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So, we discussed random Variables and how to characterize them with the help of CDF,

PDF, PMF etcetera,  the  CDF, PDF and  PMF they  are  complete  representation  of  a

random variable and now we will see how we can represent a random variable, partially

we can characterize a variable partially by moments.

So,  we  will  start  with  the  definition  of  expected  value  of  a  random  variable.  The

expected value of a random variable x is defined by this 2 relationship, if x is continuous

and then this is the integration of x into f x with the x d x and similarly if X is discrete it

is the summation of the product of x into p x of x and the limit of integration or the

summation  we have to  properly define,  when we define expectation  we wonder  this

value is unique.

So, product one condition is imposed that is x mod of x f X of x that is absolutely. So, we

want mod of x into f X of x should be integrable over the limit minus infinity to infinity

or in the case of discrete mode of x into P X of x should be summable for the range of

the random variable x. So, we have defined the expected value or average value this is

the average value of the single random variable x by this relationship.



Now, we will define the expected value of a function of random variable, suppose y is

equal to g X is a real valued function of a random variable X. Then E of g X this is even

by again it is integration from minus infinity to plus infinity g x into f X of x dx so, in the

case of continuous x. Now if I consider discrete X then it will be summation over x of g

x into P X of x, so that way we can find out the expected value of any function any real

valued function of g X. Of course, we have to be careful that this expected value is also a

unique and for this will acquire these 2 conditions. So, we have defined the expected

value  of a  function of  a  random variable,  particularly  we will  discuss  moments.  So,

moments first of all we will define moment.
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For a positive integer nth, the nth order moment is defined as E of X to the power n that

is the nth order moment, this is given by integration from minus infinity to plus infinity x

to the power n f X of x d x this is the nth order moment.

Similarly, nth order central moment we can define we have to consider the derivation of

X from the mean X minus mu x that is, so E of X minus mu x to the power n we have to

consider that is called nth order central moment and it is given by from that is integration

from minus infinity to plus infinity x minus mu x to the power n effects f x of x dx, so

that way we define the nth order central moment. Particularly we are more interested

with E of X square that is when n is equal to 2 that is the mean square value of a random

variable.



Similarly variance that is sigma x square so it is a measure of variability of a random

variable, so it is given by E of X minus mu x whole square and this we can also write in

terms of that is mean square value E of X square means square minus square the mean

this expression we can simplify. So, that way we can define mean and variance which are

2 important parameters any of any random variable X. So, we have defined moment and

we will define our moment generating function M X of s, as the name implies it is used

to generate the moments. So, moment generating function is a function of a variable s, so

the s is usually a real number.
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So, this is the finest E of to the power s x that is expected value of e to the power s x and

that is equal to integration from minus infinity to infinity it will require e s x f X of x dx,

so this is the moment generating function.

So,  it  is  defined over  this  minus infinity  to  infinity  that  is  the  range of  the  random

variable X. So, that we assume that this random variable X is defined over the range R

X, which is from which is the real line from minus infinity to plus infinity. So, that way

we have defined the moment generating function, so it is essentially a function of single

parameter s and M x can be used to generate the moments by the relation. We will see

how we can have the relationship that is E of x to the power n is equal to nth derivative.

So, nth derivative of M x of s at point S is equal to 0. So, this is the relationship we can

find out the nth order moment by from the moment generating function by taking the nth



order derivative at S is equal to 0, how we can get this relationship? Let us see E of how

we can find out this relationship let us examine, we will start with suppose d dx of d ds

of M x of s ok. If we see this what it will be it is the d ds of that integration from minus

infinity to infinity e to the power s x f X of x d x ok.

Now this is a differentiation with respect to s, we can take differentiation inside and we

will get minus infinity to infinity, so since it is a function of x and s we will take the

partial derivative del del s of e to the power s x f X of x dx ok. So, this we will get as

minus infinity to infinity and now this will be if I take the partial derivative with respect

to s we will get x into x into e to the power s x f X of x dx.

So, therefore if I put d d x of M x of s at s is equal to 0 what we will get this one will

become 1. So, we will get that is equal to minus infinity to infinity x f x of x d x, which

is nothing but E of X. Continue in a similar manner we can arrive at this relationship that

E of X to the power n is the nth derivative of M x of s with respect to s. Of course nth

derivative with respect to s of M x of s at point s is equal to 0, S is equal to 0. So, that

way this is the utility of the moment generating function from, so it and kept sorry it

encapsulates all the moments. So, therefore from the moment generating function we can

generate all the moments.
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We can consider one example X is suppose standard normal variables standard normal

random variable or standard Gaussian X, this is the notation X is normal 0 1. What does



it mean? It is the normal distribution with mean 0 and variance 1, so that means in this

case f X of x this is the PDF that will be equal to 1 by root over 2 pi e to the power minus

x square by 2 this is the PDF, here we have to find out M x of s and that is equal to E of e

to the power s x. So, if I put the expression for the expected value we will get this as

integration from minus infinity  to infinity  of E to the power s  x, we will  derive the

moment generating function this standard normal random variable.

So, M x of s by definition it is E of e to the power s x. So, it is given by integration from

minus infinity to infinity it e to power s x then PDF is 1 by root over 2 pi into e to the

power minus x square by 2 d x,  so this  we can simplify like this  so plus this same

exponential so it will be plus s x.

Now, this we can write further s 1 by root over 2 pi e to the power if I take half common

minus half common then s square minus 2 s x. So, now we can complete this to be a

perfect square if we add a square here then we have to subtract, so because of that we

will have another term half of s square into dx ok. So, this is the expression now let us

see we can take e to the power half s square common, so e to the power s square by 2

then integration minus infinity to infinity 1 by root over 2 pi e to the power minus half of

s, so what we will have x minus s whole square d x.

Now, we observe that this is a Gaussian this is a Gaussian with mean s and of course

variance  1.  So,  if  I  integrate  this  Gaussian  from minus  infinity  to  plus  infinity  this

integral will be equal to 1 so this integral will be 1, therefore M x of s is equal to e to the

power s square by 2. So, moment generating function for the standard Gaussian is e to

the  power  s  square  by 2.  So,  now we can use  this  moment  generating  function  for

example, if I take the first derivative E of x will be equal to first derivative that is M x

dash of x at s is equal to 0 ok, so this will get s.

So, this will be equal to 0 similarly E of x square is equal to M x double s is equal to 0

and this will be equal to again 1. So, that way we can find out all the moments of this

random variable namely this standard Gaussian. So, that way we see the utility of the

moment generating function and I will be using the moment generating function in our

subsequent proofs.
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So, we define the moment for a single random variable, we can define the moments for

multiple random variable, so for 2 random variable x and y the joint moment m plus n

order moment, so joint moment of order m plus n. So, this is finest E of x to the power m

y to the power m that is equal to again it will be double integral, then you are multiplying

s to the power m and y to the power n with the joint PDF f xy at point xy and you will

get with respect to dx and dy. So, this is the expression for joint moment of order m plus

n.

So, now if I take m is equal to 1 n is equal to 1, we have the second order moment which

is also called correlation between x and y and it is given by E of xy is equal to now here

m is 1 and is n is 1, therefore it is xy into joint PDF into dx into dy integration from

minus  infinity  to  plus  infinity  so,  that  where  we can define  the  joint  expectation  or

second order moment of the random variables x and y. We can define the covariance of

the random variable x and y, so the covariance between x and y is given by this curve of

x y that is equal to u of x minus mu x into y minus mu y.

So,  we  consider  the  derivation  from  the  each  random  variable  x  minus  mu  x  and

similarly  deviation  from y  mu y;  y  minus  mu y  and  this  quantity  is  known as  the

covariance. And we can also define the correlation coefficient rho x y that is equal to

covariance of x y divided by sigma x into sigma y. Where sigma x where sigma x is the

standard deviation of x which is the square root of variance, sigma y is the standard



deviation of y this coefficient rho which usually lies between minus 1 and plus 1. So,

therefore the correlation coefficient rho x y is defined as covariance of x y divided by

sigma x into sigma y, where sigma x is the standard deviation of x which is the square

root of the variance of x similarly sigma y is the standard deviation of y.

Now,  this  correlation  coefficient  is  an  important  parameter  to  characterize  these  2

random variables x and y and we can show that rho x y lies between minus 1 and plus 1.

Now once we define the covariance or correlation coefficient we can define uncorrelated

random variable uncorrelated random variable x and y x and y are uncorrelated.
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Let uncorrelated if covariance of x y is equal to 0 or rho x y is equal to 0, correlation

coefficient is 0. Implies that E of x y is equal to mu x into mu y this is the relationship for

x and y to be uncorrelated.

Similarly so x and y are uncorrelated if a covariance of x y is equal to 0, equivalently E

of x y is equal to mu x into mu y, otherwise x and y are called correlated. So, what is

correlated random variable? So, covariance is not equal to 0 we will discuss this concept

of correlated random variable, but do we want to establish one relationship, we know

when x and y are independent.

Suppose if x and y are independent y are independent then they are uncorrelated. But the

converse  is  not  generally  to  true,  so  independent  random  variables  are  always



uncorrelated,  but  uncorrelated  random  variables  need  not  be  independent.  We  can

consider this result we know what is x and y are independent x and y are independent

imply that joint density f xy at point x y is equal to f X of x into f Y of y, joint density is

product of marginal density. Therefore, this is the definition of independence and this is

for all values of x and y, so therefore, we can find out E of x y for that for 2 independent

random variable x and y E of xy will be equal to integration double integration from

minus infinity to infinity xy into f xy at point xy dy dx ok.

Now, we can write this joint density as the product of marginal density and then this x is

there  y  is  there.  So,  we  can  write  this  integral  in  the  product  of  2  integral  that  is

integration from x from minus infinity to infinity of x into f X of x dx into integration

from minus infinity to infinity y into f Y of y dy. So, this is E of x and this is E of y

therefore E x into E y. Therefore, the in the case of independent random variable E of x y

will be always equal to E x into E y implies that x and y are uncorrelated. So, therefore if

x and y are independent they will be always uncorrelated converse is not generally true.
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So,  what  does  correlation  implies,  correlation  is  a  type  of  dependence  what  type  of

dependence. If we can show that if x and y are correlated suppose this is x this is y. Now

we can approximate y in terms of x by a line, so correlation means that if x and y are

correlated we can have an approximate straight line relationship between x and y. So,

this  is  these  are  the  points  suppose  for  a  particular  value  of  x  and  y  these  are  the



particulars of x and y in x y plane and this can be approximated by this line. So, this one

this is an example of positively correlated random variable similarly and this slope will

be determined by the correlation coefficient.

Similarly, if the correlation coefficient is negative, this is a sorry this is an negatively

correlated random variable as x increases y decreases and here also we can approximate

the relationship between x and y by a straight line. But when action y are uncorrelated

we cannot  have  a  straight  line  relationship  between x and y, that  is  the  meaning of

uncorrelated nests.

So, if so that way correlation is a measure of of linear relationship between 2 random

variables x and y. Now if x and y are uncorrelated we cannot approximate one by the

other by plotting or by plotting a straight line approximate straight line between them.

So, that way correlatedness is a special case of dependence. So, that dependence is linear

dependence that x and y have linear dependence between them that can be represented

by the correlation or correlation coefficient.
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We will give one example of 2 dimensional random variable, this is the notation x y it is

distributed as normal mu 1 mu 2 sigma 1 square this is sigma 1 square sigma 2 square

and rho, so there are 5 parameters and the expression for the joint PDF is this. So, we see

that these parameters this is the mean of this  random variable x mu 2 is the mean of the



random variable y and then sigma 1 square is the variance of X, sigma 2 square is the

variance of Y and rho is the correlation coefficient, how x and y are correlated.

So,  this  is  the 2 dimensional  Gaussian and we see that  here  these  5 parameters  are

controlling the characteristics of these 2 dimensional Gaussian and we also observed that

we can show that if suppose x and y are jointly Gaussian, then x will be individually

Gaussian. So, what will the effects of X effects of x in this case it will be individually

Gaussian 1 by root over 2 pi into sigma 1 into e to the power minus half of x minus mu 1

whole square. So, this is the marginal PDF of x similarly marginal PDF of y will be also

Gaussian with mean mu 2 and variance sigma 2.

So, that way if  x and y are jointly  Gaussian,  then x will  be Gaussian and y will  be

Gaussian. But if converted not again true if x is Gaussian y is Gaussian x and y need not

be jointly Gaussian. Now we see that this correlation coefficient which is m measure of

correlation between x and y and we see what happens if rho is equal to 0, if rho is equal

to 0 that means x and y are uncorrelated x and y are uncorrelated. So, in that case what

will  happen that  f  x  y at  point  x  y is  equal  to  now this  rho will  be equal  to  0,  so

everywhere if we put rho is equal to 0. Then we will get one by 2 pi sigma 1 sigma 2 into

E to the power minus half of x minus mu 1 by sigma 1 whole square plus x minus y

minus mu 2 divided by sigma 2 whole square.

So, this now we can write as 1 value 2 pi sigma 1 into E to the power minus half of x

minus mu 1 by sigma 1 whole square into 1 way root 2 pi sigma 2 into e to the power

minus half of y minus mu 2 whole square and this is equal to that is marginal density of x

into marginal density of y. So, what we observe that if x and y are uncorrelated and

jointly  Gaussian,  then  x  and  y  will  be  independent  also.  Therefore,  what  is  our

conclusion if x and y are uncorrelated and jointly Gaussian then x and y are independent

also. Usually uncorrelatedness does not imply independence, but in the case of jointly

Gaussian random variables x and y that uncorrelatedness imply independence. So, for the

case  of  Gaussian  jointly  Gaussian  random  reverse  x  y  uncorrelatedness  implies

independence ok.

So, this relationship uncorrelated generally does not imply independence, but in the case

of jointly Gaussian random variable uncorrelatedness imply independence. So, that way

we define the moments of the random variable particularly joint moment or second order



moment covariance correlation coefficient. Also we discussed about the jointly Gaussian

random variables how it is characterized by 5 parameters and what happens when the

correlation coefficient is equal to 0.
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Next  we  will  discuss  about  conditional  expectation,  we  know  the  definition  of

conditional PDF and PMF suppose X and Y are continuous random variable. If X and Y

are continuous then the conditional PDF of Y given X is equal to x, so given X is equal

to x the PDF of Y is given by this that is joint PDF divided by marginal PDF. Of course,

will equal that f X of x need not be equal to 0; f X of x not equal to 0. Similarly if x and

y are discrete random variables then the conditional probability mass function of Y given

X is equal to x is given by this. This is the conditional PMF at point Y given that X is

equal  to small  x that  is  equal  to joint  PMF divided by marginal  PMF, here also we

require that P X of x is not equal to 0.

So, once we have the conditional PDF of the random variable Y given that X is equal to

small x, similarly conditional PMF of Y given X is equal to small x then we can define

the conditional expectation of Y given that X is equal to x E of Y given that X is equal to

x.

So, this is for the jointly continuous random variable x and y it is given by this integral

relationship and for the discrete random variable  x and y, this is given by this some

relationship. So, that way we have defined the conditional expectation of Y given X is



equal to x, we observe that this conditional expectation. Suppose for a given X what is

the conditional expectation or average value of y, if we fix X then what are the likely

value of Y and what are the likely values of Y and what is the average of Y that is the

conditional expectation.

Given  that  we  have  an  observation  X  is  equal  to  small  x  this  is  a  very  important

parameter and this is suppose if I have X what is the expected value of Y. So, we can plot

suppose x versus E of y given X is equal to small x, so we can get some curve which is

known as a Regression; regression of Y on x and this parameter is also. Suppose if we

have to predict Y from s this is the best prediction that x is given then what is the best

prediction under the means questions.

Suppose you want to minimize the mean square, here then the solution will give us that

the resulting relationship is E of y given X is equal to x, so that is the best prediction of Y

given that X is equal to small x. We also observe that E of Y given X is equal to x this is

a function of x. So, now if I consider x to be variable because, this is for a particular X

and if X if we consider X to be variable then we want this conditional expectation E of Y

given X.

Because,  X will be taking different values and this  quantity is a random variable,  of

course this  is a random variable and this  can be used to for example to find out the

expected value of Y. So, that way this is a random variable a random variable and it is

distribution will  be with respect to suppose if X is fixed then it will  be a PDF with

respect to Y.

So, E of Y given X is a random variable and a function of X is a random variable it is a

random variable and a function of X a function of X random variable X. Therefore, we

can take the expected value of this quantity with respect to X E of X Ex of E of y given

X. So,  when we take the  expected  value  here  it  is  a  random variable  is  Y given X

suppose is equal to suppose small x, then we can take the expected value with respect to

Y. Now we will take the expected value with respect to X this will be equal to E of Y, so

this is one important relationship.

So,  that  way we will  using the  concept  we will  be using the concept  of conditional

expectation; conditional expectation it is a measure of based linear prediction given that

X is equal to small x. So, we discussed about conditional expectation E of y given that X



is equal to small x and also we discussed that considering s to be variable it is a function

of X and from this expected value if we take the expectation again with respect to X, we

will find E of y and also the plot of E of y given X is equal to x versus x. So, that is the

regression of Y on X and this value suppose for a given X what is the base prediction

under some sense, under the mean minimum mean square regression that is given by the

regression curve.  So, that  way this  condition just like conditional  PDF and PMF the

conditional  expectation  is  also  important  quantity  and  that  we  will  be  using  in  our

subsequent studies.
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Let us summarize the lecture first we define the expectation for a function g x E of g X is

defined by this integration, so basically g x into f X of x integration from minus infinity

to infinity. Provided of course this g x f x should be absolutely integrable then we define

different moments. For example, mean mu is equal to E of x mean square E of X square

variance sigma square is equal to E of X minus mu square and then generally mth order

moment E of x to the power m mth order central moment E of X minus mu to the power

m.  So,  these  moments  partially  describe  the  random  variable  unlike  CDF  which

completely  described  a  random variable  the  moments  partially  describe  the  random

variable. Next we discussed about Moment Generating Function the MGF is given by M

x of s that is the expected value of E to the power s x and the utility of the moment

generating function is that we can find out the moments from the MGF. So, that way E of



x to the power m is related to MGF by this relationship that is g of x to the power m is

the mth derivative of M x of s at point s is equal to 0.
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We also talked about joint expectation, suppose joint expectation of X and Y E of XY

and that is the integration from minus infinity to infinity from minus infinity to infinity x

y into joint PDF dy dx. So, this is the integration double integration of the product of XY

and joint PDF. So, this E of xy is an important quantity, so it partially describes the

random variables X and Y. We also define the covariance, covariance of XY it is given

by the expected value of X minus mu X into Y minus mu Y and we are we discussed

about the importance of covariance. How it expressed the linear relationship between 2

random variables X and Y, also X and Y are called uncorrelated if covariance of XY is

equal to 0 and that also equivalently we can say that if E of XY is equal to EX into EY.

We define jointly  Gaussian random variables  X and Y, this  randomly joint  Gaussian

random variables X and Y have the joint PDF given by this. So, it is determined by it is

an exponential quantity and it is determined by 5 parameters namely mu 1 that is the

mean of x, mu 2 that is the mean of y, then sigma one variance of x sigma 2 variance of y

and rho rho is the correlation coefficient. That also we define defined that correlation

coefficient is the covariance normalized by sigma X into sigma Y.

Thank you.


