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Topics
* Two-Port Power Gains
* Stability
* Design of single stage transistor amplifier (for maximum gain,
specified gain)

* Low noise amplifier design
* RF oscillators.

We start a new module microwave amplifiers and oscillators. In this module, we are going to
cover the following topics, will have a discussion on two-port power gains as these amplifiers
are essentially two-port circuits. So, we will have a discussion on two-port power gains. We
will discuss the stability and then will discuss the design of single-stage transistor amplifier
and will see the designs for the cases of maximum gain and also for some specified again. We
will see some basics of low noise amplifier design, and finally we will discuss some basics of

RF oscillators.

In our previous module, we briefly discussed the basics of microwave frequency transistors,
both bipolar junction transistor as well as field-effect transistor or FET. We have seen that there
are wide variety of same conductor devices, such as silicon BJT, gallium arsenide or silicon-
germanium HBTSs, silicon MOSFETSs, gallium arsenide MESFETS, and other gallium arsenide
or gallium nitrate-based HEMTs.

So, these are the variety of transistors which are available and can be used in the design of
microwave amplifier and oscillators. Here, in this module, our discussion on the design of

amplifiers and oscillators will remain limited to the terminal characteristics of the transistors.



That means will represent the transistors by their S parameters and then carry out the design,

or in some cases we can also represent the transistors by their equivalent circuit model.

So, our discussion starts with some general discussion of two-port power gain, which is useful
for amplifier design and then will discuss the stability criterions for such networks. And
whatever results will drive and discussing the two-port networks, this will be applied two
design of single-stage transistor amplifiers, including design for maximum gain, design for

specified again, and also low noise figure design.
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TWO-PORT POWER GAIN

A two port network with general source and load impedance.

So, we start our discussion with the basics of a two-port network, and we consider the two-port
power gain. This figure shows the two-port network where we have these two-port represented
by its S parameter, and Z naught is the normalizing impedance of this network. We have a
voltage source Vs with a source impedance Zs, feeding the network. And also the two-port is

terminated to a load impedance Z..

Here V1 is the voltage in the input port, which essentially is a sum of incident voltage V1 plus
and be reflected voltage V1 minus. Similarly, we have voltage V: at the output port, and V>
plus is the voltage that is incident on port 2; V> minus is the voltage because of the signal going

out of this port. If we look towards the source, we get a reflection coefficient gamma S.

Similarly, if we look towards the input of this two-port with the load connected, then we get an
input reflection coefficient gamma in. Gamma out is the reflection coefficient when we look

from the output port of the network, and gamma L is the load reflection coefficient.
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TWO-PORT POWER GAIN

Power Gain = G = P/ P,, is the ratio of power dissipated in the load Z; to the power

in

delivered to the input of the two-port network. This gain is independent of Zg

Available Gain = G, = P, / P, is the ratio of the power available from the two-port

network to the power available from the source. This assumes conjugate matching in
both the source and the load.

Transducer Power Gain = G = P,/ P, is the ratio of the power delivered to the load
to the power available from the source. This depends on both Zg and Z; .

If the input and output are both conjugately matched to the two-port, then the gain is
maximized and G = G, = G;

So, for this type of two-port network, we can define different gains. The power gain G of such
network is defined as the ratio of the load power and input power. So G is given by P by Pin.
Now this gain is independent of Zs. It is defined in terms of P. and Pin. We define another gain,
which is called available gain. Now Ga is defined as the ratio of power available at the output

of the network and power that is available from the source.

So, when we talk of power available from the source. That means we talk of matching,
conjugate matching at the source. Similarly, when we talk of available power from the network,
we are referring to the matching at the load end, and therefore, this available power gain Ga, it

assumes that source and load end, both are matched conjugately.

The power gain, which will be very, very useful in our discussion, is called transducer power
gain, and it is represented by Gt. We define Gt the transducer power gain as P divided by
Pavs. We have already mentioned that Pavs is the power that is available from the source under
the matched condition that means the input port of the network is assumed to be conjugately

matched to the impedance of the source.

And Py is the load power that is delivered to the load this. And therefore, Gr is the ratio of the
power delivered to the load to the power available from the source, and it depends on both Zs
and Z.. Now, for a network, for which the input and output are conjugately matched to the two-

port, then the gain is maximized, and we will have essentially G equal to Ga equal to Gr.
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Next, we derived some of the useful relations which are necessary in order to derive the
expression for these gains G, Ga, and Gt. So, we start with the two-port network. Here we can
see that the reflection coefficient gamma S can be defined as Zs minus Z naught divided by Zs
plus Z naught. As we have already mentioned that Z naught is the reference impedance, we are

considering the entire system.

Similarly, at the load end, we can define gamma L to be equal to Z. minus Z naught divided
by Z. plus Z naught. So we have defined these two reflection coefficients, one looking toward
the source, the other one looking toward the load. Now, we need to find out gamma in and

gamma out.
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From the definition of § parameters:
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So for this two-port network, we have the S parameters, they are related to this voltage S V1
plus V1 minus V2 plus and V2 minus as V1 minus is equal to S11 V1 plus, plus S12 V2 plus. Now
we have already defined gamma L, and if you look at this network, our V2 plus is actually V>
minus into the reflection coefficient at the load. So if you substitute V2 plus, in terms of V2

minus, the signal that is incident on the load. We can write V1 minus equal to S11 V1 plus, plus

S12 gamma L V2 minus.

In the same manner,
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In the same manner, we can write V2 minus is Sz1 V1 plus, plus S22 V2 plus, and we replace V2
plus by gamma L V> minus. Now with these definitions, we need to find out gamma in and
gamma in is the reflection coefficient looking into this two-port from the point as shown here.
And therefore, gamma in will be V1 minus divided by V1 plus, from this expression, we can

write V1 minus divided by V1 plus is equal to S11 plus S12 gamma L V2 minus by V1 plus.

Now, V2 minus by V1 plus can be calculated from the second expression. And we can write V>
minus by V1 plus is equal to Sz1 plus S22 gamma L V2 minus by V1 plus. And therefore, we can
write V2 minus by V1 plus is equal to Sp; divided by 1 minus Sz gamma L. Now. We can
replace this V2 minus by V1 plus here. And therefore, we can write V1 minus divided by V1

plus is equal to Si1 plus Si2, S21 gamma L divided by 1 minus Sz gamma L.

And this is V1 minus by V1 plus is nothing but our gamma in, and therefore, we can write
gamma in to be equal to S11 plus S12, S21 gamma L divided by 1 minus S gamma L. So, this
is in terms of the S parameters. Also if Zin is the impedance looking through this input port. In
that case, we can write gamma in is Zin minus Zo divided by Zin the plus Zo. We can carry out,
in the same manner if we find V2 minus by V2 plus in this output port, then we can write gamma
out is equal to V2 minus divided by V2 plus and that can be written as Sz» plus Si2, So1 into

gamma S divided by 1 minus S11 gamma S.

Now, looking from this port, if the impedance is Zoy, in that case, we can also write gamma
out is equal to Zout minus Zodivided by Zout plus Zo. So gamma out also can be expressed either

in terms of the S parameters or in terms of the output impedance of the port Zout.
(Refer Slide Time: 19:03)
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Now, if we refer to this circuit once again, we find that V1 by voltage division, it is Z in divided
by Zin plus Zs into Vs. And V1 is equal to V1 plus, plus V1 minus, and therefore, we can write
V1 to be equal to V1 plus 1 plus V1 minus divided by V1 plus, which is gamma in. From this
expression gamma in equal to Zin minus Zo divided by Z in plus Z0, we can write Zi, equal to

Z naught 1 plus gamma in divided by 1 minus gamma in.

And in the same manner, we can write Zs equal to Zo 1 plus gamma S divided by 1 minus
gamma S., And now we can make the substitution, here we can write V1 plus is equal to 1 by
1 plus gamma in into Vs Zin divided by Zin plus Zs. And if you calculate Zin plus Zs, we get Z
in plus ZS is equal to 2Zo1 minus gamma in into gamma S divided by 1 minus gamma in into

1 minus gamma S.

So, we have now the expression for Z in plus Zs. We substitute Zin here and also Zin plus Zs in
the denominator and once we make this substitution, we get V1 plus is equal to Vs by 2, 1
minus gamma S divided by 1 minus gamma in gamma S. So in this expression, we have actually

expressed Vin plus, in terms of the source voltage Vs.
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So we rewrite this expression here for V1 plus. And now, we can find out the average power
that is delivered to the network P in is equal to 1 by 2Z naught, V1 plus magnitudes square into
1 minus mod gamma in square. So the incident power is mod V1 plus square divided by 2Z
naught. And when this term is multiplied by magnitude of gamma in square, it gives the
reflected power. And the difference of these two incident and reflected power is the input

power.

We have now expression for V1 plus and when this expression is substituted here, we get P in

is equal to mod of Vs square divided by 8Z naught into 1 minus mod of gamma S square divided



by mod of 1 minus gamma in gamma S square into 1 minus mod of gamma in square. So, we

have the expression for P in, now the power that goes into the network.

In the same manner, the power delivered to the load; it is V2 minus magnitude square divided
by 2Z naught. This is the incident power and minus the reflected power is incident power V>
minus mod square divided by 2Z naught multiplied by gamma L square. So we get, this is the
power which actually is delivered to the load. So, once we have expression for P, the power
delivered to the load and Pin power delivered to the network. We can calculate G, the gain of

the network as P by Pin.

But in the air expression of P. we find that it is in terms of V2 minus square whereas in Pin we
have it in terms of source voltage Vs magnitude square. Now we see that V> minus is Sz1 V1
plus, plus S22 V2, plus which can be written as, Sz1 V1 plus, plus S22 gamma L V2 minus. And

from this, we can write V> minus is equal to V1 plus Sz: divided by 1 minus S gamma L.

And therefore, P becomes V1 plus magnitudes square divided by 2Z naught Sz1 magnitude
square divided by 1 minus S2> gamma L magnitude square into 1 minus magnitude gamma L
square. And we already have the relation between V1 plus and Vs, and once we substitute
magnitude of V1 plus square, we now get the expression for the power P also, in terms of
magnitude of Vs square. From these two expressions, we can find the ratio to calculate the gain
G.
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TWO-PORT POWER GAIN
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So for the two-port shown, we have Pin and PL given by these expressions. And once we have
these expressions, we can find out the power gain G to be equal to P. by Pin. So, once we
substitute the expressions for P and Pin, we get G equal to mod of Sp1 square into 1 minus mod
of gamma L square divided by 1 minus mod of gamma in square into 1 minus Sz2 gamma L

mod square.

For finding expressions for the other two gains Ga the available gain and Gt transducer gain,
we need to find the expressions for Pavs. That means power available from the source and Payn
power available from the network. Now Payvs can be found as Pinput, Pin for the condition gamma

in is equal to gamma S conjugate.
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Therefore, we can find out Pavs as mod of Vs square divided by 8Z naught 1 minus gamma S
mod square divided by 1 minus mod of gamma S square and Pavn available power from the
network, this can be calculated as PL evaluated as at gamma L is equal to gamma out conjugate.
Now, when we substitute gamma L is equal to gamma out conjugate here, we get Pavn is equal
to mod of Vs square by 8Z naught mod of Sz: square divided by 1 minus S22 gamma out
conjugate mod square, 1 minus mod of gamma out square into 1 minus gamma S mod square

divided by one minus gamma S, gamma in square.

So, in this expression, we find that this parameter gamma in is also dependent upon gamma L.
And therefore, gamma in 1 minus gamma S gamma in, this factor we need to calculate when
gamma L is equal to gamma out conjugate. So, we can write gamma in, for gamma L is equal
to gamma out conjugate is equal to Si1 plus S12 S21 gamma out conjugate divided by 1 minus

S22 gamma out conjugate.
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Now, we have this expressions already derived, gamma out is given by S»2 plus S12 S21 gamma
S divided by 1 minus S11 gamma S. Therefore, we can write gamma out minus Sy into 1 minus
S11 gamma S is S12 Sz1 gamma S. And then if we find out 1 minus gamma S gamma in for
gamma L is equal to gamma out conjugate. This comes out to be one minus S11 gamma S into

one minus gamma out mod square divided by 1 minus S22 gamma out conjugate.

Now, please note that this expression, we are substituting. So, if you take modulus of this N
square and then substitute here, then we will get Pavn because this will be 1 by mod of 1 minus
gamma S gamma in square. So, some of the terms will get canceled, particularly when this will
go at the numerator 1 minus S22 gamma out conjugate mod of square. It will get canceled with
this term, like that, if we cancel out the corresponding terms, we get avn to be equal to mod of
VS square by 8Z naught mod S21 square divided by 1 minus S11 gamma S mod square into 1

minus gamma S mod square divided by 1 minus mod of gamma out square.

So, we have now the expression for avs and avn, from this two expressions, we can now find
out the expressions for GA which is avn divided by avs and this comes out to be mod of S»;
square into 1 minus gamma S mod square divided by 1 minus S11 gamma S mod square into 1
minus mod gamma out square. Similarly, if we find P by Pays then we can be expression for

GT the transducer gain and which is shown here.
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The most useful gain definition for amplifier design is the transducer power gain which
accounts for both source and load mismatch.
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The most useful gain definition for amplifier design is the transducer
power gain which accounts for both source and load mismatch.

So, if we summarise our discussion, we find that we have now the expression for the power
gain G, available power gain Ga, and transducer power gain Gt. Now, among these three, the
most useful gain definition for amplifier design is the transducer power gain, which accounts
for both source and load mismatch. Here we have both gamma S and gamma L, in the other
two expressions, we get either gamma S or gamma L. And Gt has both gamma S and gamma
L.
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Another special case is the unilateral transducer power

Now, let us go to some specific cases. Special case of the transducer power gain occurs when

both input and output are matched for zero reflection. So, that means we have gamma S equal

to 0, gamma L equal to 0. So this is in contrast to conjugate matching. Now, when gamma S

and gamma L, they are 0. In that case, Gt becomes simply mod of S2:1 square.

Here we can see that if you put gamma S 0 here, gamma L 0 here, gamma L 0 here and gamma

S 0 here. Then all these terms will become 1and we will be left with Gt equal to mod Sz1 square.

Another special case is the unilateral transducer gain when we have S1. equal to 0. That means

it is unilateral in the sense there is no signal flow from port to 21. So either Si2 is 0 or it is

negligibly small. In this condition, we get an expression for Gt which we did not by Gty

transducer gain unilateral.



And will see that this condition applies to many practical amplifier circuits, particularly when
the transistor has Si2 equal to 0. Now, when Si. equal to 0 from this expression, we find that
gamma in becomes Si:. Similarly, gamma out becomes Sz, and therefore, we get a modified

expression for Gt where this gamma in has been now substituted by Si1.
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A single-stage microwave transistor amplifier can be modelled by the circuit as shown in the figure below where
matching networks are used on both sides of the transistor to transform the input and output impedance Z; to the
source and load impedances Z; and Z,.
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The general transistor amplifier circuit.

So far, we were discussing the power gain for a general two-port network. A single-stage
microwave amplifier can be modelled by a circuit which is shown in the figure below, where
we can see that instead of Zs and Ry, we have Z naught as the source impedance and Z naught
as the load and we have actually to matching networks, input matching network, and output

matching network.

Now, this matching network transforms on both sides of the transistor. The input and output
impedance Z naught to Zs and Z.. So, our earlier discussion was with Zs and Z.. Now, the
purpose of this matching network is to transform Z naught to Zs and Z naught to ZL. And we
have shown Gs, G naught and G are the three gains. So this G naught is the gain which you

get from the transistor and Gs and G are the gains of the matching network.
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So from this expression of G, we can now separate the effective gain factors Gs, G naught,
and GL. We find that Gs is equal to 1 minus gamma S mod square 1 minus mod gamma S
square divided by mod of 1 minus gamma in gamma S square and G naught is equal to mod
S21 square, G is equal to 1 minus mod gamma L square divided by mod of 1 minus S22 gamma

L square.

Now, these are the expressions for gamma in and gamma out. If the transistor is unilateral, the

unilateral transducer gain reduces to Gty equal to Gs G naught G, where we have Gs now



when S12 is 0, gamma in becomes equal to S11. So Gs we replace Si1 for gamma in and gamma
S becomes 1 minus mod gamma S square divided by mod of 1 minus S11 gamma S square. G

naught remains the same mod of Sz: square, and G also remains same.
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So these are the gain expressions we have seen when we consider the S parameter
representation of the transistor. Now, let us look into the gain expression in terms of the
equivalent circuit. In our previous module we have seen that a small signal equivalent circuit
of a microwave FET, operating in common source configuration is represented like this. Now,
let us consider a unilateral case. That means we assume that Cqq equal to 0, and also we have

conjugate matching.

So here we can see the source resistance real part is R and source reactance jX is so chosen
that it cancels out the reactance provided by Cgs. That means minus J 1 by omega Cgs and jX,

they cancel out each other. Similarly, the load is chosen in such a way that in conjugate



matching is obtained. And therefore, will have for conjugate matching the load susceptance is

chosen here to be equal to minus omega Cas.

So, essentially these two will cancel out each other. So, under this condition since, we have
unilateral case Cqq equal to O, we can find out Gru. So, the voltage V¢ is actually V by 2R;, this
will give the current multiplied by 1 by J omega Cgs. This is the voltage Vc and the output
current gmVC, now can be calculated for this current source. And Gru is half of this current
will go through Rds, this load Rds. And therefore, we can write Py is equal to 1 by 8 mod of

gmVc square into Rgs.

And the power available from the source is 1 by 8 V square by R;, this is because we have R;
plus Ri, two R; and therefore, the current is essentially V by 2Ri and V square half V, square
will give us this expression. Now, when the expression for V¢ is substituted, we get Gy to be
equal to gm square Rds divided by 4 omega square Ri Cgs square. Now, this can be written in
this form Rgs by 4R; fr by f whole square. Where fr is the unity gain frequency in which we

define our previous module.

Therefore, we see that the gain of this unilateral transistor reduces as 1 by f square. So, this is
how we can find out the gain, unilateral gain of the transistor device, provided these values are
given under match condition. So in this manner we can find out the unilateral gain Gty from
the equivalent circuit, as shown in the figure under the matching condition. And we can
determine the value of Gy, once we have the values of fr, Ras, Ri. We can calculate Gty at a

given frequency.
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Let us now turn our attention to another very important issue in the design of the transistor
amplifier circuits. This is stability. If you consider the circuit as shown above the oscillation in
this circuit is possible if either input or output port impedances negative real part. So, if we
have a negative real part, we can show that magnitude of gamma in will become greater than
1 or magnitude of gamma out will become greater than 1, depending on, which port impedance

has negative real part.

Gamma in and gamma out depends on the source and load matching network. The stability of
the amplifier depends on gamma S and gamma L S presented by the matching networks. So,
we talk of a particular situation, which is unconditionally stable: The network is
unconditionally stable if mod gamma in is less than 1 and mod gamma out is less than 1 for all
passive source and load impedances. That is, whenever mod gamma S is less than 1 and mod
gamma L is less than 1, mod gamma in if it is less than 1 and mod gamma out is also less than

1. Then we have an unconditionally stable case.

Conditionally stable: The network is conditionally stable if mod gamma in is less than 1, and
mod gamma out is less than 1 only for a certain range of passive source and load resistances.
That means this condition of mod gamma in less than 1 and mod gamma out less than 1, it is
not valid, these conditions are not valid for all gamma S and gamma L. And this case is also
referred as potentially unstable. And also the stability condition of an amplifier circuit is usually

frequency dependent, an amplifier may be stable over a given range of frequencies.
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The condition that must be satisfied by gamma S and gamma L, if the amplifier is to be
unconditionally stable: we have already stated mod gamma in is less than 1 and mod gamma
out is less than 1. We represent the determinant of the scattering matrix S by delta, which is
equal to S11 Sz2 minus Si2 So1. Now, if we equate mod gamma in to 1, then will get the condition

that mod of Si1 plus Si2 S21 gamma L divided by 1 minus Sz> gamma L is 1.

And starting from this condition, we can derive mod of gamma L minus Cy is equal to R.. Now

Cv is given by conjugate of Sz2 minus delta Si1 conjugate divided by mod of Sz, square minus



mod of delta square. Similarly, the value R, which actually represents a radius, C. represents

the center because gamma L minus Cp is equal to R. gives a circle.

And RL is given by mod of S12 Sy divided by mod of Sz, square minus mod delta square. So
we see that we can have a circle with center C. and radius Ry, and it demarcates the value of
gamma L. For which mod gamma in is greater than 1 or less than 1.
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In the same manner from mod gamma out equal to 1, we can get another circle with center CS

and radius Rs. And the corresponding expressions are shown.
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If the device is unconditionally stable, the stability circles must be completely outside (or
totally enclose) the Smith chart.
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Now, from our previous discussions, we find that if the devices is unilateral. That means S1 is
equal to 0, then mod gamma in is less than 1, if mod of Si1 is less than 1. Similarly, mod of
gamma out is less than 1, if mod of Sy is less than 1. So for a unilateral device, it is the values

of the S parameters, S11, and Sz, that directly decides the stability.



Otherwise mod gamma in less than 1 and mod gamma out less than 1, essentially defines a
range of values for gamma S and gamma L where the amplifier will be stable. And we find this
range of values for gamma L and gamma S by plotting the stability circles, which we have just
discussed. For example, if we consider the output stability circle, here we have plotted it for
two cases, one mod of Siz is less than 1. So this is the Smith chart, and this is the circle with

radius R and C.

Now, we find that we determine the stable region by the location of gamma L is equal to 0. If
you have Z equal to Z naught, then gamma L will be 0. And here we find that gamma L equal
to 0 is the center of the Smith chart, which is outside this circle and the intersection of the Smith
chart, the shaded region it gives the values of gamma in for which the amplifier will be stable,

which means mod gamma in is less than 1.

Now, if you consider the other case where mod of Si1 is greater than 1. Then by the same
argument, we find that in this region the center of the Smith chart which represents gamma L
is equal to O is in the unstable region. And the stable region is given by this shaded region. So
given the S parameters of the transistors give, we can find out the values of gamma L that we
can use to have mod gamma in less than 1. That means to make the transistor amplifier a stable.

Similarly, we can do it for gamma S by plotting the input stability circles.
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If the device is unconditionally stable, the stability circles must be completely outside (or
totally enclose) the Smith chart.
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STABILITY CIRCLES

If the device is unconditionally stable, the stability circles must be completely outside (or totally
enclose) the Smith chart.
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So, we see that if the devices unconditionally stable, the stability circles must be completely
outside the Smith chart, or the stability circle must totally enclose the Smith chart. Now, mod
of CL minus Ry greater than 1, this implies mod of Si: less than 1 and similarly mod of Cs
minus Rs modulars greater than 1, it implies mod of Sz less than 1. Given the transistor S
parameters from the discussion we had so far, we get a set of conditions known as Rollets

conditions.

And we calculate a parameter K which is 1 minus mod S11 square minus mod S square plus
delta square plus mod delta square divided by 2 mod, Si2 S21 and if K greater than 1. And the
auxiliary condition delta is less than 1, where delta is S11 S22 minus S12 Sz1. So if the conditions
are satisfied. Then the transistor or the device is unconditionally stable. There is another test,
which is known as mu test, and for unconditional stability, we must have mu defined by 1
minus mod Si1 square divided by mod of Sz2 minus delta S11 conjugate plus S12 S;1 mod. This

parameter mu must be greater than 1.



