence is 

given in the form 𝑒𝑗𝜔𝑡 and if you consider the source-free region within the waveguide, we can 

write the following Maxwell’s equation, Karl equations. We further assume that for a wave 

propagating in the z-direction, the z dependence can be written of the form 𝑒−𝑗𝛽𝑧. 

So we have seen when this type of z dependence, it gives rise to a wave traveling in the plus z-

direction. And for such dependence, this derivative, 𝜕 𝜕𝑧 essentially results in multiplication by a 

factor of minus j𝛽.  
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From 𝛻 × 𝐸⃗ = −𝑗𝜔𝜇𝐻⃗⃗ , we can have 

||

𝑎̂𝑥 𝑎̂𝑦 𝑎̂𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐸𝑥 𝐸𝑦 𝐸𝑧

|| = −𝑗𝜔𝜇[𝐻𝑥𝑎̂𝑥 + 𝐻𝑦𝑎̂𝑦 + 𝐻𝑧𝑎̂𝑧] 

Considering only the x-component from both sides, we have 

𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= −𝑗𝜔𝜇𝐻𝑥 

For a z dependence of the form 𝑒−𝑗𝛽𝑧 



𝜕𝐸𝑧

𝜕𝑦
+ 𝑗𝛽𝐸𝑦 = −𝑗𝜔𝜇𝐻𝑥 

We evaluate the y and z components in the same manner, 

−𝑗𝛽𝐸𝑥 −
𝜕𝐸𝑧

𝜕𝑥
= −𝑗𝜔𝜇𝐻𝑦 

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝑗𝜔𝜇𝐻𝑧 

In a similar manner, from 𝛻 × 𝐻⃗⃗ = 𝑗𝜔𝜖𝐸⃗ , we can write 

𝜕𝐻𝑧

𝜕𝑦
+ 𝑗𝛽𝐻𝑦 = 𝑗𝜔𝜖𝐸𝑥 

−𝑗𝛽𝐻𝑥 −
𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔𝜖𝐸𝑦 

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔𝜖𝐸𝑧 

 

 

So keeping in mind these, we expand Maxwell’s equations, then we get considering only the x – 

component from both sides, we have 𝜕𝐸𝑧 𝜕𝑦 minus 𝜕𝐸𝑦 𝜕𝑧 is equals to minus j𝜔𝜇𝐻𝑥 and this 𝜕𝜕𝑧 

can now be replaced by 𝑒−𝑗𝛽𝑧 as we have discussed, and therefore when the z dependence is in the 

form 𝑒−𝑗𝛽𝑧  we could re-write the equation of this form, 𝜕𝐸𝑧 𝜕𝑦, j𝛽𝐸𝑦  minus j𝜔𝜇𝐻𝑥.  



If you take the other two components, 𝐻𝑦 and 𝐻𝑧 and their corresponding equations, then we can 

get these two sets of the equation. And if you consider∇ × 𝐻 = 𝑗𝜔𝜖𝐸⃗ , then we get this set of 

equations.  
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𝜕𝐸𝑧

𝜕𝑦
+ 𝑗𝛽𝐸𝑦 = −𝑗𝜔𝜇𝐻𝑥 

−𝑗𝛽𝐸𝑥 −
𝜕𝐸𝑧

𝜕𝑥
= −𝑗𝜔𝜇𝐻𝑦 

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝑗𝜔𝜇𝐻𝑧 

𝜕𝐻𝑧

𝜕𝑦
+ 𝑗𝛽𝐻𝑦 = 𝑗𝜔𝜖𝐸𝑥 

−𝑗𝛽𝐻𝑥 −
𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔𝜖𝐸𝑦 

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔𝜖𝐸𝑧 

From these sets of equation we can express 𝐸𝑥, 𝐸𝑦, 𝐻𝑥 and 𝐻𝑦 in terms of 𝐸𝑧 and 𝐻𝑧. For example: 

𝐻𝑥 = −
1

𝑗𝜔𝜇
[
𝜕𝐸𝑧

𝜕𝑦
+ 𝑗𝛽𝐸𝑦] 

and 

𝐸𝑦 =
1

𝑗𝜔𝜖
[−𝑗𝛽𝐻𝑥 −

𝜕𝐻𝑧

𝜕𝑥
] 

  



 

Now the complete set of the equation is shown here. From this set of equation, what we can do, 

now we can see that different fill components, how they are related to each other. What we can do, 

we can express 𝐸𝑥, 𝐸𝑦, 𝐻𝑥, 𝐻𝑦, please note that these are the transverse components in terms of 𝐸𝑧 

and 𝐻𝑧 which are the longitudinal components? 

So how we can have this relationship, if you consider, for example, the first equation, then we can 

write 𝐻𝑥  =  −
1

𝑗𝜔𝜇
[
𝜕𝐸𝑧

𝜕𝑦
 + 𝑗𝛽𝐸𝑦], from this equation, and please note that this equation involves 

𝐸𝑦 so it has 𝐸𝑧 and 𝐸𝑦. 𝐸𝑧 is the component which we want to retain, 𝐸𝑦 is the component we want 

to substitute. Now from this equation, we find that this involves 𝐸𝑦, 𝐻𝑥, 𝑎𝑛𝑑 𝐻𝑧. So if we 

substitute, 𝐸𝑦 from this equation, we can write , 𝐸𝑦 of this form 
1

𝑗𝜔𝜖 
 [−𝑗𝛽𝐻𝑥 − 

𝜕𝐻𝑧

𝜕𝑥
].  
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Substituting for 𝐸𝑦, we get 

𝐻𝑥 = −
1

𝑗𝜔𝜇
[
𝜕𝐸𝑧

𝜕𝑦
−

𝛽

𝜔𝜖
(−𝑗𝛽𝐻𝑥 −

𝜕𝐻𝑧

𝜕𝑥
)] 

⇒ 𝐻𝑥 = −
1

𝑗𝜔𝜇

𝜕𝐸𝑧

𝜕𝑦
+

𝛽2

𝜔2𝜇𝜖
𝐻𝑥 −

𝑗𝛽

𝜔2𝜇𝜖

𝜕𝐻𝑧

𝜕𝑥
 

∴ 𝐻𝑥 (
𝜔2𝜇𝜖 − 𝛽2

𝜔2𝜇𝜖
) = −

1

𝑗𝜔𝜇

𝜕𝐸𝑧

𝜕𝑦
−

𝑗𝛽

𝜔2𝜇𝜖

𝜕𝐻𝑧

𝜕𝑥
 

Let  

𝑘2 = 𝜔2𝜇𝜖 

and 

𝑘𝑐
2 = 𝑘2 − 𝛽2 

∴ 𝐻𝑥 =
𝑗

𝑘𝑐
2
(𝜔𝜖

𝜕𝐸𝑧

𝜕𝑦
− 𝛽

𝜕𝐻𝑧

𝜕𝑥
) 

Proceeding in the same manner we can write: 

𝐻𝑥 =
𝑗

𝑘𝑐
2
(𝜔𝜖

𝜕𝐸𝑧

𝜕𝑦
− 𝛽

𝜕𝐻𝑧

𝜕𝑥
) 

𝐻𝑦 =
−𝑗

𝑘𝑐
2
(𝜔𝜖

𝜕𝐸𝑧

𝜕𝑥
+ 𝛽

𝜕𝐻𝑧

𝜕𝑦
) 

𝐸𝑥 =
−𝑗

𝑘𝑐
2
(𝛽

𝜕𝐸𝑧

𝜕𝑥
+ 𝜔𝜇

𝜕𝐻𝑧

𝜕𝑦
) 

𝐸𝑦 =
𝑗

𝑘𝑐
2
(−𝛽

𝜕𝐸𝑧

𝜕𝑦
+ 𝜔𝜇

𝜕𝐻𝑧

𝜕𝑥
) 

 



 

Now, this 𝐸𝑦 can be substituted in the first equation of 𝐻𝑥, once we do that 𝐻𝑥, can be written in 

the function and once we rearrange the terms, once we expand and rearrange the terms we can 

express 𝐻𝑥, in terms of 𝐸𝑧 and 𝐻𝑧. So we introduced 𝐾2 equal to 𝜔2𝜇𝜖 and 𝐾𝑐
2 is equal to 𝐾2  −

𝛽2. So once we introduced, this is the wavenumber and this is the, 𝐾𝑐 is the cut off wavenumber, 

we will see.  

And in terms of k and 𝐾𝑐 we can now write 𝐻𝑥 =
𝑗

𝑘𝑐
2  (𝜔𝜖 

𝜕𝐸𝑧

𝜕𝑦
 − 𝛽

𝜕𝐻𝑧

𝜕𝑥
) . Please note that here we 

have now been able to express transverse component 𝐻𝑥, in terms of 𝐸𝑧 and 𝐻𝑧. If we proceed in 

the same manner, for other field components, 𝐻𝑦, 𝐸𝑥 and 𝐸𝑦, then we get a set of four equations, 

which is shown here. Here we find that 𝐻𝑥 , 𝐻𝑦, 𝐸𝑥 and 𝐸𝑦 all are related to 𝐸𝑧 and 𝐻𝑧 and therefore 

once we know, 𝐸𝑧 and 𝐻𝑧 we can always find out the trend transverse field component, 𝐻𝑥 , 𝐻𝑦, 

𝐸𝑥 and 𝐸𝑦. 

So solving the field equation within the waveguide region, essentially now becomes finding out 

the solution for 𝐸𝑧 and 𝐻𝑧 and depending upon whether  𝐸𝑧 is 0 or 𝐻𝑧 is 0 we will get the solutions 

which will be when  𝐸𝑧 is 0 we will get TE solution and when 𝐻𝑧 is 0 we get a TM solution. So 

one of this component, 𝐸𝑧 or 𝐻𝑧 needs to be there to support the transverse field component.  

(Refer Slide Time: 16:23)  

With z dependence given by 𝑒−𝑗𝛽𝑧, we write 



𝐻𝑧(𝑥, 𝑦, 𝑧) = ℎ𝑧(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 

Further, 

𝛻 × 𝐻⃗⃗ = 𝑗𝜔𝜖𝐸⃗  

∴ 𝛻 × 𝛻 × 𝐻⃗⃗ = 𝑗𝜔𝜖𝛻 × 𝐸⃗  

⇒ −𝛻2𝐻⃗⃗ + 𝛻(𝛻. 𝐻⃗⃗ ) = 𝑗𝜔𝜖(−𝑗𝜔𝜇𝐻⃗⃗ ) 

⇒ −𝛻2𝐻⃗⃗ + 𝛻(𝛻. 𝐻⃗⃗ ) = 𝜔2𝜇𝜖𝐻⃗⃗  

∵ 𝛻. 𝐻⃗⃗ = 0 

∴ we can write, 

𝛻2𝐻⃗⃗ + 𝑘2𝐻⃗⃗ = 0 

 

 

Now suppose we want to write the field variation 𝐻𝑧 component, which is a function of x, y and z 

in this form. So we can write 𝐻𝑧 in terms of ℎ𝑧 x, y a function of transverse co-ordinate and 

multiplied by 𝑒−𝑗𝛽𝑧. Now, starting from curl of H equal to 𝑗𝜔𝜖𝐸⃗  if we take curl on both sides, and 

then expanding curl of curl of H as minus del square H plus gradient of divergence of H and 

substituting curl of E to be equal to minus j𝜔𝜇𝐻⃗⃗ , we get an equation of this form, and since we 

have divergence of H equals to 0 , so this equation, can be now written as ∇2𝐻 ⃗⃗⃗⃗  + 𝑘2 𝐻⃗⃗  = 0.  

(Refer Slide Time: 18:04)  



 

So considering z component of the magnetic field, we can write ∇2𝐻𝑧 (𝑥, 𝑦, 𝑧) + 𝐾2𝐻𝑧(𝑥, 𝑦, 𝑧) =

0 and substituting 𝐻𝑧 as a function of small ℎ𝑧 as a function of x, y and 𝑒−𝑗𝛽𝑧. Then we can write 

this form of the equation and writing k square minus beta square is equal to 𝑘𝑐
2 we can write, 

(
𝜕2

𝜕𝑥2 + 
𝜕2

𝜕𝑦2 + 𝑘𝑐
2) = ℎ𝑧(𝑥, 𝑦) = 0. Now, here 𝑘𝑐𝑤ℎ𝑖𝑐ℎ 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 √𝑘2 − 𝛽2 is called the cut off 

wave number.  
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Considering the z component 

𝛻2𝐻𝑧(𝑥, 𝑦, 𝑧) + 𝑘2𝐻𝑧(𝑥, 𝑦, 𝑧) = 0 

Substituting 𝐻𝑧(𝑥, 𝑦, 𝑧) = ℎ𝑧(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 

𝜕2

𝜕𝑥2
ℎ𝑧(𝑥, 𝑦) +

𝜕2

𝜕𝑦2
ℎ𝑧(𝑥, 𝑦) − 𝛽2ℎ𝑧(𝑥, 𝑦)+𝑘2ℎ𝑧(𝑥, 𝑦) = 0 

∴ (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝑘𝑐

2)ℎ𝑧(𝑥, 𝑦) = 0 

where,  𝑘𝑐 = √𝑘2 − 𝛽2 is called the cut off wave number. 

 



 

The partial differential equation is given by (
𝜕2

𝜕𝑥2 + 
𝜕2

𝜕𝑦2 + 𝑘𝑐
2) ℎ𝑧(𝑥, 𝑦) = 0 this can be solved by 

the method of separation of variables, that is, we can assume that ℎ𝑧 can be express of the form 

X(x)Y(y) and then substituting for ℎ𝑧 and then dividing both the sides by xy, we get an equation 

of this form like, 
1

𝑥

𝑑2𝑋

𝑑𝑥2 + 
1

𝑌
 
𝑑2𝑌

𝑑𝑦2 + 𝑘𝑐
2 =0. Now we define two separation constants 𝑘𝑥 𝑎𝑛𝑑 𝑘𝑦 And 

if we write 
1

𝑥

𝑑2𝑋

𝑑𝑥2 + 
1

𝑌
 
𝑑2𝑌

𝑑𝑦2 + 𝑘𝑐
2 =0, in that case, we can write this equation of this form, 

𝑑2𝑋

𝑑𝑥2 + 

𝑘𝑥
2X= 0. Similarly, the other equation can be written as 

𝑑2𝑌

𝑑𝑦2 + 𝑘𝑦
2Y =0.  

Where we find that 𝑘𝑐
2 =𝑘𝑥

2 + 𝑘𝑦
2 . So once we have these equations separated, now these equations 

are standard solutions.  

  



(Refer Slide Time: 21:16)  

Therefore, the general solution for ℎ𝑧 can be written as 

 ℎ𝑧(𝑥, 𝑦) = (𝐴 𝑐𝑜𝑠 𝑘𝑥𝑥 + 𝐵 𝑠𝑖𝑛 𝑘𝑥𝑥)(𝐶 𝑐𝑜𝑠 𝑘𝑦𝑦 + 𝐷 𝑠𝑖𝑛 𝑘𝑦𝑦) 

where, the constants 𝐴, 𝐵, 𝐶 and 𝐷 are to be evaluated from boundary conditions. 

 

 

And therefore, we can now write a general solution ℎ𝑧 we can write, A 𝑘𝑥𝑥 plus B sin 𝑘𝑥𝑥 into C 

cos 𝐾𝑦𝑦 plus D sin 𝐾𝑦𝑦 and these parameters A, B, C and D, these constants are to be evaluated 

from the boundary condition.  
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𝐻𝑥 = −
𝑗𝛽

𝑘𝑐
2

𝜕𝐻𝑧

𝜕𝑥
 

𝐻𝑦 = −
𝑗𝛽

𝑘𝑐
2

𝜕𝐻𝑧

𝜕𝑦
 

𝐸𝑥 = −
𝑗𝜔𝜇

𝑘𝑐
2

𝜕𝐻𝑧

𝜕𝑦
 

𝐸𝑦 =
𝑗𝜔𝜇

𝑘𝑐
2

𝜕𝐻𝑧

𝜕𝑥
 

and  

𝐻𝑧(𝑥, 𝑦, 𝑧) = (𝐴 𝑐𝑜𝑠 𝑘𝑥𝑥 + 𝐵 𝑠𝑖𝑛 𝑘𝑥𝑥)(𝐶 𝑐𝑜𝑠 𝑘𝑦𝑦 + 𝐷 𝑠𝑖𝑛 𝑘𝑦𝑦)𝑒−𝑗𝛽𝑧 



 

 

So let us now see what are the boundary conditions, in a rectangular waveguide, when TE modes 

are being propagated. So for TE modes, we can write  𝐸𝑧 is equal to 0 and 𝐻𝑥 and 𝐻𝑦 can be written 

in this form. Similarly, 𝐸𝑥 and 𝐸𝑦 component also can be written, please note that here, 𝐸𝑥 and 

𝐸𝑦,𝐻𝑥 and 𝐻𝑦 all expressed in terms of 𝐻𝑧 and 𝐻𝑧 and we can write A cos 𝑘𝑥𝑥 plus B sin 𝑘𝑥𝑥 into 

C cos 𝐾𝑦𝑦 plus D sin 𝐾𝑦𝑦 into 𝑒−𝑗𝛽𝑧.  

Now, we have to find out 𝐻𝑧component, such that this is the general form of 𝐻𝑧. We have to write 

𝐻𝑧 in such a way that this tangential electrical component 𝐸𝑥 and 𝐸𝑦, they satisfy the boundary 

condition, on the surface of the waveguide.  
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The boundary condition to be satisfied by the tangential field components in the walls of the 

waveguide are: 

𝐸𝑥 = 0      for           𝑦 = 0 and 𝑦 =  𝑏 

𝐸𝑦 = 0      for           𝑥 = 0 and 𝑥 =  𝑎 

The solutions of H𝑧 satisfying the boundary conditions for 𝐸𝑥 and 𝐸𝑦 can be evaluated as: 

 𝐻𝑧(𝑥, 𝑦, 𝑧) = 𝐴𝑚𝑛 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧 

where, 



𝑘𝑥 =
𝑚𝜋

𝑎
      for 𝑚 = 0,1,2… .. 

𝑘𝑦 =
𝑛𝜋

𝑏
      for 𝑛 = 0,1,2… .. 

and 𝐴𝑚𝑛 is the arbitrary amplitude constant. 

 

 

And these boundary conditions can be written as 𝐸𝑥 component is 0 for y equal to 0, y equal to b 

and 𝐸𝑦 component is 0 for x is equal to 0 and x is equal to a. So once we apply this boundary 

condition, we have to find 𝐻𝑧 which satisfies this boundary condition for 𝐸𝑥 and 𝐸𝑦, and the 

solution of 𝐻𝑧 , that satisfies this type of boundary condition for 𝐸𝑥 and 𝐸𝑦, will be of this form, 

𝐴𝑚𝑛 cos
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
 𝑒−𝑗𝛽𝑧. 

Here we find that 𝑘𝑥 is actually 
𝑚𝜋

𝑎
 and 𝐾𝑦 is 

𝑛𝜋

𝑏
 and it can take values, m equal to 0, 1 2. Similarly 

n is equal to 0, 1 , 2, like that, and , 𝐴𝑚𝑛 s an arbitrary amplitude constant. Note that this sin terms 

in this general equation 𝐻𝑧 they are dropped, so that we can satisfy the boundary condition, for 𝐸𝑥 

and 𝐸𝑦.  
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We find that propagation constant, 

𝛽 = √𝑘2 − 𝑘𝑐
2 = √𝑘2 − (

𝑚𝜋

𝑎
)
2

− (
𝑛𝜋

𝑏
)
2

 

is real when 𝑘 > 𝑘𝑐 = √(
𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

 

Each combination of m and n will give a mode and each mode has a cut off frequency 

𝑓𝑐𝑚𝑛
=

1

2𝜋√𝜖𝜇
√(

𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

 

above which the propagation condition 𝑘 > 𝑘𝑐 is satisfied. The mode with the lowest cut off 

frequency is called the dominant mode. 

For 𝑎 > 𝑏,   TE10 (m = 1,  n = 0) has the lowest cut off frequency 

𝑓𝑐10
=

1

2𝑎√𝜖𝜇
 

Please note: m = 0,  n = 0 makes all the transverse field components E𝑥, E𝑦, H𝑥 and H𝑦 to be 

zero. 

 

 

Now we can write the propagation constant 𝛽 to be equal to the root of 𝑘2 minus 𝑘𝑐
2 which is 𝑘2 

minus m𝜋 by a whole square minus n𝜋 by b whole square. And this beta becomes a real quantity 



when k is greater than 𝑘𝑐 and when k is greater than 𝑘𝑐 we get a propagating wave. Each 

combination of m and n will give a mode, and each mode has a cut off frequency. 

Now the cut-off frequency for the m𝑛𝑡ℎ mode is given by 1 by 2 pi root epsilon mu, under root m 

pie by a whole square plus n pi by b whole square, above which the propagation constant k greater 

than 𝑘𝑐 is satisfied. The mode with the lowest cut off frequency is called the dominant mode. Now 

if we have a rectangular waveguide for which a is greater than b, then we see that the cut-off 

frequency, the least cut off frequency will be when m equal to 1 and n equal to 0. Similarly if b is 

greater than a, in that case the lowest cut off frequency will be for m equal to 0, n equal to 1.  

So this particular mode, 𝑇𝐸10 it has the lowest cut off frequency, and we will see that the dominant 

mode for a rectangular waveguide. Now, once you substitute m equal to 1 n equal to 0 here, we 

get, 𝑓𝑐10
 to be equal to 1 by 2a root mu epsilon. So this is the cut off frequency for the dominant 

𝑇𝐸10 mode in a rectangular waveguide. Please note that depending upon the direction a and the 

values of mu and epsilon for the dielectric media inside a waveguide, for example it is air-filled 

waveguide, it will be ∈0 𝜇0 we will get a value of the cut off frequency 𝑓𝑐10
 and wave propagation 

inside such waveguide will only be possible to evolve this cut off frequency. Also note that m 

equal to 0, n equal to 0 makes all the transverse field components 𝐸𝑥, 𝐸𝑦, 𝐻𝑥, 𝐻𝑦 to be 0.  
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So, for m = 1,  n = 0, TE10 mode field components can be written as: 

𝐻𝑧 = 𝐴10 𝑐𝑜𝑠
𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 

𝐸𝑦 =
−𝑗𝜔𝜇𝑎

𝜋
𝐴10 𝑠𝑖𝑛

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 

𝐻𝑥 =
𝑗𝛽𝑎

𝜋
𝐴10 𝑠𝑖𝑛

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 

𝐸𝑥 = 𝐻𝑦 = 𝐸𝑧 = 0 

Cut off wave number is given 

𝑘𝑐 =
𝜋

𝑎
 



𝛽 = √𝑘2 − (
𝜋

𝑎
)
2

 

 

 

So for the 𝑇𝐸10 mode we can write the field components using the previous equations 𝐻𝑧 to be A 

1 0 cos pi x by a, e to the power of minus j beta z. And , 𝐸𝑦 is minus j omega mu a by pi a 1 0 sin 

pi x by a e power minus j beta z. Please note that we have only , 𝐸𝑦 component and it will have a 

sinusoidal distribution over the guide cross-section and it is a function of x, so we will have the 

maximum value of , 𝐸𝑦 x is equal to a by 2, and we will see that for x is equal to 0, and x is equal 

to a,  𝐸𝑦 becomes 0.  

So this is the boundary condition, which is satisfied by  𝐸𝑦 and apart from 𝐻𝑧 the longitudinal 

magnetic field component, we have another transverse magnetic field component which is given 

by minus j beta a by pi A 1 0 sin pi x by a e to the power minus j beta z . And 𝐸𝑥, 𝐻𝑦,  𝐸𝑧 all are 

zero. So, here we have also the three field components, one electric field component, and two 

magnetic field component. So we can find out the cut off wave number, so 𝑘𝑐 becomes pie by a 

and beta becomes k square minus pi by a whole square. 
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 At a given operating frequency 𝑓, only those modes having 𝑓 > 𝑓𝑐 will propagate. 

 Modes with 𝑓 < 𝑓𝑐 will attenuate (as this leads to an imaginary 𝛽) exponentially and such 

modes are called evanescent modes. 

 When more than one modes propagate in the waveguide, the waveguide is called 

overmoded. 

We have  

𝐸𝑥 = −
𝑗𝜔𝜇

𝑘𝑐
2

𝜕𝐻𝑧

𝜕𝑦
  

 𝐻𝑦 = −
𝑗𝛽

𝑘𝑐
2

𝜕𝐻𝑧

𝜕𝑦
 

The wave impedance   

𝑍TE =
𝐸𝑥

𝐻𝑦
=

𝜔𝜇

𝛽
=

𝜔√𝜇𝜖√
𝜇
𝜖

𝛽
=

𝑘𝜂

𝛽
 

In the same manner,  

𝑍TE =
−𝐸𝑦

𝐻𝑥
=

𝑘𝜂

𝛽
 

 

 



So at a given operating frequency f, only those modes which are having f greater than 𝑓𝑐 propagates 

in a waveguide. And modes with an operating frequency f is less than 𝑓𝑐 they attenuate because 

beta becomes imaginary and the attenuate exponentially and such modes are called evanescent 

modes. So even if these modes are excited, they will not propagate, they will eventually die out. 

And when we have more than one mode, propagating in a waveguide we say that the waveguide 

is overmoded.  

So we have the 𝐸𝑥 and , 𝐻𝑦 component, in a for TE wave mode of propagation, can be written in 

this form and therefore, the wave impedance 𝑍𝑇𝐸 which is defined as 𝐸𝑥 𝑏𝑦 𝐻𝑦 and this becomes 

equal to k eta by beta where this eta is root mu by epsilon, the intrinsic impedance of dielectric 

media and also omega root mu epsilon is equal to k. Now, we also find 𝑍𝑇𝐸 can be defined as ratio 

of minus 𝐸𝑦 by 𝐻𝑥 which is equal to k eta by beta. Please note that 𝐸𝑥 and , 𝐻𝑦 component when 

we consider it gives the wave which is traveling in the z-direction, and 𝑍𝑇𝐸 is the wave impedance 

as seen by this wave.  
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 We have 𝑘 = 𝜔√𝜇𝜖 =
2𝜋

𝜆
 and 𝑘𝑐 =

2𝜋

𝜆𝑐
 

 The guide wavelength is given by 𝜆𝑔 =
2𝜋

𝛽
=

2𝜋

√𝑘2−𝑘𝑐
2
 

 Therefore,  

𝜆𝑔 =
2𝜋

√(
2𝜋
𝜆

)
2

− (
2𝜋
𝜆𝑐

)
2

=
𝜆

√1 − (
𝜆
𝜆𝑐

)
2

=
𝜆

√1 − (
𝑓𝑐
𝑓
)
2

 

 Note that:   𝑣𝑝 =
𝜔

𝛽
>

𝜔

𝑘
=

1

√𝜇𝜖
 

 



 

Now we have k is equal to omega root mu epsilon and which can be written as 2 pi by lambda and 

also the cut off wavelength 𝑘𝑐 can be written as 2 pi by 𝜆𝑐. Now the wavelength inside the 

waveguide will be different than the wavelength in the dielectric media at the same operating 

frequency. So this can be seen by considering the fact that, guide wavelength 𝜆𝑔 inside a waveguide 

for the propagation constant beta will be given by 2 pi by beta, whereas if you substitute beta in 

terms of the root of k square minus k c square. 

And therefore we can write 𝜆𝑔 = 
2𝜋

√
2𝜋

𝜆

2
− 

2𝜋

𝜆𝑐

2
 which after rearranging we can write as lambda by 1 

minus lambda by lambda c whole square, and in terms of frequency it can be written as lambda 

divided by root of 1 minus fc by f whole square, where 𝑓𝑐 is the cutoff frequency. Please note that 

𝑓𝑐 will be less than f for a wave which is propagating within the waveguide and therefore one 

minus 𝑓𝑐 by f whole square this will become a fraction and 𝜆𝑔 will be greater than lambda, where 

lambda is the wavelength in the dielectric media. 

Further 𝑣𝑝 the face velocity is given by omega by beta and this is greater than omega by k, omega 

by k is the velocity in the dielectric media which is given by 1 by root mu epsilon. It may be noted 

that although the face velocity within a waveguide becomes greater than the velocity of the wave 

propagation in the dielectric media and if it is free space then greater than 1 by root mu epsilon 

naught which is equal to c, so when we consider actual propagation of energy within the 

waveguide, it remains less than equal to c.  
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For the TM modes we have, 

𝐻𝑧 = 0 and the 𝐸𝑧(𝑥, 𝑦, 𝑧) = 𝑒𝑧(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 

𝛽 = √𝑘2 − 𝑘𝑐
2  

𝐻𝑥 =
𝑗𝜔𝜖

𝑘𝑐
2

𝜕𝐸𝑧

𝜕𝑦
 

𝐻𝑦 =
−𝑗𝜔𝜖

𝑘𝑐
2

𝜕𝐸𝑧

𝜕𝑥
 

𝐸𝑥 =
𝑗𝛽

𝑘𝑐
2

𝜕𝐸𝑧

𝜕𝑥
 

𝐸𝑦 =
−𝑗𝛽

𝑘𝑐
2

𝜕𝐸𝑧

𝜕𝑦
 

 

 

Now let us come to the TM modes of rectangular waveguide, for the TM modes, we have 𝐻𝑧 the 

longitudinal component of the magnetic field to be 0, only the transverse components of the 

magnetic fields are present and 𝐸𝑧 the longitudinal component of the electric field by our previous 

argument we can write in this form, 

𝑒𝑧(𝑥, 𝑦)a function of x and y and z dependance is given by 𝑒−𝑗𝛽𝑧 



Now we have beta is given by root of k square minus kc square and 𝐻𝑥, 𝐻𝑦, similarly 𝐸𝑥𝑎𝑛𝑑 𝐸𝑦 

in terms of 𝐸𝑧 can be expressed in the function.  
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Similar to TE case, considering the z component of the electric field we can write 

𝛻2𝐸𝑧(𝑥, 𝑦, 𝑧) + 𝑘2𝐸𝑧(𝑥, 𝑦, 𝑧) = 0 

Substituting 𝐸𝑧(𝑥, 𝑦, 𝑧) = e𝑧(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 

𝜕2

𝜕𝑥2
e𝑧(𝑥, 𝑦) +

𝜕2

𝜕𝑦2
e𝑧(𝑥, 𝑦) − 𝛽2e𝑧(𝑥, 𝑦)+𝑘2e𝑧(𝑥, 𝑦) = 0 

∴ (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝑘𝑐

2) e𝑧(𝑥, 𝑦) = 0 

where,  𝑘𝑐 = √𝑘2 − 𝛽2 is called the cut off wave number. 

 

 

And similar to TE case, considering the z component of the electric field, we can write the wave 

equation ∇2𝐸𝑧 + 𝑘2𝐸𝑧 = 0. And substituting 𝐸𝑧 in terms of 𝑒𝑧(𝑥, 𝑦) which is the transverse 

variation due to the transverse coordinate multiplied by 𝑒−𝑗𝛽𝑧 we can write del square del x square 

plus del square del y square plus kc square e z x, y is equal to 0. And 𝑘𝑐 as before is the cut off 

wave number. 
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The partial differential equation (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝑘𝑐

2) e𝑧(𝑥, 𝑦) = 0 can be solved by the method of 

separation of variables, i.e. by assuming  

e𝑧 = X(𝑥)Y(𝑦) 

∴
1

X

𝑑2X

𝑑𝑥2
+

1

Y

𝑑2Y

𝑑𝑦2
+ 𝑘𝑐

2 = 0 

Defining separation constants 𝑘𝑥 and 𝑘𝑦,  we have 

1

X

𝑑2X

𝑑𝑥2
+ 𝑘𝑥

2X = 0 

1

Y

𝑑2Y

𝑑𝑦2
+ 𝑘𝑦

2Y = 0 

where, 𝑘𝑐
2 = 𝑘𝑥

2 + 𝑘𝑦
2 

 

 

Now as before this partial differential equation can be solved by the method of separation of 

variables assuming 𝑒𝑧 to be XY product of two functions, Where this capital X is a function of x 

and capital Y is a function of y coordinate only. And then substituting 𝑒𝑧 is equal to XY here and 

dividing throughout by XY we get a equation of this form. Once again we introduce the separation 

constants 𝑘𝑥𝑎𝑛𝑑 𝑘𝑦 and we can separate these two equations. 
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Therefore, the general solution for 𝑒𝑧 can be written as 



 𝑒𝑧(𝑥, 𝑦) = (𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin 𝑘𝑥𝑥)(𝐶 cos 𝑘𝑦𝑦 + 𝐷 sin 𝑘𝑦𝑦) 

where, the constants 𝐴, 𝐵, 𝐶 and 𝐷 are to be evaluated from boundary conditions. 

E𝑧(𝑥, 𝑦, 𝑧) = (𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin 𝑘𝑥𝑥)(𝐶 cos 𝑘𝑦𝑦 + 𝐷 sin 𝑘𝑦𝑦)𝑒−𝑗𝛽𝑧 

 

 

So from these two equations, we can write the z components of electric field as a function of x and 

y in this form (A cos 𝑘𝑥x + B sin 𝑘𝑥𝑥)(C cos 𝑘𝑦y + D sin 𝑘𝑦𝑦). Now this A, B, C, D are to be 

determined from the boundary conditions. And this shows that 𝐸𝑧 component, z component of the 

electric field in the general form.  
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The boundary condition to be satisfied by the Ez are 

𝐸𝑧 = 0      for           𝑦 = 0 and 𝑦 =  𝑏 

𝐸𝑧 = 0      for           𝑥 = 0 and 𝑥 =  𝑎 

The solutions of E𝑧 satisfying the boundary conditions can be evaluated as: 

 𝐸𝑧(𝑥, 𝑦, 𝑧) = 𝐵𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
𝑒−𝑗𝛽𝑧 

where, 

𝑘𝑥 =
𝑚𝜋

𝑎
      for 𝑚 = 1,2… .. 

𝑘𝑦 =
𝑛𝜋

𝑏
      for 𝑛 =  1,2… .. 



and 𝐵𝑚𝑛 is the arbitrary amplitude constant. 

 

 

Now when it comes to applying boundary condition, here we see that we can directly apply the 

boundary condition on the 𝐸𝑧 component and the conditions are 𝐸𝑧 component it is 0 for y equal 

to 0, y equal to b and similarly, 𝐸𝑧 is equal to 0 for x equal to 0 and x equal to a.  

So the solution, from the general solution of 𝐸𝑧 which satisfy these boundary condition can be 

obtained as 𝐸𝑧 x, y, z is equal to some B mn sin m pi x by a sin n pi y by b 𝑒−𝑗𝛽𝑧. Please note that 

here, 𝑘𝑥 evaluates to be m pi by a but we can take the m for as 1, 2, 3, etc., not 0. Similarly, 𝑘𝑦 is 

given by n pi by b and the values of n that we can take again 1, 2, 3, etc., not n equal to 0 because 

if you put either m or n equal to 0, ez will become zero. B mn here is the arbitrary amplitude 

constant and each combination of m and n will give a mode.  

  



(Refer Slide Time: 42:33)  

 As in the TE case  

𝑓𝑐𝑚𝑛
=

1

2𝜋√𝜖𝜇
√(

𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

 

 We observe that the lowest order TM mode is TM11. 

 The wave impedance related to the TM modes are 

𝑍TM =
𝐸𝑥

𝐻𝑦
=

−𝐸𝑦

𝐻𝑥
=

𝛽𝜂

𝑘
 

 

 

As in the TE case we have 𝑓𝑐𝑚𝑛
 the cut off frequency is given by 1 by 2 pi root mu epsilon m pi 

by a whole square plus n pi by b whole square whole under root and we observe that the lowest 

order mode that is possible for TM case is 𝑇𝑀11. The wave impedance related to the TM modes 

can be found out in the same manner as in TE it is 𝐸𝑥 by 𝐻𝑦 is equal to minus Ey by Hx now here 

in this case it is beta eta by k. 

(Refer Slide Time: 43:39)  



 

Now to illustrate a particular case of a rectangular waveguide, let us consider the example of a 

very popular rectangular waveguide, which is known as the WR-90. Here WR is waveguide 

rectangular and 90 stands for point nine inches that means the larger dimension a is point nine-

inch. And therefore in centimeter a is 2.286 cm and for WR-90 b is 1.016 cm. For such air-filled 

waveguide, the cut-off frequencies for different modes of wave propagation, we can calculate and 

we find that the cut off frequency for 𝑇𝐸10 modes are 6.5617 gigahertz.  

Similarly, the next mode is 𝑇𝐸20 having a cut off frequency of 13.123 GHz. The next mode is 

𝑇𝐸01 which is having a cut off frequency of 14.764 GHz. Now please note that below 6.5617 GHZ, 

with this guide direction, the propagation inside the waveguide is not possible. So above 6.5617 

GHz if we operate the waveguide, we will have 𝑇𝐸10 mode launched first, and then if we operate 

the waveguide above 13.123 GHz, then we have both the propagation possible. So, 6.5617 to 

13.123, in this frequency range, the dominant mode, 𝑇𝐸10 the mode only propagates in such 

waveguide.  

Therefore, WR-90 is often used in the x band of frequencies, which means from 8 to 12 GHz when 

we require single-mode propagation. We find that if you compute the cut off frequencies 𝑇𝐸11 and 

𝑇𝑀11 for this waveguide, it comes out to be, 16.156 and both 𝑇𝐸11 and 𝑇𝑀11, they have the same 

cut off frequencies. And when we have this type of scenario, that two modes have the same set of 

frequency, these types of modes are called degenerate modes. For example here 𝑇𝐸11 and 𝑇𝑀11 

are degenerate modes.  



So in this lecture, we have studied the TE and TM mode propagation in a rectangular waveguide, 

and we have derived mathematical equations, which describe the propagation of such modes. In 

the next lecture, we will consider the wave propagation in a circular waveguide, and we will 

consider the TE and TM mode of wave propagation in a circular waveguide, and we will find 

expression for the cut-off frequencies for TE and TM mode, in a circular waveguide.  


