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Lecture – 04
Random Vectors and Random Processes

So,  far  we  discussed  about  random  variables,  joint  random  variables  and  how  to

represent them. Now we will discuss about Random Vectors and Random Processes.
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You recall that a random variable, it maps the sample space, this is suppose sample space

to  the  real  line,  suppose  this  is  the  real  line.  So,  sample  space  any sample  point  is

mapped into a point on the real line. And now when; we consider joint random variable.

We have R 2. So, we have R 2 and any sample point will be mapped to suppose a point

in this plane. Suppose this is another sample point this will be mapped to another point in

this sample real line sorry.

So another point will be mapped to the plane R 2 plane a point in the R 2 plane. So, that

way we know that a random variable maps a sample point to a real line and a joint

random variable maps a sample point to a point in this plane or R 2.

Now, this concept can be easily extended to suppose n random variables are there. Then

we can consider  that  it  is  a  mapping from the  sample  space  today n dimensional  n



dimensional space R n, we will consider now a mapping from S into R n. So, this is the n

dimensional random variable or we will call it a random vector.

(Refer Slide Time: 02:34)

In an n dimensional random variable X 1 X 2 up to X n maps a sample point to a point in

R n. So, that we have already told.

So, these n tuples X 1 X 2 up to X n can be represented by a vector X. So, we can write

X this is the common notation we write a vector as a column matrix X 1 X 2 up to X n or

we can write X is equal to a row matrix transpose.

(Refer Slide Time: 03:12)



Defined a random vector X, we can find out the cumulative distribution function the

CDF there of the random vector X is defined as the joint CDF of X 1 X 2 X n. So, of the

random variables the CDF of the random vector x is defined as the joint CDF of the set

of random variables X 1 X 2 up to X n. Thus, we can write this is the notation F x of at

point x x is my point and that is equal to x 1 x 2 up to x n.

So, this at this point this joint is there is defined as that is probability that X 1 is less than

equal to small x 1 X 2 is less than equal to small x 2 like this X n is less than equal to

small x n. So, this probability actually means the probability that probability of the event,

what is the event. As such that X 1 s is less than equal to small x 1 X 2 s is less than

equal to small x 2 like that X n s is less than equal to small x n.

So, this is the event and probability of this event is known as the joint CDF of these and

random variable or the CDF of the random vector X. We can extend the property of the

joint  CDF of two random variable  to the CDF of the random vector  F X of X. For

example, we can say that suppose if what is the CDF of F X of suppose at point infinity.

Infinity means, in this case is equal to that is F x 1 X 2 up to X n at point infinity, infinity

etcetera.

So, this is equal to 1. Similarly this CDF will be a non degree decreasing function of all

it is arguments. And it is right continuous of all it is arguments etcetera. So, that way n

dimensional random vector can be characterized by its CDF F X of X.
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Now, in the case of a random vector we can also similarly define joint probability mass

function,  joint  probability  density function etcetera.  So,  the PDF of a random vector

because, random vector we are considering as a single variable that is why we are called

calling it as a PDF if X is a continuous random vector. That is what do I mean that this

joint CDF is continuous in each of its arguments. Then it can be expressed as this CDF

can be expressed as the integral that is enfold integral of this non negative function f x 1

x 2 up to x n at point u 1 u 2 up to u n.

So, this function is known as the joint PDF. Just like we have defined, in the case of 2

dimensional random variable in the case of n dimensional also we can define the joint

density function with the help of this  integral.  So, the CDF can be expressed as the

integral of the joint PDF from minus infinity up to the point consider x 1 x 2 up to x n.

 So, that way we can define generally define the PDF of a random vector. PDF of a

random vector this quantity we can denote by and suppose f x vector of at point small u.

Now suppose this joint PDF is also continuous or we continuous in it is arguments it is

continuous in x 1 continuous in x 2 etcetera.

And then this PDF of the random vector f X of X can be expressed at the n th order

mixed partial derivative del to the power n del x 1 del x 2 etcetera up to dell x n of the

CDF. So, that  way just  like,  in  the case,  of;  two dimensional  random variable,  joint

random variables, we defined the PDF at the second order mix partial derivative of 2

variables here it is the n th order first mixed partial derivative of n random n variables.

So, that we define the PDF of a random vector or joint PDF of this n random variables.

Now this PDF also inherits the properties of joint PDF for example, here we can find out

the marginal PDF suppose if I am I am interested to find out the marginal PDF f X1 at

point x 1 how I will get it is the n full n minus 1 full integral. So, now we can write f X 1

X 2 up to X X n suppose and then at point X 1 we are interested x 1 u 1 u 2 suppose u 2

up to u n. So, we will integrate with respect to this is n full interior n minus 1 full integral

so, with respect to suppose the u 2 up to the u n.

So, n n full integral if n minus 1 full integral if we perform we will get the PDF marginal

PDF of X 1 at point x 1. So, this is up to infinity from minus infinity up to infinity. So,

that way we can find out the any order joint PDF also suppose I want to find out the PDF



of f x 1 x at point x 1 x 2 then we have to perform the n minus 2 full integral of the joint

PDF.

So,  that  way  this  joint  PDF  completely  characterized  the  random  variables  under

consideration how they jointly behave or how they individually behave. Similarly, we

can say about joint probability mass function etcetera. So, these are complete description

of the random variables under consideration.
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We can define independent random variables, suppose we have a collection of n random

variables X 1 X 2 up to X n they are called mutually independent mutually independent

if and only if the joint PDF is the product of the marginal PDF. Similarly we can write

also joint main definition we can include the joint CDF F X 1 X 2 up to X n at point x 1

x 2 up to x n ok.

So, this will be the product of the marginal CDF i is equal to 1 to n F X i at point x i.

Similarly,  for  the  discrete  random  variables  we  can  consider  we  can  define  the

independence  in  terms  of  the  probability  mass  function.  Now  this  is  mutually

independent there is also a concept called pair wise independent X 1 X 2 etcetera.

They may be pair  wise independence,  but when they are mutually  independent  then,

there will be independent for any sub collection of this random variable. Suppose X 1



and X 2 will be mutually independent x 1 x 2 and x 3 will be mutually independent like

that.

But,  if  we  consider  on  the  pair  wise  independence  then  it  does  not  apply  mutual

independence.  For example,  if X 1 X 2 up to X n are independent Gaussian random

variables. Then we can write this joint density as the product of this individual Gaussian.

So,  that  way  it  is  the  product  of  an  Gaussian  random  variables  is  with  respective

parameter  min  mu i  n  variance  sigma i  square.  So,  we have  a  defined independent

random variables.

(Refer Slide Time: 13:55)

One more important concept is independent and identically distributed random variables.

This is abbreviated as i i d; IID random variables. The random variables collection is X1

X 2 up to X n they are called identically distributed. If each random variable has the

same marginal distribution function, that is capital F x i that is the CDF of x1at point x is

same as CDF of x 2 at point x like that CDF of x n at point x.

This is true for all x so in what does it mean that for all these random variables, each

random variable  has  the  same marginal  CDF. Similarly  we  can  define  the  identical

distribution  in  terms  of  the  PDF  also.  So,  each  of  if  these  are  continuous  random

variables  then each of x i  will  have the x same PDF. Now an important  subclass of

independent  random variables  is  the  independent  and  identically  distributed  random

variables.



So, these random variables are mutually independent. And each of x i s have has the

same marginal distribution function or marginal PDF. So, that way we tell  about IID

random variables  Independent  and Identically  Distributed  random variables.  We may

have a number of random variables which are which has the same distribution itself

which has the same distribution. And it is update random variable is the independent of

other random variables in the set.

So,  that  way we can define IID random variables  in  the case of continuous random

variable  what  the  same can be extended to  the  script  random variables.  So,  we can

consider n discrete random variables they are independent and identically distributed. If

they are joint probability mass function is the product of the individual probabilities mass

function that is the independence. And each of the random variable has the same PMF at

any point x if we consider each of the random variables will have the same PMF.

So, this  is  the definition of independent and identically  distributed random variables.

These will be this is a concept which is very important for our further study. So, we

define the random variable joint random variable then random vector now we will define

the random process.
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A random process may maps each sample point to a wave form. So, suppose we have a

sample space like this so, this is a simple point. Now in the case of random variable it

was mapped to a point on the supposed real line. Now in the case of random process the



same sample point will be mapped to a wave form means it will be maybe this type of

waveform it will be mapping.

So, that way we see that it associates if I consider this time axis, then at every sample

point and at every time instant t to a point on R. So, that way we can define we can say

that this random process is a mapping from the sample space to the. So, we can say that a

random process is a mapping from the Cartesian product as the it associates a pair s and t

to a point on the real line.

So, that it is a mapping from the Cartesian product of sample space and tau. This is the

tau time generally that index set is called tau S crossed tau to the real line. So, that way

we can consider the mapping in the case of random variable it is a mapping from the

sample space to the real line, but in the case of random process it is a mapping from S

crossed tau tau is the some index set which is usually time.

So, from S plus T to R; so we can define random process now a random process on the

probability space S F P can be defined as an index family of random variable X s t such

that s belongs to S t belongs to tau. Where tau is an index set of usually denote in time

that is why it is a random process is a function of time.

But, tau need not be, time only it can be space for example, we can consider an image as

a random process 2 dimensional random process. It is defined on suppose that sample

space. And then Cartesian product of the sample space on the image plane tau need not

be only time.

It  can  be  two it  can  be  a  two  dimensional  plane  for  example,  the  image  plane  for

example,  an  image  can  be  considered  as  a  random process  defined  on the  samples,

defined on the Cartesian product of sample space and the image plane. So, that way we

define the random process.
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Now, a random process we see that it is a mapping from this sample space to a wave

form. Now if we consider a fixed sample point.  Then suppose t is varying then X s

naught  t  is  a  single  realization  of  the  random  process.  So,  we  can  have  a  single

realization of the random process suppose this is some s naught. So, it is mapping to

some wave from like this. So, this is a single realization of the random process which

usually the observed data. So, we observe one single realization of the random process.

Now when both s and t are varying we have the random process, otherwise suppose at a

fixed point s naught and t naught this is we will get a single value. 

Suppose if I consider this value this is a single value of the random process. Though the

random process it is a function of both s and t it is normally denoted by X t only. Just like

in the case of random variable we denote it by X omitting the argument s. Similarly, here

also  we omit  the  argument  s.  We can define  a  discrete  random process  X n  on  the

discrete points of time we can have generally in that case tau is a subset of the integer.

Such a random process is more important for practical application because normally, we

get the discrete data, this discrete data can be modeled as discrete random process. So,

this  is  a  discrete  time  random  process,  this  is  a  continuous  time  random  process,

probability structure of a random process.
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Now how to describe a random process? We know that single random variable can be

described by CDF joint random variable can be described by joint CDF. Similarly we can

characterize a random vector by this CDF of the random vector. The same concept can be

extended to random process, but in the case of random process we have a continuum of

time therefore, infinite number of points in the time axis. So, characterizing the random

process in terms of the joint CDF is difficult.

For example, we can consider for any positive integer n this collection we can consider

X t 1 X t 2 X t n etcetera. And they will represent n n random variables. Now we can

describe these points, these random variables by the joint PDF joint CDF like this. This

is the joint CDF of n random variable X t 1 X t 2 up to X t n. 

 And these we have to define for a all n because any point any point supposed t 1 t 2 t 3

etcetera all possible collection we have to consider. And not only that suppose on the

time axis we can take this place t 1 here t 2 here like that t n somewhere here, but we can

keep t 1 t 2 etcetera anywhere on tau. So, that way also another complexity is introduced.

So, thus what we see there, we can we have to define the joint CDF for all possible n and

for  all  possible  placement  of  the  time points  t  n.  So,  that  way describing  a  random

process in terms of joint CDF is difficult.

Similarly, we can describe the random process X t by the joint PDF we can also have f X

t 1 X t 2 up to X t n at point x 1 x 2 up to x n. So, we can have this joint see, there joint



PDF. So, this is also for all n belonging to the set of natural number and for all placement

of the time point t n belonging to tau.

So, that way we can characterize a random process in terms of joint CDF for joint PDF.

Similarly for the discrete case we can define the joint PMF also. These are the way we

have to describe a random process if we are interested in the probability structure.
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So, describing the random process in terms of joint probabilities, joint PDF, joint CDF,

etcetera is difficult. Therefore, we can define a moments just like in the case of random

variables, we defined moment in joint moments here also we can define some moments

joint moments etcetera so that we can partially characterize the random process.

We can define the simplest moment is the mean E of X t that is the now at instant E

exterior random variable. So, we can define the average value of X t that is E of X t we

usually denote it by mu X of t and it is the mean of the random process at time t. So,

now, since random process at different instant of time it is a different random variable.

Therefore, mu X t also will be a function of time. Similarly R X of t 1 t 2 this is the

autocorrelation function at point t 1 and t 2 this is defined by E of X t 1 into X t 2.

So, this is the autocorrelation function at t 1 t 2. So, that way we can define the joint

moment. Since, we can define any number of random variables; we can define nth order

correlation for example, triple correlation R X of t 1 t 2 up 2 t 3. R X of t 1 t 2 t 3 is



define as expected value E of X t 1 into X t 2 into X t 3. So, this is the triple correlation

function at time point t 1 t 2 t 3. So, that way, we can continue the definition of other

order moments.
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So, we can also define the auto covariance function, function that is C X of t 1 t 2 this is

defined as the expected value of X t 1 minus mu X of t 1 into X t 2 minus mu X of t 2.

That is equal to again we can use the property of joint moments we can define it as E of

X t 1 into X t 2 minus mu X t 1 into mu X t 2. And this is nothing, but the autocorrelation

function R X of t 1 t 2 minus mu X t 1 into mu X t 2.

So,  that  way  we  can  define  the  auto  correlation,  auto  covariance  function.  So,

autocorrelation function, auto covariance function along with mean, they can describe

the random process partially.
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I will give some examples of random processes. The first example is Gaussian random

process, which is one of the most important random processes. The process X t is called

Gaussian. If for any n belonging to natural number N and any time points t one t 2 up to t

n the random vector we define a random vector that is X t 1 X t 2 up to X t n transpose.

This is the random vectors n dimensional is jointly Gaussian. With the joint PDF the

joint PDF is now given by this is the joint PDF that is equal to e to the power minus half

of X minus mu X transpose C X inverse X minus mu X divided by root over 2 pi to the

power n into root over determinant of C X let us define the terms. Now mu X mu ax is a

vector, this is the expected value of this vector E of x. So, mu X is E of X that is equal to

now component wise I will take the I will component wise I will take the I expected

value that is E of X t 1 E of X t 2 up to E of X n transpose. Now C X C X is a matrix that

is the covariance matrix that is E of X minus mu X X minus mu X transpose. And then

we take the expectation first we have t matrix X minus mu X into X minus mu transpose.

And expectation of each element in this matrix that will give us the covariance matrix so,

here we determine  the determinant  of the covariance  matrix  and here inverse of the

covariance  matrix.  So,  that  way  we  define  the  Gaussian  random  process.  Next

elementary example this is an elementary example of a random process what is known as

the Bernoulli random process.



 We know the  Bernoulli  random variable  which  can  take  only  two values  0  and 1.

Suppose X n at any instant n it takes value 1e with probability P and 0 with probability 1

minus P. Then this is a Bernoulli random variable and we may also consider that this

supposed Bernoulli random variable, Bernoulli trials are independent.

If  I  independent  indeed suppose  toss  a  coin  then  if  I  am interested  in  one  outcome

suppose head. Then this I can take as 1 and tail  as 0. So, that way we can define a

Bernoulli random variable and if I repeat it toss for different time. Then we will get this

sequence of Bernoulli random variable or it is called the Bernoulli random process and

the in this case actions are independent.

So, we may have a discrete random process, which is where, each random variable is

independent of other random variables.
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Now in the case of random process we know that at different instant we have different

random variables need not be independent in general. In the case of Bernoulli process

they may be independent,  but they are they are generally  dependent.  We can discuss

different  type  of  the  independent  dependence  we  can  discuss  different  types  of

dependence.

For example, independent increment random process. A random process X t is called an

independent increment process if for any n suppose you consider t 1 is less than t 2 less



than t 3 etcetera up to suppose t n minus 1 is less than t n. Then we can define a set of n

random variable X t 1 X of t 2 minus X t 1 suppose X t 1 is a random variable X of t 2 is

another random variable therefore, the increment during time t 1 to t 2 is X t 2 minus X t

1. So, this is 1 increment then next increment for example, will be X t 3 minus X t 2. So,

this is another increment like that we can consider all the increments. These increments

are  independent  random  variable,  then  we  call  this  process  as  an  independent  in

increment process. 

So, the concept of independent increment process is very important for example, we can

consider the term we will consider 2 processes one is Poisson process. So, this is an

example Poisson process, this is an example of independent increment random process.

Similarly  we  can  we  will  have  another  process  called  wiener  process.  So,  Poisson

process and wiener process are examples of independent increment processes. So, here

increments are independent.
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We can also consider a concept, what is known as the stationary random process. Now

what is stationary? A random process X t is called strict sense stationary, this is strict

sense stationary. 

So, these we abbreviate as S S S, if each probability structure is invariant with time. In

terms of joint CDF we can write the joint CDF at of random variable X t 1 X t 2 up to X t

n at point suppose this set of points X 1 X 2 up to X n. And if we consider the joint CDF



at another instant of time that is X of t 1 plus t naught X of t 2 plus t naught like that way

X of t n plus t naught. Then at the same set of point X 1 X 2 X n we are considering these

2 CDF if they are equal for all n belonging to n and for all placement of t 0 t 0 and t n.

Then we call these random processes is strict sense stationary. So, what does it mean?

That joint CDF for any order n is independent of this shift of the time axis. So, you

consider whether at t 1 t 2 t n or t 1 plus t naught t 2 plus t naught up to t n plus t naught.

So, this joint probability structure will implement invariant. So, in other words the joint

CDF joint CDF is invariant with respect to the shift of the time axis.

Now, S S S process as it is seen from here it is very difficult to analyze a strict sense

stationary process because, we have to consider the CDF of all possible order. So, we

require a simpler process that is wide sense stationary process. In that case we do not

consider the probability structure we consider only 2 moments. So, a random process X t

is called wide sense stationary process a wide sense stationary process WSS if E of X t is

equal to constant and R X of t 1 t 2. That is the autocorrelation at instant t 1 t 2 is same as

if I shift your autocorrelation time axis by some amount is r X of t 1 plus t 2 plus is.

This is for all t 1 t 2 n is if this happens, then we say that for this random process mean is

constant and autocorrelation is independent of the shift of the time axis. Then we say that

this process is there WSS process wide sense stationary process. So, if I put h is equal to

minus t 1 what we will have is that R X of t 1 t 2 that is equal to R X of if I put h is equal

to minus t 1 this will be r X of 0 then this will be if I put minus t 1 t 2 minus t 1. So

therefore,  we see  that  in  the  case  of  WSS process  this  autocorrelation  function  is  a

function of function of the time lag function of the time lag t 2 minus t 1.

So, if I denote it by some single parameter tau then tau is equal to t 2 minus t 1. This

autocorrelation function is a function of tau on be.



(Refer Slide Time: 40:51)

And now we can define therefore, autocorrelation function since it is a function of the

lag parameter tau we can define R X of tau is equal to E of E of X of t plus tau into X t.

So,  it  is  a function because time difference will  be t  plus tau minus t.  So,  that  way

autocorrelation function for a WSS process autocorrelation function of a WSS portions

has certain property.

So, it is a function of like tau only we can write R X of 0 what will be R X of 0 that is

equal to E of X X t into X t that is the E of X for t, this is the mean square value of the

process. Similarly this autocorrelation function R X of tau suppose is an event function

how? For example, R X of minus tau this is equal to E of X of t if I consider these

definition t minus tau. So, R X of minus tau is a of X t minus tau into X t. And X of t

minus tau and X t are both are real. So therefore, we can write that is equal to E of X t

into X of t minus tau and that is equal to if I take the difference now it will be R X of tau.

So, this is R X of minus tau that is same as R X of tau. Therefore, this autocorrelation

function is an even function of the lag parameter tau. Now there are other properties we

will not discuss in details, but this autocorrelation function also give a frequency domain

representation of the random process.

So, how to describe a WSS random process in the frequency domain you can consult any

random process book, where it is shown that there is this power spectral density power



spectral  density.  This  is  the  average  power  per  frequency  and  this  is  the  Fourier

transform of the autocorrelation function relation function.

So therefore, to analyze a WSS process in the frequency domain, we can take the help of

power spectral density which is the Fourier transform of the autocorrelation function.
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Let us summarize the lecture and n dimensional random variables. So, it is X 1 X 2 up to

X n that the ordered pair is denoted by the random vector X that is we can write it as a

row vector transpose. Now these n random variables can be characterized by the joint

CDF that we denote by F X at point small x.

So, this is the CDF and this is actually the CDF of joint CDF of X 1 X 2 up to X n at

point x 1 x 2 up to x n. So, this is defined by this probability that probability. That X 1

capital X 1 is less than equal to smaller x 1 capital X 2 is less than equal to small x 2 like

that up to capital X n is less than equal to small x n. 

Now this joint PDF this is notation is f X sub X. So, this joint PDF is defined through the

integration this is n full integration. That is a joint CDF is the n full integration of the

joint PDF with respect to it is parameters. So, that way we defined the joint CDF joint

PDF and also we defined the joint P M F for a collection of random variable n random

variables are there they are represented as a vector and then we got this quantity.



Now  these  collection  of  random  variable  X  1  X  2  up  to  X  n  are  called  mutually

independent if and only if the joint PDF is product of the marginal PDF. So, that way we

can define in terms of or the joint CDF also the joint CDF should be the product of the

marginal CDFs.
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Then we discussed about random process, a random process it is a function of s and t

sample space it is a simple point and t is usually it is a time variable. So, it is a function

of 2 arguments sample point and t. And it is usually denoted by X t X is omitted just like

in the case of random variable.  So,  a random process is  an index family  of random

variables.

So, what do I  mean by that  at  a every instant  t  it  is  a  random variable.  X t  can be

described by joint CDF. So, if I consider any n instance of time t 1 t 2 up to t, n then we

can find out this  joint CDF, but these we have to find out for all  possible n and all

possible placement of t 1 t 2 t n etcetera. So, that way describing the random process in

terms of joint CDF is very difficult very complex task. Therefore, we have to find out

term  simpler;  description  of  the  random  process  that  way  we  describe  the  random

process in terms of it is moments like mean E of X t and autocorrelation function R x t 1

t 2 this is nothing, but the expectation of X t 1 into X t 2.

So, this mean and autocorrelation are 2 important parameters of a random process. Next

we define this stationarity the process X t is strict sense stationary if the joint CDF for



any end is  a is  invariant  with respect  to changing the time axis.  What  does it  mean

suppose if I have the joint CDF at point t 1 t 2 t n. Then if I consider any shifted version

of time t 1 plus t naught t 2 plus t naught up to t n and plus t naught then also this joint

CDF will remain same.

So, this is the strict sense stationarity this we can define in terms of joint CDF joint PDF

joint PM F, but this is a very difficult to analyze. Because, you have to consider it for all

n and all the placement of t 1 t 2 t n so that way we consider some simpler form of

stationarity  we discussed about  wide sense stationary process.  So,  X t  is  wide sense

stationarity sorry X t is wide sense stationary WSS if E of X t that mean is constant and

the autocorrelation R X t 1 t 1 plus tau.

So, this time lag is tau here t 1 t 1 plus tau and this is a function of time lag only it does

not depend on t 1. So, that way if that happens then the process will be called wide sense

stationary.

Thank you.


