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Design of single stage transistor amplifier 

So, we have discussed the gain of general two-port circuits, and we have seen the different gain 

like power gain, available gain, transducer gain. And, we have discussed the conditions related 

to the stability of the two-port. We have also discussed the conditions related to the stability of 

the two-port device. Let us now move on to discussion of the issues related to the design of a 

single-stage transistor amplifier.  
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So, the maximum power transfer from the input matching network to the transistor and 

maximum power transfer from the transistor to the output matching network will occur when 

both input and output, they are conjugately matched. That is, gamma is equal to gamma s 

conjugate, and gamma out is equal to gamma l conjugate. We assumed that the matching 

network that we are designing, these are lossless matching network and, with the assumptions 

of lossless matching sections.  



These conditions will maximize the overall transducer gain, and we can write Gt max, the 

maximum of the transducer gain as 1 by 1 minus mod of gamma s square, mod of S21 square 

into 1 minus mod gamma l square divided by 1 minus S22 gamma l mod square.  
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So, in the general case with a bilateral transistor, gamma is affected by gamma out and vice 

versa. So, the input and output sections are required to be matched simultaneously. That means 

gamma will be affected by gamma out; gamma out will affected by any changes that we make 

in gamma in. So, we can write from our earlier discussion that gamma is equal to gamma S 

conjugate.  

Therefore, gamma S conjugate can be written as S11 plus S12 S21 gamma l divided by 1 minus 

S22 gamma l. This is essentially the expression of gamma. And, similarly, we can write gamma 

l conjugate is equal to S22 plus S12 S21 gamma S divided by 1 minus S11 gamma S. So, this 

right-hand side is essentially the expression for gamma out.  
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From these conditions we can solve for gamma s and gamma l. The solution for gamma s is B1 

plus-minus root B1 square minus 4 mod C1 square divided by 2 C1. And, gamma l is equal to 

B2 plus-minus root B2 square minus 4 mod C2 square divided by 2 C2. Here this B1 B2, C1, and 

C2 these are given by B1 is equal to 1 plus mod S11 square minus mod S22 square minus mod 

of delta square. B2 is 1 plus mod S22 square minus mod S11 square minus mod of delta square. 

And, C1 is equal to S11 minus delta S22 conjugate C2 is S22 minus delta S11 conjugate.  

So, given the s parameters of the transistor, we can see that we can get the values of gamma s 

and gamma l. Things become very much simplified if we have a unilateral transistor that means. 

S12 is equal to 0. In that case we get gamma S equal to S11 conjugate and gamma l is equal to 

S22 conjugate. Because gamma in becomes is equal to S11 in case of a unilateral device. S12 is 

equal to 0 and gamma out becomes S22. Now, once we have this gamma s and gamma l 

computed.  

Now, this at the reflection coefficients which had to be seen looking into the matching networks 

at both ends. And, therefore, we can start with Z naught and design a matching network to 

transform it into an impudence which will give us the required gamma s and gamma l. 
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For a unilateral transistor, Gtu max is 1 by 1 minus mod S11 square into mod S21 square into 1 

by 1 minus mod S22 square. So, when the transistor is unconditionally stable K is greater than 

1. And, the maximum transducer power gain can be simply rewritten as Gt max is mod of S21 

divided by mod of S12 into K minus root K square minus 1. And, we define maximum stable 

gain that we can get is for K is equal to 1 and this is G maximum stable gain Gms g is mod S21 

divided by mod S12. Please note that when S12 is equal to 0 we have a unilateral case, and that 

is written separately here. 
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So, we can flow the steps for an amplifier design for maximum gain. We check for the stability 

of the transistor. We have seen that unconditionally stable devices can always be conjugately 

matched for maximum gain. So, we find out from the given s-parameters of the transistors at 

the specified frequency. We find out gamma s and gamma l. And, then we can calculate Gs, 

G0, and Gl, and product of these three will give us the overall gain.  

And, since we know gamma s and gamma l we can design the matching network using Smith 

chart by transforming Z naught by the appropriate matching network. Now, matching networks 

can be designed in different ways; we can use section of transmission lines and staff, we can 

use l section design that we have discussed. So, design of the matching network is left to the 

choice of the designer and also the form in which the fabrication will be simpler. Now, we have 

discussed how we can design an amplifier for maximum gain.  
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But, in certain applications, it may be preferable to design less than the maximum obtainable 

gain. For example, if we, we know that the higher the gain, the bandwidth will lower. So, in 

order to improve the bandwidth, we may sacrifice for gain. Or this amplifier may be working 

as a part of system where we require the amplifier to provide some specific values of gain. So, 

we have seen that G0 is essentially mod of S21 square. However we can achieve gains lower 

than the maximum achievable gain.  

By designing and input and output matching sections to have gained less than there maximum 

values. That means instead of designing Gs and Gl for the maximum values we can design them 

for lower values and achieve the desired gain. The design procedure is facilitated by plotting 



constant gain circles on the Smith chart to represent loci of gamma s and gamma l. That gives 

fixed values of gains Gs and Gl. So, we illustrate this procedure with a unilateral case.  

So, we have Gs given by this expression, Gl given by this; Gs is equal to 1 minus mod of gamma 

l square divided by mod of 1 minus S11 gamma S11 square. Similarly, Gl is 1 minus mod of 

gamma l square divided by mod of 1 minus S22 gamma l square. And, therefore, we have Gs 

max to be equal to 1 by 1 minus mod S11 square. That means when we have since we have 

unilateral transistor, gamma in is now equal to S11, and gamma in conjugate becomes equal to 

gamma s, and therefore, this gamma s can be replaced by S11 conjugate.  

In the same manner, gamma out becomes S22 when S1 to S0. Therefore, Gl max becomes 1 by 

1 minus mod of S22 square. Now, we define small  Gs  is equal to Gs  by Gs max, and this can 

be written as 1 minus mod gamma s square divided and by 1 minus S11 gamma S mod S square 

into 1 minus mod S11 square. And, similarly, we define the normalized Gl, capital Gl divided 

Gl max is equal to small Gl and its corresponding expression. 
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Now, if we fix values of Gs and Gl, they represent circles in gamma s or gamma l plane. And 

their centers and radius are given by Cs Rs for the Gs constant Gs and Cl Rl for constant Gl. 

Now, we can see that the center of each family of circles, so for different values of Gs and Gl 

we can have a family of constant gain circles. And, the centers of each family of circles lie 

along a straight line given by angels of S11 conjugate or S22 conjugate. Gamma s and gamma l 

can be chosen along these circles to provide the desired gains.  

So, we can plot this circle's family of circles in the Smith chart. And, for a given Gs or Gl we 

can find out the corresponding gamma s, directly from the gamma l or directly from the Smith 

chart. The choices for gamma s and gamma l are not unique because we are representing 

constant gain circles. So, any point on that circle is a candidate but, it makes sense to choose 

funds closer to the center of the Smith chart to minimize mismatch.  

So, these gamma s and gamma l are chosen in these circles. So, that it is closest to the center 

of the smith chart, and therefore, the mismatch is reduced. We explain here with some 

numerical values.  
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For example, if an amplifier is designed to provide a gain of 12 dB and at the design frequency. 

Suppose we have S11 is equal to 0.75, angel is minus 120 degrees S21 is 2.83 with angel 80 

degrees, and S22 is 0.6 with angel 70 degrees. And, we have already mentioned that S12 is 0. In 

that case we find that G naught is roughly 9 dB, and Gs max is 3.6 dB, and Gl max is 1.9 dB. 

So, what we can do in order to realize this12 dB gain, we can choose Gs to be 2 dB and Gl to 

be 1 dB. And, also we know that this constant Gl circle their center will now lie at 120 degrees. 

Because it lies along the line defining the angle of S11 conjugate. Similarly, the other circle will 

lie at 70 degrees.  
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So, these are not exact values just to show the representative values of how we can use this 

information. For, example this will be Gs circle this maybe Gl circle. And, the points that are 

closest to the center of the Smith chart and intersecting with the circle is this. Similarly, this is 

the closest point intersecting with constant Gl circle. And nearest to the Smith chart, so we will 

choose this value of gamma l and this value as gamma s. Once, again it should be noted that 

this circle has not been drone to the scale this is just for representation purposes only.  
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Next, we move on to low noise design. So, we have seen the two cases of single-stage transistor 

amplifier design. Designing for maximum gain and designing for specified gain. Let us now 

consider another issue the low wise design. So, besides stability and gain another important 

design consideration for a microwave amplifier is its noise figure. Particularly in receiver 

applications it is often required to have a preamplifier with a noise figure as low as possible.  

Now, we know that the amplifiers add noise, and the noise figure is defined as the signal to 

noise ratio at the input divided by signal to noise ratio at the output of the system. And, usually 

it is greater than 1 because of S naught by N naught. At the output of the amplifier becomes 

lower than Si by Ni at the input of the amplifier.  

So, while designing microwave amplifiers, it is not possible to obtain both minimum noise 

figure and maximum gain. Some compromise is made where we operate the amplifier at 

slightly reduces gain to achieve a specified noise figure. And, this can be done by using constant 

gain circles and circles of constant noise figure to select a suitable rate of between noise figure 

and gain.  
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A noise figure of two-port amplifier can be expressed as F equal to F min, minimum noise 

figure plus Rn by Gs into mod of Ys minus Y opt square. Now, this Ys Gs plus jBs is a source 

admittance. Y opts the optimum source admittance, which results in a minimum noise figure. 

So, we can see that when Ys is equal to Y opt F becomes equal to Fmin. And, Fmin minimum 



noise of the transistor, Rn is equivalent noise resistance of the transistor. And, Gs is the real part 

of the source admittance.    
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The quantities F min gamma opt as you will see it is related to Y opt, and Rn are the 

characteristics of the particular transistor been used. And, these are called the noise parameters 

of the device. Now, these parameters can be either provided by the manufacturer in the data 

sheet or this can be measured. So, we have Ys related to gamma s as 1 by Z naught 1 minus 

gamma s divided by 1 plus gamma s. In the same manner, Yopt related to 1 by Z naught is 

related to gamma opts 1 by Z naught 1 minus gammaopt divided by 1 plus gamma opt.  

Now, in the expression, for we have mod of Ys minus Y opt square, so this term can be 

calculated from Ys and Yopt. And, also Gs which is the real part of Ys, can be calculated. And, 



then in the expression for F we substitute Gs and mod of Ys minus Y opt square from here. 

And, then we get the expression for F as Fmin plus 4 Rn divided by Z naught into gamma s 

minus gamma opt magnitude square divided by 1 minus magnitude of gamma s square. Into 1 

plus gamma opt magnitude square.  
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Now, for a fixed noise figure F, a circle in the gamma s plane can be obtained from this 

expression. So, a parameter n, which is the noise figure parameter, is introduced. And, it is 

defined as mod gamma s minus gamma opt square divided by 1 minus mod of gamma s square. 

So, essentially the ratio of these two terms and then we get this equal to F minus F min divided 

by 4 Rn divided by Z naught. Mod of 1 plus gamma opt square. Now, this expression N is equal 

to gamma s minus gamma opt magnitude square divided by 1 minus mod gamma s square.  



It can be written in this form gamma s minus gamma opt into gamma s conjugate minus gamma 

opt conjugate is equal to N into 1 minus magnitude of gamma S square. And, from this 

expression, we can actually get the equation of the circle. And, the center of this circle Cf is 

gamma opt divided by N plus 1, and radius of the circle Rf is given by square root of N into N 

plus 1 minus gamma opt square divided by N plus 1. Now, we see that gamma opt a complex 

quantity, and this center Cf will lie along a line defined by the angel of gamma opt in the Smith 

chart.  
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So, let us illustrate the design procedure for the unilateral case that is when S1 to equal to 0. 

We use the data given about the transistor to calculate Cf and Rf for the required noise figure 

F. Cf lies on the line defined by the angle of gamma opt and center of constant Gs circle lies on 

the line defined by the angel of S11 conjugate. So, these are the two circles. This is the Gs circle 

just touching the constant the circle corresponding to the required noise figure F. And, this 

point of intersection is the gamma s, which actually gives the value of Gs for the required F. 

And, once we have this gamma s we can find out Gs Gl we can find out to be 1 by 1 minus mod 

of S22 square. Because S12 is 0 and G naught is given by mod of S21 square, and we can calculate 

Gtu in dB as sum of Gs Gl and G naught in dB. So, now we have the gain of Gs but designed in 

such a way it satisfies the requirement of the noise figure F. Once, we have gamma s and 

gamma L, we can see that gamma s value we have already calculated. And, once we have this 

gamma s and gamma l, we can design a matching network following the procedure.  

That is used to transform Z naught to either gamma s or gamma l using stub section of 

transmission lines or plumbed elements. So, this is in brief how we can design an amplifier 



with a specified noise figure. And, that design is achieved by adjusting the gain Gs, and we 

cannot have maximum gain from such design. So, we have discussed different issues related 

to the design of amplifiers. So, in the next lecture we will discuss Rf oscillators and will see 

some of the steps involved in design of such oscillators.  


