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We continue our discussion on the design of filters and in this lecture we discuss the design of 

prototype equal ripple or Chebyshev low pass filter. And then we will also discuss how the 

transformations are made from low pass to high pass, from low pass to bandpass and from low 

pass to bandstop. Let us now consider the Chebyshev low pass filters. So before we go into the 

design of the filters, prototype filters, let us first briefly discuss the Chebyshev polynomials. 
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𝑇1(𝑥) = 𝑥 

𝑇2(𝑥) = 2𝑥2 − 1 

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥) 

 

 

Nth order Chebyshev polynomial is a polynomial of degree n and denoted by Tn x. Here we 

have T1 x is equal to x, T2 x is equal to 2x square minus 1, and we can calculate Tn x from Tn 

minus 1x and Tn minus 2x, Tn x is equal to 2x Tn minus 1x minus Tn minus 2x. Now, the nature 

of variation of Chebyshev polynomials, some lower order Chebyshev polynomials are shown 

this figure. For example, for n is equal to 1 it is a straight line, for n equal to 2 we find that this 

is the variation, for n is equal to 3 we can see that there is some oscillation, this is for n equal 



to 4 and therefore we will find that the Chebyshev polynomial behavior is such that it will 

exhibit some oscillations in this region, x is equal minus 1 to x is equal to 1. 
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Let the cutoff frequency be 𝜔𝑐 = 1 rad/sec.  

𝑃𝐿𝑅 = 1 + 𝑘2𝑇𝑁
2(𝜔) 

Since,  

𝑇𝑁(0) = {
0  for N odd
±1 for N even

 

Therefore, at 𝜔 = 0, 

𝑃𝐿𝑅 = {
1         for N odd
1 + 𝑘2 for N even

 

As  

𝑇2(𝑥) = 2𝑥2 − 1 

For 𝑁 = 2, 

𝑃𝐿𝑅 = 1 + 𝑘2𝑇2
2(𝜔) 

= 1 + 𝑘2(2𝜔2 − 1)2 

= 1 + 𝑘2(4𝜔4 − 4𝜔2 + 1) 

 



 

And we can design an equal ripple low pass filter prototype using Chebyshev polynomials. Let 

us first consider the cut-off frequency omega c to be equal to 1 radian per second, and PLR is 

given by, PLR is equal to 1 plus k square Tn square omega. Now since Tn 0 is 0 for N odd and 

it is having a value of plus or minus 1 for N even, therefore at omega equal to 0 we can write, 

PLR is equal to 1 for N odd and 1 plus k square for N even. 

We have seen that T2 x is given by 2x square minus 1. Now, if we consider N equal to 2, then 

PLR will become 1 plus k square T2 square omega, and if we substitute T2 omega it will be 1 

plus k square 2 omega square minus 1 whole square. When expanded this will become 1 plus 

k square 4 omega to the power 4 minus 4 omega square plus 1. 
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For the two element network,  

we have seen 

𝑃𝐿𝑅 = 1 +
1

4𝑅
[(1 − 𝑅)2 + 𝜔2(𝑅2𝐶2 + 𝐿2 − 2𝐿𝐶𝑅2) + 𝜔4𝐿2𝑅2𝐶2] 

Also 𝑃𝐿𝑅 = 1 + 𝑘2𝑇2
2(𝜔) = 1 + 𝑘2(4𝜔4 − 4𝜔2 + 1) 

For 𝜔 = 0, 

𝑃𝐿𝑅 = 1 + 𝑘2 = 1 +
1

4𝑅
[(1 − 𝑅)2] 

4𝑘2 =
(1−𝑅)2

4𝑅
⇒ 𝑅 = 1 + 2𝑘2 ± 2𝑘√1 + 𝑘2 (for 𝑁 even) 

 



 

Now, when we have a prototype network containing these two elements L and C, for this two-

element- network, we have already seen that PLR expression can be written out in this form 

and from the Chebyshev polynomial the PLR expression is given by this. So, if we equate these 

two equations for omega equal to 0, then we get PLR is equal to 1 plus k square, and from here 

we get 1 plus 1 by 4R 1 minus R whole square. 

And therefore 4k square becomes 1 minus R divided by 4R, and therefore, R can be solved as 

R is equal to 1 plus 2k square plus minus 2k root 1 plus k square for even N, and here we have 

N equal to 2. 
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Equating the two expressions for 𝑃𝐿𝑅  

1 + 𝑘2(4𝜔4 − 4𝜔2 + 1) = 1 +
1

4𝑅
[(1 − 𝑅)2 + 𝜔2(𝑅2𝐶2 + 𝐿2 − 2𝐿𝐶𝑅2) + 𝜔4𝐿2𝑅2𝐶2] 

We get  

−4𝑘2 =
𝑅2𝐶2 + 𝐿2 − 2𝐿𝐶𝑅2

4𝑅
 

and 

4𝑘2 =
𝐿2𝑅2𝐶2

4𝑅
 

 



 

Equating the two expressions for PLR, we get this equation. The left-hand side is from the 

Chebyshev polynomial, and right-hand side comes by reducing the expression for PLR for the 

circuit shown in the previous slide. Now what we can do? We can equate the coefficients of 

omega square and omega to the power 4 from both sides. In that case we get two equations; 

one is minus 4k square is equal to R square C square plus L square minus 2LC R square divided 

by 4R. So this is one equation we get. 

And another equation we get by equating the coefficients of omega to the power 4, so get 4k 

square equal to L square R square C square divided by 4R. Now, R-value has already been 

calculated. We have already found out the expression for R, and therefore, we can solve for L 

and C from this set of equations. We should note that the value of R for N even is not unity, so 

there will be an impedance mismatch if the load has unity impedance. This can be corrected 

with a quarter wavelength transformer or by using an additional filter element to make N odd. 

When N is odd, one can show that R is equal to 1. 
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So, from these considerations, we can get the element values for the equal ripple low-pass filter 

prototype. Prototypes we have already seen earlier, and we considered g not equal to 1, omega 

c equal to 1. Now here we also need to specify the passband ripple, so this table is shown for 

0.5 dB passband ripple. And we have seen from the behavior of the Chebyshev polynomial that 

Chebyshev functions they exhibit ripple in the passband, and this calculation can be done for a 

specified value of the ripple. 

Now, we note that when N is equal to 1, gN plus 1 is 1, when N is equal to 3 we have gN plus 

1 is again 1, so for all odd Ns the load resistance normalized load becomes unity whereas for 

even values of N the normalized load is not unity. So, once we design the prototype by using 

the values of g1, g2, g3 and we can map them to the prototype circuits which we discussed 

earlier and then we can carry out the impedance scaling as well as frequency scaling to get the 

actual cut-off frequency and also the source impedance may be changed to the desired value of 

the source impedance. 

So, all this impedance and frequency scaling activities are to be performed to get a low pass 

filter with a desired cut-off frequency. The order of the filter once again will be determined by 

the specified value of the insertion loss at some frequency in the stopband of the filter. 

As we said that in the filter design process we first need to find out the prototype filter and once 

the prototype filter is designed, prototype low pass filter is designed it can be transformed to 

the low pass filter with the actual cut-off frequency or we can transform this low pass filter into 

a high pass filter with desired cut-off frequency or to bandpass filter with desired passband or 

a bandstop filter with the specified stopband. 
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Loss pass to high pass transformation is achieved by the frequency substitution: 

−𝜔𝑐

𝜔
 for 𝜔 

When this transformation is applied 

𝑗𝜔𝐿𝑘 becomes −𝑗
𝜔𝑐

𝜔
𝐿𝑘 =

1

𝑗𝜔𝐶𝑘
′ , where 𝐶𝑘

′ =
1

𝜔𝑐𝐿𝑘
 

and 

𝑗𝜔𝐶𝑘 becomes −𝑗
𝜔𝑐

𝜔
𝐶𝑘 =

1

𝑗𝜔𝐿𝑘
′  , where 𝐿𝑘

′ =
1

𝜔𝑐𝐶𝑘
 

After performing impedance scaling 

𝐶𝑘
′ =

1

𝑅0𝜔𝑐𝐿𝑘
 

and 

𝐿𝑘
′ =

𝑅0
𝜔𝑐𝐶𝑘

 

 

 

So, let us see how this transformations work. The low pass prototype filter designs can be 

transformed to high pass, band pass or band reject response. Low pass to high pass 

transformation is achieved by frequency substitution. So, we have…this is the response of the 

prototype filter, we can see that the cut-off frequency is 1 and the PLR increases to the specified 

value at omega c equal to 1. 



Now, this PLR where it has minimal cut at insertion loss at 0 is transformed to a high pass 

characteristic. So, here we see that insertion loss becomes very high below omega c and above 

omega c the insertion loss decreases, and this type of transformation can be achieved by 

substituting omega by minus omega c by omega. And when this transformation is applied, a 

series inductance j omega Lk becomes minus j omega c by Lk and which essentially becomes 

1 by j omega Ck dash, where this Ck dash is 1 by omega C Lk. 

And similarly, j omega Ck or Lk dash is j omega Ck is transformed to 1 by j omega Lk dash, and 

therefore, this L k dash becomes 1 by omega Ck. So, we can find that with this frequency 

substitution we have already taken omega c into account, the cut-off frequency will be shifted 

to omega c and then next we need to do the impedance scaling because the source impedance 

is still unity, and then this Ck dash becomes 1 by R not omega c Lk and Lk dash becomes R not 

by omega c Ck. So, this gives us the values of the L and C elements in the actual filter which 

will have a source impedance of R not and cut-off frequency omega c. 
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For LPF to BPF 

𝜔 ←
𝜔0

𝜔2 − 𝜔1
(
𝜔

𝜔0
−
𝜔0

𝜔
) 

=
1

∆
(
𝜔

𝜔0
−
𝜔0

𝜔
) 

where, 

∆=
𝜔2 − 𝜔1

𝜔0
 

Simpler equations are obtained when 

𝜔0 = √𝜔1𝜔2 

 



 

Let us now consider the low pass to bandpass and bandstop transformation. So the first 

transformation is a bandpass transformation where this low pass filter characteristic are mapped 

to a filter having a center frequency omega and passband edges having frequencies omega 1 

and omega 2. 

Similarly, if you go for bandstop transformation, we get a filter where the center frequency of 

the rejected band is omega naught, and the attenuation remains high for the bandages 

determined by omega 1 and omega 2. For performing low pass to bandpass transformation we 

need to substitute omega by omega naught divided by omega 2 minus omega 1 into omega by 

omega naught minus omega naught by omega. And this we can write 1 by delta omega by 

omega naught minus omega naught by omega where we have delta equal to omega 2 minus 

omega 1 by omega. And we can get simpler equation if omega naught is chosen as a geometric 

mean of omega 1 and omega 2. Therefore omega naught is root omega 1 omega 2. 
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When this transformation is applied, 

A series inductor 𝐿𝑘 is transformed to a series LC circuit with 

𝐿𝑘
′ =

𝐿𝑘
∆𝜔0

     𝐶𝑘
′ =

∆

𝜔0𝐿𝑘
 

And the shunt capacitor 𝐶𝑘 is transformed to a shunt LC circuit with elements 

𝐿𝑘
′ =

∆

𝜔0𝐶𝑘
     𝐶𝑘

′ =
𝐶𝑘
∆𝜔0

 

 

Similarly when we perform band stop transformation, so when this bandpass transformation is 

applied a series inductor Lk is transformed to a series LC circuit and the values of these L and 

C parameters are given by this, Lk dash is Lk by delta omega, and Ck dash becomes delta by 

omega naught Lk and a shunt capacitor Ck is transformed to a shunt LC circuit. And the element 

values are given by these expressions. 
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For LPF to Band Stop 

𝜔 ← ∆(
𝜔

𝜔0
−
𝜔0

𝜔
)
−1

 

A series inductors are transformed to parallel LC circuit with 

𝐿𝑘
′ =

∆𝐿𝑘
𝜔0

     𝐶𝑘
′ =

1

𝜔0∆𝐿𝑘
 

And the shunt capacitors are transformed to a series LC circuit with elements 



𝐿𝑘
′ =

1 

𝜔0∆𝐶𝑘 
        𝐶𝑘

′ =
∆𝐶𝑘
𝜔0

 

 

When we go for a band stop transformation, so for a low pass to band stop transformation, we 

substitute omega by delta omega by omega naught minus omega naught by omega raised to 

the power minus 1. So, essentially it is the reciprocal of the bandpass transformation and when 

this frequency transformation is applied, a series inductor is transformed into a parallel LC 

circuit, and we can find out the values of this parallel LC circuit L and C from the given Lk 

delta and omega naught. 

Similarly, we can find out Ck dash is equal to 1 by omega naught delta Lk. And also the shunt 

capacitors are transformed into series LC circuit, and the values of these series LC circuit 

elements L and C are determined from the original shunt capacitor Ck and the relation are as 

shown. 
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So in summary if we summarize the transformations, we have in the low pass circuit L and C, 

when we make low pass to high pass transformation this L is transformed to C and C is 

transformed to L. When we go for bandpass transformation, this element L is now transformed 

to a series LC circuit, and the C is transformed to parallel LC circuit and when we go for 

bandstop transformation this L is transformed to a parallel LC circuit whereas C is transformed 

to a series LC circuit. 

You can see that the values of these series and parallel circuit elements can be found out in 

terms of the original circuit element. For example, here these L and C both are related to 

original L and Delta we have defined it to be omega 2 minus omega 1 divided by omega naught 

and omega naught we have defined root omega 2 into omega 1. So we can calculate the 

component values of these transformed circuits, and therefore when in the prototype we will 

have to substitute them by respective combination of elements. 

We have already done the frequency transformation, the impedance scaling also needs to be 

done for transforming the source impedance. Impedance scaling also need to be done to 

complete the procedure. 
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Let us now very briefly discuss some of the issues related to the filter implementation. Because 

so far in our discussion, we have considered lumped elements L and C, now these elements as 

lumped elements circuits can be used, so these elements as lumped components can be used 

only at the lower microwave frequencies. As we go to higher microwave frequencies it 

becomes very difficult to realize these capacitors and inductors in the lumped form, and often 

these are realized in the form of transmission line sections. 

So lumped element design discussed so far works well at lower frequencies. At higher RF 

frequencies, lumped element inductors and capacitors are generally available for a limited 

range of values. At higher microwave frequencies, such elements are difficult to implement. 

So we need to use distributed elements such as stubs, which often used to approximate the 

lumped elements. And conversion of lumped element to equivalent transmission line sections 

can be done using Richard’s transformation. 

Moreover, when we connect these elements in a microwave circuit, the spacing between the 

filter elements is also to be considered at the microwave frequencies. And Kuroda’s identities 

are used to physically separate filter elements by various transmission line sections. So, without 

affecting the response we can have these elements connected together by suitable transmission 

line sections. 

In this module, we have discussed the various power dividers. We have also seen the design 

issues involved. We have also seen the different issues involved in the design of microwave 

frequency filters. We have discussed to somewhat detail the insertion loss method of filter 

design and how we can start with a prototype low pass filter design and later on we can 



transform it into a low pass filter of desired cut-off frequency or to a high pass or to a bandpass 

or to a band stop filter. 

In the next module, we will start with the semiconductor devices. We will discuss the 

microwave transistors, the BJTs, and field-effect transistors. We will also discuss some of the 

important microwave frequency diodes, such as Schottky diodes, PIN diodes, and their 

application. We will also discuss the devices based on transferred electron effect, the gun 

devices. 


