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Lecture - 12
Large Deviation Theory

Large Deviation Theory, we discussed earlier about laws of large number then central

limit theorem.
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So,  we will  consider  the same sequence of random variable  again suppose X n is  a

sequence of i.i.d random variables is with common mean mu, and S n is summation of Xi

S as defined earlier. Now, we know laws of large number and central limit theorem, they

are concerned with the behaviour of S n for large n. This large deviation theory deals

with the tail probability of the form probability S n by n greater than equal to a. 

Suppose S n by n if I consider suppose, if it is a continuous case suppose this is some S n

by n. And this is suppose f of S n by n the pdf we are considering the pdf may be this is a

sum distribution like this. So, we are concerned with the tail probability suppose, this is a

point a so, what is the probability that S n by n is a from a. So, S n by probability that S n

by n is greater than equal to a; so, such tail probabilities are known as tail probabilities



and they are very important for example, to determine the error or probability of some

real event etcetera.
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Now, let us go back to laws of large number and CLT how they are they can deal with

deviation from the mean. As the name large deviation implies we have to deal with large

deviation from the mean. Suppose S n by n that is the sample mean and according to

weak law of large number, it converges in probability to mu, what does it mean that; the

probability  that  S  n  by  n,  will  deviate  from mu by  very  small  amount  epsilon  that

probability is 0, as n tends to infinity that probability will become 0. Therefore, weak law

of large number does not allow any deviation from the mean, does not allow deviation

from the mean. So, any tail probability will be automatically 0 here.

Now, let us consider CLT, according to central limit theorem this is CLT; S n minus n mu

that is the deviation divided by with n sigma, that is standardization in distribution it

converges to normal 0 and normal distribution with mean 0 and variance 1. So, because

the because of this now we can determine the probabilities of this form only. Because, it

is normal distribution I know that normal distribution is a suppose if I it is a 0 mean

normal distribution. So, this distribution standard normal distribution this is suppose z f z

of z.

Now, it is a shorten distribution as normal distribution is and therefore, we can find out

the probability of this form only, mu minus a by root n mu plus a by root n. So, that way



because as n goes to infinity this term will becomes smaller n smaller therefore, it cannot

deal with we can find probability deviation of the order of 1 by n ok. So, that way we can

find out probability of this form and this deviation is very small, it cannot deal with if

there are large deviation S n by n take some large deviation. This type of probability

cannot deal with that is the limitation of central limit theorem.

Thus, here it is not applicable for finding the probability of the large deviation of the

mean from the mean. So, we see that weak law of large numbers does not allow any

deviation, but central limit theorem allows deviation, but not very large deviation, the

deviations are known as normal deviations.
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So, now large deviation theory can deal with the probability of large deviation so, it

basically exploits the moment generating functions to find out the these probabilities.

That is, we want to find out suppose find out the probability that S n by n is greater than

equal to a. So, we want to find out tail probability of this form and it exploits, large

deviation  theory  exploits  the  moment  generating  function  MGF, MGF for  a  random

variable X. We know this is M X of s is equal to E of e, expected value of e to the power

S X. So, this MGF is used to derive these probabilities ok.
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Let us see first we will go to Chernoff bound one very important result Chernoff bound

that is probability that X is greater than equal to a. Suppose X is a random variable how

to get the probability that X greater than equal to a. So, we have various inequalities like

Chebyshev inequality, Markov inequality etcetera. Here also we can apply the Markov

inequality to find out this Chernoff bound. You can consider like this; suppose we have

to find out Chernoff probability that X is greater than equal to a.

Now, we will take the exponential of both sides. So, this is same as probability that e to

the power S X is greater than equal to e to the power S a. If we have we have first taking

the exponential with respect to S, S is a positive, S greater than 0. So, this we can write

from here because the X is greater than equal to a. Now we are taking the exponential

with respect to positive number. So, e to the power S X will be greater than e to the

power S a.

Now, apply the Markov inequality  so this  will  be less than equal to E of this  is the

positive quantity e to the power S X divided by e to the power S a that we can write as e

to the power minus S a. So, this probability will be a less than equal to this is for S

greater than 0 is n and this quantity is nothing but. So, this I can write as e to the power

minus as into M X of s, but this is this quantity is less than equal to this and where s is

greater than 0. So, if it is less than equal to this quantity for all s greater than 0, out of

that there will be 1 minimum, suppose for all possible we consider the 1, which is the

minimum of this expression then we will have a probability of s greater than a will be

less than that minimum also.



Therefore, ultimately we can write that this is less than equal to minimum s greater than

0 e to the power minus as into M X of s. So, this is the Chernoff bound, so it is one of the

tightest bounds. So, for probability of x being greater than equal to a is bounded by this.

So,  lower  bound  is  this  is  the  lower  bound,  sorry  this  is  the  upper  bound,  so  this

probability cannot achieve that. So, we will be in this Chernoff bound to find out the

probability  tail  probability  for S n by n. We will  state one important theorem that is

known as  the  Cramers  theorem,  that  theorem the  most  fundamental  results  of  large

deviation theory that we will be discussing now.
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We will  consider  the  sequence  of  i.i.d  random variable  independent  and  identically

distributed random variable with constant mean mu. And the MGF M X of s, which is

finite in the neighbourhood of S is equal to 0. So, that is one important assumption that in

the  neighbourhood  of  s  is  equal  to  0  M X of  s  is  finite.  So,  we are  considering  a

particular sequence of i.i.d random variables.

Then for a greater than mu, this a is greater than mu that is the mean of Xi mu. So, we

are  considering  a  number  a  greater  than  mu.  So,  for  that  the  probability  log  of

probability, this is log is base with respect to base e. Log of probability of S n by a so we

are considering this limit, limit n tends to infinity 1 by n log of P of S n by n greater than

equal to a. So, this term we are considering this is log of probability then we are dividing

by n that is the limit is equal to minus l of a.



So, what is l of a? Now, this l of a is related with this moment generating function. So,

this is equal to l of a is equal to maximum of s greater than equal to 0, s a minus log of M

X of s. So and if s star is the point of maximum suppose l a is the expression it is a

function of a, for which this s a minus log of M X of s attains the maximum value.

Suppose s star is the point of maximum then l a we can write it is s star a because s is s

star, now log of minus log of M X of s star. So, this is the rate function this function is

called rate function.

Why it  is  called rate function;  because it  will  determine the probability. Now it  is a

probability rate function how it can determine the probability, suppose this expression is

there if I multiply by n then it will be l a into n. Therefore, and if we log is given so if we

take  the  inverse  log  then  probability  of  S  n  by  n  greater  than  equal  to  a  will  be

approximately equal to e to the power minus m into rate function. So, this is the tail

probability now. We can determine because this is a as n tends to infinity therefore, for

large n we can approximate this probability by this result, that is probability that S n by n

is greater than equal to a. That is approximately equal to e to the power minus there is a

rate function l a is there that is the rate function multiplied by n so this is the probability.

What is l a now; l a is related with the log of the moment generating function, log of

MGF this is also known as Cumulative Cumulant generating function. So, the difference

between s a and log of M X of s. So, this is a line this is another function, so what is the

maximum  difference  between  them.  So,  that  is  l  a  and  it  will  determine  the  tail

probability this is what Cramer’s theorem says.
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Now, this probability that S n by n is greater than equal to a Cramer’s theorem says; what

is the value of the probability as n as n tends to infinity. So, first of all we will find out,

what  is  the upper bound for this  probability. So,  for this  we can apply the Chernoff

bound. So, probability of S n by n greater than a this is same as probability that S n is

greater than n a.

So,  if  I  apply  the  Chernoff  bound,  what  we  can  write?  That  is  less  than  equal  to

minimum over s greater than 0 of e to the power a and s because here now right hand

side is n a. So, we are writing n a here into n this is the random variable M S n of s. This

is because we know that probability of X greater than equal to a. Here we are writing

greater  than does not matter  then here it  will  be less than equal  to minimum over s

greater than 0 of what e to the power a s into M X of s, that was the Chernoff bound that

we have used here. So, here an concerned random variable is S n and then it is greater

than n a.

Now since X i’s are i.i.d so M S n of s received by definition E of e to the power s into S

n. So, that is equal to now we can write this as equal to E of e to the power s into

summation X i is equal to 1 to n. Now this we can write as a because it is a exponential.

So, that way we can write E of product of i is equal to 1 to n, e to the power s Xi. Now

we  know  that  X  i’s  are  independent  random  variables  therefore,  e  of  s  X  i’s  that

exponential  of  this  independent  random variable  they  will  be  also  independent.  So,

because of that this e I can take inside so this will be for that term i is equal to 1 to n E of



e to the power s Xi. So, this is nothing but normal generating function M of x i. So, this

is nothing but M X i of s.

Since,  i.i.d each of the random variable  will  have this a moment generating function

therefore, this I can write as M S n of s is equal to moment generating function of X to

the power n. So, this is the moment generating function of S n of the sum, when X i’s are

independent an identically distributed. Therefore, how to we can write now probability of

S n by n greater than a, that is less than equal to minimum over s greater than 0, e to the

power a n s because S n will be greater than equal to n a into. Now moment generating

function of S n, S n is equal to M X of s to the power n so we can write like this.

So, now we have to find out the minimum of this quantity. If I write this also in terms of

exponential then I can write as a n s plus n log M X of s. So, this minimum suppose this

is now minimum of this expression will be obtained when this expression is maximum

ok. So, if  I  consider  suppose minimum of the entire  exponential  expression.  So, the

exponent whenever it is maximum that expression will be also maximum. So, that way

we have to maximize the exponent part, so if that is the maximum the maximum is n into

l a, then we can write that this probability that S n by n is greater than equal greater than

a is bounded by it is less than equal to e to the power minus n into l a, what is l a here?

Where l a is maximum s greater than 0 s a minus log of M X of s.
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So, if s star is the maximum point then we can write it l a is equal to s star a minus log of

M X of s star. Therefore, we have sum that that probability that S n by n is greater than a

this is bounded by, e to the power minus n into l of a where l a is given by this. So, this is

a consequence of Chernoff inequality only.

Now, how do I find s star? S star is the point where this expression s a minus log of M X

of s is maximum therefore, if I take the derivative with respect to s that should be at s is

equal to s star that should be is equal to 0. So, if I take the derivative which was (Refer

Time: 21:21) to s this will become a, this will become 1 by M X of s into M X dash of s.

So, from that equating to 0 we will get a equal to M X dash of s star divided by M X of s

star.

So, now this l is related to the MGF by this relationship, a is equal to M X of s star

divided M X dash of s star differentiation of M X of s, s star divided by value of M X of

s of s star. So, therefore, what we get then probability that S n by n greater than a is less

than equal to e to the power minus n into l a. Or if I take the logarithm so I take the

logarithm first then it will  be minus n into l a will  come. So, that n if I keep at  the

denominator left hand side we will get this 1 by n log of probability S n by n greater than

a, that will be always bounded by minus l a, where l a is the rate function given by this

relationship ok.

So,  that  way  we  have  a  avail  to  find  out  an  upper  bound  for  this  probability,  tail

probability upper bound is given by this relationship, but we have found out the upper

bound. So, that is 1 by n log of base e, probability that S n by n is greater than a that is

bounded by. So, we want to show that for large this is the upper bound will be we have to

find the lower bound also for this expression so that we can find out the limit test. So, we

have to show that for large m limit of limit as n tends to infinity 1 by n log of probability

that S n by n is greater than a. So, this will be greater than some lower bound that is

again given by l a plus epsilon here epsilon is arbitrarily small.

So, this result we have to establish this is a slightly complicated task. So, far we know

that  this  with  probability  the  logarithm  of  the  tail  probability  is  related  to  be  rate

function, but we have a upper bound for this expression which is bounded by the rate

function.



Next we will show that this quantity as n tends to infinity it will be greater than minus l a

plus epsilon. So, that in the limiting case we will get both lower bound and upper bound,

if we consider then this will be equal to minus of l a that will establish.


