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We start a new module microwave amplifiers and oscillators. In this module, we are going to 

cover the following topics, will have a discussion on two-port power gains as these amplifiers 

are essentially two-port circuits. So, we will have a discussion on two-port power gains. We 

will discuss the stability and then will discuss the design of single-stage transistor amplifier 

and will see the designs for the cases of maximum gain and also for some specified again. We 

will see some basics of low noise amplifier design, and finally we will discuss some basics of 

RF oscillators. 

In our previous module, we briefly discussed the basics of microwave frequency transistors, 

both bipolar junction transistor as well as field-effect transistor or FET. We have seen that there 

are wide variety of same conductor devices, such as silicon BJT, gallium arsenide or silicon-

germanium HBTs, silicon MOSFETs, gallium arsenide MESFETs, and other gallium arsenide 

or gallium nitrate-based HEMTs. 

So, these are the variety of transistors which are available and can be used in the design of 

microwave amplifier and oscillators. Here, in this module, our discussion on the design of 

amplifiers and oscillators will remain limited to the terminal characteristics of the transistors. 



That means will represent the transistors by their S parameters and then carry out the design, 

or in some cases we can also represent the transistors by their equivalent circuit model. 

So, our discussion starts with some general discussion of two-port power gain, which is useful 

for amplifier design and then will discuss the stability criterions for such networks. And 

whatever results will drive and discussing the two-port networks, this will be applied two 

design of single-stage transistor amplifiers, including design for maximum gain, design for 

specified again, and also low noise figure design. 
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So, we start our discussion with the basics of a two-port network, and we consider the two-port 

power gain. This figure shows the two-port network where we have these two-port represented 

by its S parameter, and Z naught is the normalizing impedance of this network. We have a 

voltage source VS with a source impedance ZS, feeding the network. And also the two-port is 

terminated to a load impedance ZL. 

Here V1 is the voltage in the input port, which essentially is a sum of incident voltage V1 plus 

and be reflected voltage V1 minus. Similarly, we have voltage V2 at the output port, and V2 

plus is the voltage that is incident on port 2; V2 minus is the voltage because of the signal going 

out of this port. If we look towards the source, we get a reflection coefficient gamma S.  

Similarly, if we look towards the input of this two-port with the load connected, then we get an 

input reflection coefficient gamma in. Gamma out is the reflection coefficient when we look 

from the output port of the network, and gamma L is the load reflection coefficient. 
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So, for this type of two-port network, we can define different gains. The power gain G of such 

network is defined as the ratio of the load power and input power. So G is given by PL by Pin. 

Now this gain is independent of ZS. It is defined in terms of PL and Pin. We define another gain, 

which is called available gain. Now GA is defined as the ratio of power available at the output 

of the network and power that is available from the source. 

So, when we talk of power available from the source. That means we talk of matching, 

conjugate matching at the source. Similarly, when we talk of available power from the network, 

we are referring to the matching at the load end, and therefore, this available power gain GA, it 

assumes that source and load end, both are matched conjugately. 

The power gain, which will be very, very useful in our discussion, is called transducer power 

gain, and it is represented by GT. We define GT the transducer power gain as PL divided by 

Pavs. We have already mentioned that Pavs is the power that is available from the source under 

the matched condition that means the input port of the network is assumed to be conjugately 

matched to the impedance of the source.  

And PL is the load power that is delivered to the load this. And therefore, GT is the ratio of the 

power delivered to the load to the power available from the source, and it depends on both ZS 

and ZL. Now, for a network, for which the input and output are conjugately matched to the two-

port, then the gain is maximized, and we will have essentially G equal to GA equal to GT. 
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𝛤𝑆 =
𝑍𝑠 − 𝑍0
𝑍𝑠 + 𝑍0

 

𝛤𝐿 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

 

 

 

Next, we derived some of the useful relations which are necessary in order to derive the 

expression for these gains G, GA, and GT. So, we start with the two-port network. Here we can 

see that the reflection coefficient gamma S can be defined as ZS minus Z naught divided by ZS 

plus Z naught. As we have already mentioned that Z naught is the reference impedance, we are 

considering the entire system. 

Similarly, at the load end, we can define gamma L to be equal to ZL minus Z naught divided 

by ZL plus Z naught. So we have defined these two reflection coefficients, one looking toward 

the source, the other one looking toward the load. Now, we need to find out gamma in and 

gamma out. 
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So for this two-port network, we have the S parameters, they are related to this voltage S V1 

plus V1 minus V2 plus and V2 minus as V1 minus is equal to S11 V1 plus, plus S12 V2 plus. Now 

we have already defined gamma L, and if you look at this network, our V2 plus is actually V2 

minus into the reflection coefficient at the load. So if you substitute V2 plus, in terms of V2 

minus, the signal that is incident on the load. We can write V1 minus equal to S11 V1 plus, plus 

S12 gamma L V2 minus. 



In the same manner, we can write V2 minus is S21 V1 plus, plus S22 V2 plus, and we replace V2 

plus by gamma L V2 minus. Now with these definitions, we need to find out gamma in and 

gamma in is the reflection coefficient looking into this two-port from the point as shown here. 

And therefore, gamma in will be V1 minus divided by V1 plus, from this expression, we can 

write V1 minus divided by V1 plus is equal to S11 plus S12 gamma L V2 minus by V1 plus.  

Now, V2 minus by V1 plus can be calculated from the second expression. And we can write V2 

minus by V1 plus is equal to S21 plus S22 gamma L V2 minus by V1 plus. And therefore, we can 

write V2 minus by V1 plus is equal to S21 divided by 1 minus S22 gamma L. Now. We can 

replace this V2 minus by V1 plus here. And therefore, we can write V1 minus divided by V1 

plus is equal to S11 plus S12, S21 gamma L divided by 1 minus S22 gamma L. 

And this is V1 minus by V1 plus is nothing but our gamma in, and therefore, we can write 

gamma in to be equal to S11 plus S12, S21 gamma L divided by 1 minus S22 gamma L. So, this 

is in terms of the S parameters. Also if Zin is the impedance looking through this input port. In 

that case, we can write gamma in is Zin minus Z0 divided by Zin the plus Z0. We can carry out, 

in the same manner if we find V2 minus by V2 plus in this output port, then we can write gamma 

out is equal to V2 minus divided by V2 plus and that can be written as S22 plus S12, S21 into 

gamma S divided by 1 minus S11 gamma S. 

Now, looking from this port, if the impedance is Zout, in that case, we can also write gamma 

out is equal to Zout minus Z0 divided by Zout plus Z0. So gamma out also can be expressed either 

in terms of the S parameters or in terms of the output impedance of the port Zout. 
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Now, if we refer to this circuit once again, we find that V1 by voltage division, it is Z in divided 

by Zin plus ZS into VS. And V1 is equal to V1 plus, plus V1 minus, and therefore, we can write 

V1 to be equal to V1 plus 1 plus V1 minus divided by V1 plus, which is gamma in. From this 

expression gamma in equal to Zin minus Z0 divided by Z in plus Z0, we can write Zin equal to 

Z naught 1 plus gamma in divided by 1 minus gamma in. 

And in the same manner, we can write ZS equal to Z0 1 plus gamma S divided by 1 minus 

gamma S., And now we can make the substitution, here we can write V1 plus is equal to 1 by 

1 plus gamma in into VS Zin divided by Zin plus ZS. And if you calculate Zin plus ZS, we get Z 

in plus ZS is equal to 2Z01 minus gamma in into gamma S divided by 1 minus gamma in into 

1 minus gamma S. 

So, we have now the expression for Z in plus ZS. We substitute Zin here and also Zin plus ZS in 

the denominator and once we make this substitution, we get V1 plus is equal to VS by 2, 1 

minus gamma S divided by 1 minus gamma in gamma S. So in this expression, we have actually 

expressed Vin plus, in terms of the source voltage VS. 
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So we rewrite this expression here for V1 plus. And now, we can find out the average power 

that is delivered to the network P in is equal to 1 by 2Z naught, V1 plus magnitudes square into 

1 minus mod gamma in square. So the incident power is mod V1 plus square divided by 2Z 

naught. And when this term is multiplied by magnitude of gamma in square, it gives the 

reflected power. And the difference of these two incident and reflected power is the input 

power. 

We have now expression for V1 plus and when this expression is substituted here, we get P in 

is equal to mod of VS square divided by 8Z naught into 1 minus mod of gamma S square divided 



by mod of 1 minus gamma in gamma S square into 1 minus mod of gamma in square. So, we 

have the expression for P in, now the power that goes into the network. 

In the same manner, the power delivered to the load; it is V2 minus magnitude square divided 

by 2Z naught. This is the incident power and minus the reflected power is incident power V2 

minus mod square divided by 2Z naught multiplied by gamma L square. So we get, this is the 

power which actually is delivered to the load. So, once we have expression for PL, the power 

delivered to the load and Pin power delivered to the network. We can calculate G, the gain of 

the network as PL by Pin. 

But in the air expression of PL we find that it is in terms of V2 minus square whereas in Pin we 

have it in terms of source voltage VS magnitude square. Now we see that V2 minus is S21 V1 

plus, plus S22 V2, plus which can be written as, S21 V1 plus, plus S22 gamma L V2 minus. And 

from this, we can write V2 minus is equal to V1 plus S21 divided by 1 minus S22 gamma L.  

And therefore, PL becomes V1 plus magnitudes square divided by 2Z naught S21 magnitude 

square divided by 1 minus S22 gamma L magnitude square into 1 minus magnitude gamma L 

square. And we already have the relation between V1 plus and VS, and once we substitute 

magnitude of V1 plus square, we now get the expression for the power PL also, in terms of 

magnitude of VS square. From these two expressions, we can find the ratio to calculate the gain 

G. 
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So for the two-port shown, we have Pin and PL given by these expressions. And once we have 

these expressions, we can find out the power gain G to be equal to PL by Pin. So, once we 

substitute the expressions for PL and Pin, we get G equal to mod of S21 square into 1 minus mod 

of gamma L square divided by 1 minus mod of gamma in square into 1 minus S22 gamma L 

mod square. 

For finding expressions for the other two gains GA the available gain and GT transducer gain, 

we need to find the expressions for Pavs. That means power available from the source and Pavn 

power available from the network. Now Pavs can be found as Pinput, Pin for the condition gamma 

in is equal to gamma S conjugate. 
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Therefore, we can find out Pavs as mod of VS square divided by 8Z naught 1 minus gamma S 

mod square divided by 1 minus mod of gamma S square and Pavn available power from the 

network, this can be calculated as PL evaluated as at gamma L is equal to gamma out conjugate. 

Now, when we substitute gamma L is equal to gamma out conjugate here, we get Pavn is equal 

to mod of VS square by 8Z naught mod of S21 square divided by 1 minus S22 gamma out 

conjugate mod square, 1 minus mod of gamma out square into 1 minus gamma S mod square 

divided by one minus gamma S, gamma in square. 

So, in this expression, we find that this parameter gamma in is also dependent upon gamma L. 

And therefore, gamma in 1 minus gamma S gamma in, this factor we need to calculate when 

gamma L is equal to gamma out conjugate. So, we can write gamma in, for gamma L is equal 

to gamma out conjugate is equal to S11 plus S12 S21 gamma out conjugate divided by 1 minus 

S22 gamma out conjugate. 
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Now, we have this expressions already derived, gamma out is given by S22 plus S12 S21 gamma 

S divided by 1 minus S11 gamma S. Therefore, we can write gamma out minus S22 into 1 minus 

S11 gamma S is S12 S21 gamma S. And then if we find out 1 minus gamma S gamma in for 

gamma L is equal to gamma out conjugate. This comes out to be one minus S11 gamma S into 

one minus gamma out mod square divided by 1 minus S22 gamma out conjugate. 

Now, please note that this expression, we are substituting. So, if you take modulus of this N 

square and then substitute here, then we will get Pavn because this will be 1 by mod of 1 minus 

gamma S gamma in square. So, some of the terms will get canceled, particularly when this will 

go at the numerator 1 minus S22 gamma out conjugate mod of square. It will get canceled with 

this term, like that, if we cancel out the corresponding terms, we get avn to be equal to mod of 

VS square by 8Z naught mod S21 square divided by 1 minus S11 gamma S mod square into 1 

minus gamma S mod square divided by 1 minus mod of gamma out square. 

So, we have now the expression for avs and avn, from this two expressions, we can now find 

out the expressions for GA which is avn divided by avs and this comes out to be mod of S21 

square into 1 minus gamma S mod square divided by 1 minus S11 gamma S mod square into 1 

minus mod gamma out square. Similarly, if we find PL by Pavs then we can be expression for 

GT the transducer gain and which is shown here.  
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2|1 − 𝛤𝑆|
2

|1 − 𝑆11𝛤𝑆|2(1 − |𝛤𝑜𝑢𝑡|2)
 

The transducer power gain: 

𝐺𝑇 =
𝑃𝐿
𝑃𝑎𝑣𝑠

=
|𝑆21|

2(1 − |𝛤𝑆|
2)(1 − |𝛤𝐿|

2)

|1 − 𝑆22𝛤𝐿|2|1 − 𝛤𝑆𝛤𝑖𝑛|2
 

The most useful gain definition for amplifier design is the transducer power gain which 

accounts for both source and load mismatch.  

 

 

So, if we summarise our discussion, we find that we have now the expression for the power 

gain G, available power gain GA, and transducer power gain GT. Now, among these three, the 

most useful gain definition for amplifier design is the transducer power gain, which accounts 

for both source and load mismatch. Here we have both gamma S and gamma L, in the other 

two expressions, we get either gamma S or gamma L. And GT has both gamma S and gamma 

L. 
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𝐺𝑇 =
𝑃𝐿
𝑃𝑎𝑣𝑠

=
|𝑆21|

2(1 − |𝛤𝑆|
2)(1 − |𝛤𝐿|

2)

|1 − 𝑆22𝛤𝐿|2|1 − 𝛤𝑆𝛤𝑖𝑛|2
 

𝛤𝑖𝑛 = 𝑆11 + 
𝑆12𝑆21𝛤𝐿

1−𝑆22𝛤𝐿
 

𝛤𝑜𝑢𝑡 = 𝑆22 + 
𝑆12𝑆21𝛤𝑆

1−𝑆11𝛤𝑆
 

(𝛤𝐿 = 0       𝛤𝑆 = 0) 

𝐺𝑇 = |𝑆21|
2 

Γin = S11 when S12 = 0, so the unilateral transducer gain is: 

𝐺𝑇𝑈 =
|𝑆21|

2(1 − |𝛤𝑆|
2)(1 − |𝛤𝐿|

2)

|1 − 𝑆11𝛤𝑆|2|1 − 𝑆22𝛤𝐿|2
 

 

 

Now, let us go to some specific cases. Special case of the transducer power gain occurs when 

both input and output are matched for zero reflection. So, that means we have gamma S equal 

to 0, gamma L equal to 0. So this is in contrast to conjugate matching. Now, when gamma S 

and gamma L, they are 0. In that case, GT becomes simply mod of S21 square. 

Here we can see that if you put gamma S 0 here, gamma L 0 here, gamma L 0 here and gamma 

S 0 here. Then all these terms will become 1and we will be left with GT equal to mod S21 square. 

Another special case is the unilateral transducer gain when we have S12 equal to 0. That means 

it is unilateral in the sense there is no signal flow from port to 21. So either S12 is 0 or it is 

negligibly small. In this condition, we get an expression for GT which we did not by GTU 

transducer gain unilateral.  



And will see that this condition applies to many practical amplifier circuits, particularly when 

the transistor has S12 equal to 0. Now, when S12 equal to 0 from this expression, we find that 

gamma in becomes S11. Similarly, gamma out becomes S22 and therefore, we get a modified 

expression for GT where this gamma in has been now substituted by S11. 
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So far, we were discussing the power gain for a general two-port network. A single-stage 

microwave amplifier can be modelled by a circuit which is shown in the figure below, where 

we can see that instead of ZS and RL, we have Z naught as the source impedance and Z naught 

as the load and we have actually to matching networks, input matching network, and output 

matching network.  

Now, this matching network transforms on both sides of the transistor. The input and output 

impedance Z naught to ZS and ZL. So, our earlier discussion was with ZS and ZL. Now, the 

purpose of this matching network is to transform Z naught to ZS and Z naught to ZL. And we 

have shown GS, G naught and GL are the three gains. So this G naught is the gain which you 

get from the transistor and GS and GL are the gains of the matching network. 
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𝐺𝑇 =
𝑃𝐿
𝑃𝑎𝑣𝑠

=
|𝑆21|

2(1 − |𝛤𝑆|
2)(1 − |𝛤𝐿|

2)

|1 − 𝑆22𝛤𝐿|2|1 − 𝛤𝑆𝛤𝑖𝑛|2
 

The separate effective gain factors: 



𝐺𝑆 =
1 − |𝛤𝑆|

2

|1 − 𝛤𝑖𝑛𝛤𝑆|2
       𝐺0 = |𝑆21|

2      𝐺𝐿 =
1 − |𝛤𝐿|

2

|1 − 𝛤22𝛤𝐿|2
 

𝛤𝑖𝑛 = 𝑆11 + 
𝑆12𝑆21𝛤𝐿

1−𝑆22𝛤𝐿
 

𝛤𝑜𝑢𝑡 = 𝑆22 + 
𝑆12𝑆21𝛤𝑆

1−𝑆11𝛤𝑆
 

If the transistor is unilateral, the unilateral transducer gain reduces to GTU = GSG0GL , where: 

𝐺𝑆 =
1 − |𝛤𝑆|

2

|1 − 𝛤11𝛤𝑆|2
    

  

   𝐺0 = |𝑆21|
2      

 𝐺𝐿 =
1 − |𝛤𝐿|

2

|1 − 𝛤22𝛤𝐿|2
 

 

 

So from this expression of GT, we can now separate the effective gain factors GS, G naught, 

and GL. We find that GS is equal to 1 minus gamma S mod square 1 minus mod gamma S 

square divided by mod of 1 minus gamma in gamma S square and G naught is equal to mod 

S21 square, GL is equal to 1 minus mod gamma L square divided by mod of 1 minus S22 gamma 

L square. 

Now, these are the expressions for gamma in and gamma out. If the transistor is unilateral, the 

unilateral transducer gain reduces to GTU equal to GS G naught GL, where we have GS now 



when S12 is 0, gamma in becomes equal to S11. So GS we replace S11 for gamma in and gamma 

S becomes 1 minus mod gamma S square divided by mod of 1 minus S11 gamma S square. G 

naught remains the same mod of S21 square, and GL also remains same. 
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Unilateral case 𝐶𝑔𝑑 = 0 

Source and load impedances are chosen for conjugate matching 𝑋 = 1 𝜔𝐶𝑔𝑠⁄  and 𝐵 = −𝜔𝐶𝑑𝑠 

𝑉𝐶 = (𝑉 2𝑅𝑖⁄ )(1 𝑗𝜔𝐶𝑔𝑠⁄ )           𝐺𝑇𝑈 =
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𝑃𝑎𝑣𝑠
=

1
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2 =

𝑅𝑑𝑠

4𝑅𝑖
(
𝑓𝑇

𝑓
)
2

 

 

 

So these are the gain expressions we have seen when we consider the S parameter 

representation of the transistor. Now, let us look into the gain expression in terms of the 

equivalent circuit. In our previous module we have seen that a small signal equivalent circuit 

of a microwave FET, operating in common source configuration is represented like this. Now, 

let us consider a unilateral case. That means we assume that Cgd equal to 0, and also we have 

conjugate matching. 

So here we can see the source resistance real part is Ri and source reactance jX is so chosen 

that it cancels out the reactance provided by Cgs. That means minus J 1 by omega Cgs and jX, 

they cancel out each other. Similarly, the load is chosen in such a way that in conjugate 



matching is obtained. And therefore, will have for conjugate matching the load susceptance is 

chosen here to be equal to minus omega Cds. 

So, essentially these two will cancel out each other. So, under this condition since, we have 

unilateral case Cgd equal to 0, we can find out GTU. So, the voltage VC is actually V by 2Ri, this 

will give the current multiplied by 1 by J omega Cgs. This is the voltage VC and the output 

current gmVC, now can be calculated for this current source. And GTU is half of this current 

will go through Rds, this load Rds. And therefore, we can write PL is equal to 1 by 8 mod of 

gmVC square into Rds. 

And the power available from the source is 1 by 8 V square by Ri, this is because we have Ri 

plus Ri, two Ri and therefore, the current is essentially V by 2Ri and V square half VI square 

will give us this expression. Now, when the expression for VC is substituted, we get GTU to be 

equal to gm square Rds divided by 4 omega square Ri Cgs square. Now, this can be written in 

this form Rds by 4Ri fT by f whole square. Where fT is the unity gain frequency in which we 

define our previous module.  

Therefore, we see that the gain of this unilateral transistor reduces as 1 by f square. So, this is 

how we can find out the gain, unilateral gain of the transistor device, provided these values are 

given under match condition. So in this manner we can find out the unilateral gain GTU from 

the equivalent circuit, as shown in the figure under the matching condition. And we can 

determine the value of GTU, once we have the values of fT, Rds, Ri. We can calculate GTU at a 

given frequency. 
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Let us now turn our attention to another very important issue in the design of the transistor 

amplifier circuits. This is stability. If you consider the circuit as shown above the oscillation in 

this circuit is possible if either input or output port impedances negative real part. So, if we 

have a negative real part, we can show that magnitude of gamma in will become greater than 

1 or magnitude of gamma out will become greater than 1, depending on, which port impedance 

has negative real part. 

Gamma in and gamma out depends on the source and load matching network. The stability of 

the amplifier depends on gamma S and gamma L S presented by the matching networks. So, 

we talk of a particular situation, which is unconditionally stable: The network is 

unconditionally stable if mod gamma in is less than 1 and mod gamma out is less than 1 for all 

passive source and load impedances. That is, whenever mod gamma S is less than 1 and mod 

gamma L is less than 1, mod gamma in if it is less than 1 and mod gamma out is also less than 

1. Then we have an unconditionally stable case. 

Conditionally stable: The network is conditionally stable if mod gamma in is less than 1, and 

mod gamma out is less than 1 only for a certain range of passive source and load resistances. 

That means this condition of mod gamma in less than 1 and mod gamma out less than 1, it is 

not valid, these conditions are not valid for all gamma S and gamma L. And this case is also 

referred as potentially unstable. And also the stability condition of an amplifier circuit is usually 

frequency dependent, an amplifier may be stable over a given range of frequencies. 
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The condition that must be satisfied by ΓS and ΓL if the amplifier is to be unconditionally stable: 

|𝛤𝑖𝑛| = |𝑆11 +
𝑆12𝑆21𝛤𝐿
1 − 𝑆22𝛤𝐿

| < 1 

|𝛤𝑜𝑢𝑡| = |𝑆22 +
𝑆12𝑆21𝛤𝑠
1 − 𝑆11𝛤𝑠

| < 1 

The determinant of the scattering matrix: 

∆= 𝑆11𝑆22 − 𝑆12𝑆21 

From, 

|𝛤𝑖𝑛| = 1,       

  



  |𝑆11 +
𝑆12𝑆21𝛤𝐿
1 − 𝑆22𝛤𝐿

| = 1 

and 

∆= 𝑆11𝑆22 − 𝑆12𝑆21 

We get 

|𝛤𝐿 − 𝐶𝐿| = 𝑅𝐿 

the output stability circles. 

𝐶𝐿 =
(𝑆22 − ∆𝑆11

∗
)
∗

|𝑆22|2 − |∆|2
 

𝑅𝐿 = |
𝑆12𝑆21

|𝑆22|2 − |∆|2
| 

 

 

The condition that must be satisfied by gamma S and gamma L, if the amplifier is to be 

unconditionally stable: we have already stated mod gamma in is less than 1 and mod gamma 

out is less than 1. We represent the determinant of the scattering matrix S by delta, which is 

equal to S11 S22 minus S12 S21. Now, if we equate mod gamma in to 1, then will get the condition 

that mod of S11 plus S12 S21 gamma L divided by 1 minus S22 gamma L is 1.  

And starting from this condition, we can derive mod of gamma L minus CL is equal to RL. Now 

CL is given by conjugate of S22 minus delta S11 conjugate divided by mod of S22 square minus 



mod of delta square. Similarly, the value RL, which actually represents a radius, CL represents 

the center because gamma L minus CL is equal to RL gives a circle.  

And RL is given by mod of S12 S21 divided by mod of S22 square minus mod delta square. So 

we see that we can have a circle with center CL and radius RL, and it demarcates the value of 

gamma L. For which mod gamma in is greater than 1 or less than 1. 
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Similarly from, 

|𝛤𝑜𝑢𝑡| = 1,        

  |𝑆22 +
𝑆12𝑆21𝛤𝑆
1 − 𝑆11𝛤𝑆

| = 1 

and 

∆= 𝑆11𝑆22 − 𝑆12𝑆21 

We get the center and radius of the input stability circles: 

𝐶𝑆 =
(𝑆11 − ∆𝑆22

∗ )
∗

|𝑆11|2 − |∆|2
 

𝑅𝑆 = |
𝑆12𝑆21

|𝑆11|2 − |∆|2
| 

 

 



In the same manner from mod gamma out equal to 1, we can get another circle with center CS 

and radius RS. And the corresponding expressions are shown. 
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If the device is unconditionally stable, the stability circles must be completely outside (or 

totally enclose) the Smith chart. 

 

 

 

Now, from our previous discussions, we find that if the devices is unilateral. That means S12 is 

equal to 0, then mod gamma in is less than 1, if mod of S11 is less than 1. Similarly, mod of 

gamma out is less than 1, if mod of S22 is less than 1. So for a unilateral device, it is the values 

of the S parameters, S11, and S22 that directly decides the stability. 



Otherwise mod gamma in less than 1 and mod gamma out less than 1, essentially defines a 

range of values for gamma S and gamma L where the amplifier will be stable. And we find this 

range of values for gamma L and gamma S by plotting the stability circles, which we have just 

discussed. For example, if we consider the output stability circle, here we have plotted it for 

two cases, one mod of S11 is less than 1. So this is the Smith chart, and this is the circle with 

radius RL and CL.  

Now, we find that we determine the stable region by the location of gamma L is equal to 0. If 

you have ZL equal to Z naught, then gamma L will be 0. And here we find that gamma L equal 

to 0 is the center of the Smith chart, which is outside this circle and the intersection of the Smith 

chart, the shaded region it gives the values of gamma in for which the amplifier will be stable, 

which means mod gamma in is less than 1. 

Now, if you consider the other case where mod of S11 is greater than 1. Then by the same 

argument, we find that in this region the center of the Smith chart which represents gamma L 

is equal to 0 is in the unstable region. And the stable region is given by this shaded region. So 

given the S parameters of the transistors give, we can find out the values of gamma L that we 

can use to have mod gamma in less than 1. That means to make the transistor amplifier a stable. 

Similarly, we can do it for gamma S by plotting the input stability circles. 
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If the device is unconditionally stable, the stability circles must be completely outside (or 

totally enclose) the Smith chart. 

||𝐶𝐿| − 𝑅𝐿| > 1 → |𝑆11| < 1 

||𝐶𝑆| − 𝑅𝑆| > 1 → |𝑆22| < 1 

Rollet’s condition: 

𝐾 =
1 − |𝑆11|

2 − |𝑆22|
2 + |∆|2

2|𝑆12𝑆21|
> 1 

The auxiliary condition: 

|∆| = |𝑆11𝑆22 − 𝑆12𝑆21| < 1 

The μ test: 

𝜇 =
1 − |𝑆11|

2

|𝑆22 − ∆𝑆11
∗ | + |𝑆12𝑆21|

> 1 



 

 

So, we see that if the devices unconditionally stable, the stability circles must be completely 

outside the Smith chart, or the stability circle must totally enclose the Smith chart. Now, mod 

of CL minus RL greater than 1, this implies mod of S11 less than 1 and similarly mod of CS 

minus RS modulars greater than 1, it implies mod of S22 less than 1. Given the transistor S 

parameters from the discussion we had so far, we get a set of conditions known as Rollets 

conditions. 

And we calculate a parameter K which is 1 minus mod S11 square minus mod S22 square plus 

delta square plus mod delta square divided by 2 mod, S12 S21 and if K greater than 1. And the 

auxiliary condition delta is less than 1, where delta is S11 S22 minus S12 S21. So if the conditions 

are satisfied. Then the transistor or the device is unconditionally stable. There is another test, 

which is known as mu test, and for unconditional stability, we must have mu defined by 1 

minus mod S11 square divided by mod of S22 minus delta S11 conjugate plus S12 S21 mod. This 

parameter mu must be greater than 1. 


