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Transmission Line Resonators  

Let us now consider Transmission Line Resonators where we will consider a section of a 

transmission line, either open or short and we will see that when the length of these sections of 

transmission lines are chosen appropriately there will exhibit resonance and near the resonant 

frequency we can model this transmission line resonators either in the form of a series RLC 

circuit or in the form of an equivalent parallel RLC circuit. 

(Refer Slide Time: 01:33)  

The transmission line has characteristic impedance 𝑍0 

At 𝜔 = 𝜔0        𝑙 = 𝜆 2⁄  

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿 + 𝑍0 tanh 𝛾𝑙

𝑍0 + 𝑍𝐿 tanh 𝛾𝑙
 

 

 

So, transmission lines sections of various lengths and terminations open or short can be used 

as a resonator. Now, let us consider a lossy transmission line of length l and let us assume that 

it is terminated to a short circuit at one end. We will also consider the transmission line to be 

of low loss with very small value of attenuation constant alpha. Now, this is shown in the figure 

we have a transmission line section of length l and alpha is the attenuation constant, Z naught 

is the characteristic impedance, and beta is the propagation constant. 



We are assuming this transmission line to be of low loss type so that alpha is very, very small. 

Now, suppose we choose the line length l in such a way that at omega equal to omega naught, 

l is equal to lambda by 2. So, we are essentially considering a half wavelength short-circuited 

section of a transmission line. Please note that this half-wavelength will be only at a particularly 

frequency. 

If we change the frequency of operation, the physical length of the transmission line will remain 

the same and it will be depending upon whether the frequency is higher or lower the line length 

will be longer than lambda by 2 or it will be shorter than lambda by 2. So, the line length l is 

lambda by 2 at omega equal to omega naught. Now, for such lossy lines we can write Z in to 

be equal to ZL plus Z0 tan hyperbolic gamma l divided by Z naught plus ZL tan hyperbolic 

gamma l. Now, in our case this ZL is 0 we have only these terms left because this become 0, 

this becomes 0 and these two Z zeros cancel out. 
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For 𝑍𝐿 = 0      𝑍𝑖𝑛 = 𝑍0 tanh 𝛾𝑙 = 𝑍0tanh(𝛼 + 𝑗𝛽)𝑙 

Therefore,   𝑍𝑖𝑛 = 𝑍0
tanh𝛼𝑙+𝑗 tan𝛽𝑙

1+𝑗 tan𝛽𝑙 tanh𝛼𝑙
 

Since we have considered a low loss line, 𝛼𝑙 ≪ 1 

tanh 𝛼𝑙 ≅ 𝛼𝑙 

𝛽𝑙 =
𝜔𝑙

𝑣𝑝
=
𝜔0𝑙

𝑣𝑝
+
∆𝜔𝑙

𝑣𝑝
 

Since 𝑙 =
𝜆

2
 at 𝜔 = 𝜔0,   

𝜔0𝑙

𝑣𝑝
=

2𝜋𝑓0

𝜆𝑓0

𝜆

2
= 𝜋 

 



 

And therefore when ZL equal to 0 Z in is Z naught tan hyperbolic gamma l. Now, we can 

substitute gamma as alpha plus j beta and therefore Zin becomes now Z naught tan hyperbolic 

alpha plus j beta multiplied by l and this equation can be expanded as Zin is equal to tan 

hyperbolic alpha l and tan hyperbolic j beta l will become j tan beta l divided by 1 plus again j 

tan beta l tan hyperbolic alpha l. 

Now, we have considered the transmission line to have very low loss. So, in that case we write 

alpha l to be much less compared to 1 and we can approximate tan hyperbolic alpha l as alpha 

l and similarly beta l can be written as omega l by vp phase velocity and once we substitute 

omega equal to omega naught plus delta omega this can be written as omega naught l by vp 

plus delta omega l by vp.  

Now, since we have l is equal to lambda by 2 at omega equal to omega naught this term omega 

naught l by vp this becomes pi because vp will be lambda into f naught omega naught can be 

written as 2 pi f naught and l is lambda by 2 so we will have omega naught l by vp is equal to 

pi. 
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Now,    𝛽𝑙 =
𝜔0𝑙

𝑣𝑝
+

∆𝜔𝑙

𝑣𝑝
      and      

𝜔0𝑙

𝑣𝑝
= 𝜋 

Therefore,    𝛽𝑙 = 𝜋 +
∆𝜔𝜋

𝜔0
    and   tan𝛽𝑙 = tan (𝜋 +

∆𝜔𝜋

𝜔0
) ≅

∆𝜔𝜋

𝜔0
 

Hence, 𝑍𝑖𝑛 = 𝑍0
tanh𝛼𝑙+𝑗 tan𝛽𝑙

1+𝑗 tan𝛽𝑙 tanh𝛼𝑙
≅ 𝑍0

𝛼𝑙+𝑗(
∆𝜔𝜋

𝜔0
)

1+𝑗𝛼𝑙(
∆𝜔𝜋

𝜔0
)
 



Therefore, 𝑍𝑖𝑛 ≅ 𝑍0 (𝛼𝑙 + 𝑗
∆𝜔𝜋

𝜔0
) 

Comparing with a series resonant circuit for which 

𝑍𝑖𝑛 ≅ 𝑅 + 𝑗2∆𝜔𝐿 

 

 

So, we have now beta l is equal to omega naught l by vp plus delta omega l by vp and omega 

naught l by vp is equal to pi and therefore we can write beta l to be equal to pi plus delta omega 

pi by omega naught and tan beta l can be written as tan pi plus delta omega pi by omega naught. 

Now, delta omega being very small compared to omega naught we can use the approximation 

first of all tan pi plus theta will become tan theta and then we can use the approximation for 

small theta tan theta equal to theta. 

So, we can write tan beta l to be approximately equal to delta omega pi divided by omega 

naught. Hence we can now write Zin which is Z naught tan hyperbolic alpha l plus j tan beta l 

divided by 1 plus j tan beta l tan hyperbolic alpha l. Now, if you substitute tan hyperbolic alpha 

l as alpha l and tan beta l as delta omega pi by omega naught we can write Zin appropriately 

equal to Z naught alpha l plus j delta omega pi by omega naught divided by 1 plus j alpha l 

delta omega pi by omega naught. 

Now, here you can see in the denominator we have the product of two small terms one is alpha 

l and another is delta omega pi by omega naught. So, this term can be neglected with respect 

to 1 and therefore we can write Zin approximately equal to Z naught alpha l plus j delta omega 

pi by omega naught. Now, what we can do? We can compare it with the expression for input 



impedance of a series resonant circuit near it is resonant frequency so which is given by Zin 

equal to R plus j2 delta omega L.  

So, if we compare these two this for a lambda by 2 short-circuited transmission line sections 

and this Zin is for a series RLC circuit operating near it is resonant frequency. 
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𝑅 = 𝑍0𝛼𝑙   and   𝐿 =
𝜋𝑍0

2𝜔0
    

Capacitance 𝐶 can be found from 𝐶 =
1

𝜔0
2𝐿
=

2

𝜋𝜔0𝑍0
 

Unloaded 𝑄 of the resonator 𝑄0 =
𝜔0𝐿

𝑅
=

𝜋

2𝛼𝑙
 

 

 

Then we can write R equal to Z naught alpha l and L equal to pi Z naught by 2 omega naught, 

and since omega square is equal to 1 by LC we can find the capacitance C as 1 by omega naught 

square L, and we have already had the expression for L and this becomes equal to 2 by pi 

omega naught Z naught. Now, unloaded Q of the resonator it is given by Q naught is equal to 

omega naught L by R. 

So, if we substitute L and R here R equal to Z naught alpha l and L equal to pi Z naught by 2 

omega naught then we get Q naught the unloaded Q of the resonator to be equal to pi by 2 alpha 

l. So, smaller, the value of alpha larger will be the value of Q, and we will have a sharp 

resonance at omega equal to omega naught. So, you see that if we have a lambda by 2 sections 

of a transmission line having small amount of loss and the line is short-circuited at one end 



then the transmission line section can resonate at a frequency where the line length corresponds 

to half the wavelength. 
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Let us now consider another transmission line resonator which consists  of a short-circuited 

transmission line of length 𝜆 4⁄ . 

𝑙 =
𝜆

4
  at 𝜔 = 𝜔0 

We have        𝑍𝑖𝑛 = 𝑍0
tanh𝛼𝑙+𝑗 tan𝛽𝑙

1+𝑗 tan𝛽𝑙 tanh𝛼𝑙
 

Multiplying the numerator and denominator by −𝑗 cot 𝛽𝑙 

𝑍𝑖𝑛 = 𝑍0
1 − 𝑗tanh𝛼𝑙 cot 𝛽𝑙

tanh𝛼𝑙 − 𝑗 cot 𝛽𝑙
 

 

 

So, we continue our discussion on transmission line resonators. We consider another type of 

transmission line resonator. Here, we consider a short-circuited transmission line of length 

lambda by 4. So, for this type of transmission line resonator we have at omega equal to omega 

naught. The physical length of the transmission line l is equal to lambda by 4 which means it 

is a quarter-wave sections, short-circuited at one end. 

Now, if the line as before is assumed to be slightly lossy that means having an attenuation 

constant of alpha and phase constant beta and characteristic impedance Z naught. So, for such 



line we can we have already seen that we can write Zin equal to Z naught tan hyperbolic alpha 

l plus j tan beta l divided by 1 plus j tan beta l tan hyperbolic alpha l. Now, what we do? We 

multiply both the numerator and the denominator by minus j cot beta l. 

So, in that case when it is multiplied by minus j cot beta l j tan beta l minus j cot beta l will 

give 1 and therefore we can write Zin is equal to Z naught 1 minus j tan hyperbolic alpha l cot 

beta l and then this term will become tan hyperbolic alpha l minus 1 into j cot beta l will give 

minus j cot beta l. So, Zin becomes after multiplying by minus j cot beta l Zin becomes Z naught 

1 minus j tan hyperbolic alpha l cot beta l divided by tan hyperbolic alpha l minus j cot beta l. 
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Let 𝜔 = 𝜔0 + ∆𝜔 

𝛽𝑙 =
𝜔0𝑙

𝑣𝑝
+
∆𝜔𝑙

𝑣𝑝
=
𝜋

2
+
𝜋∆𝜔

2𝜔0
 

Therefore,    cot 𝛽𝑙 = − tan
𝜋∆𝜔

2𝜔0
≅ −

𝜋∆𝜔

2𝜔0
 

We have       𝑍𝑖𝑛 = 𝑍0
1−𝑗tanh𝛼𝑙 cot𝛽𝑙

tanh𝛼𝑙−𝑗 cot𝛽𝑙
 

Therefore,     𝑍𝑖𝑛 = 𝑍0
1+𝑗 𝛼𝑙(

𝜋∆𝜔

2𝜔0
)

𝛼𝑙+𝑗
𝜋∆𝜔

2𝜔0

≅
𝑍0

𝛼𝑙+𝑗
𝜋∆𝜔

2𝜔0

 

 

Once again, we consider omega to be omega naught plus delta omega close to the resonant 

frequency, and in this case, when it is a lambda by 4 transmission line section beta l can be 



written as pi by 2 plus pi delta omega divided by 2 omega naught. Now, once we have this 

expression for beta l we find that cot beta l because of this pi by 2 terms it becomes minus tan 

pi delta omega divided by 2 omega naught. 

Once again since we are assuming delta omega to be small compared to omega naught we can 

write tan pi delta omega by 2 omega naught to be approximately equal to minus pi delta omega 

divided by 2 omega naught. And then we already have the expression for Zin, we can now make 

appropriate substitutions tan hyperbolic alpha l can be substituted by alpha l and cot beta l we 

can make substitution minus pi delta omega by 2 omega naught.  

So, once we do that we get Zin to be equal to Z naught 1 plus j alpha l pi delta omega by 2 

omega naught. So, this minus and this is minus will make it plus and alpha l again plus j pi 

delta omega by 2 omega naught. Now, here in the numerator once again we have the product 

of two small terms alpha l and pi by 2 delta omega by omega naught. So, this term can be 

neglected in comparison with 1, and Zin finally can be approximated as Z naught divided by 

alpha l plus j pi by 2 delta omega by omega naught.  

(Refer Slide Time: 20:02)  

 𝑍𝑖𝑛 ≅
𝑍0

𝛼𝑙 + 𝑗
𝜋∆𝜔
2𝜔0

=
1

𝛼𝑙
𝑍0

+ 𝑗
𝜋∆𝜔
2𝜔0𝑍0

 

For a parallel RLC circuit near resonance, 

    𝑍𝑖𝑛 ≅
𝑅

1+𝑗2∆𝜔𝑅𝐶
=

1
1

𝑅
+𝑗2∆𝜔𝐶

 

Therefore,    𝑅 =
𝑍0

𝛼𝑙
   and   𝐶 =

𝜋

4𝜔0𝑍0
 

𝑄0 = 𝜔0𝑅𝐶 =
𝜋

4𝛼𝑙
 

 



 

So, this can be further written in this form 1 by alpha l by Z naught plus j pi delta omega by 2 

omega naught Z naught. Now, we identify that this form is of the input impedance is that of a 

parallel RLC circuit operating near it is resonance. For a parallel RLC circuit near resonance 

we have Zin to be approximately equal to R by 1 plus j 2 delta omega RC, which can be put of 

this form 1 by 1 by R plus j2 delta omega C. 

Now, if we equate this corresponding terms then we get R equal to Z naught by alpha l and C 

equal to pi by 4 omega naught Z naught and once we have the values for R and C we can 

calculate the value of L if required and we can also calculate the unloaded Q. Q naught is equal 

to omega naught RC and which is given by pi by 4 alpha l. Once again, we see that low alpha 

l we have high values of unloaded Q. 

So, we find that a short-circuited lambda by 4 sections of a transmission line is essentially it 

can be modeled as a parallel RLC circuit, and the resonant frequency will be determined by the 

length of the line at which it is lambda by 4. In this lecture we have studied different types of 

transmission line resonators. In the next lecture, we will consider another form of resonator, 

which is waveguide resonators. 


