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Lecture - 10
Laws of Large Numbers

Laws of Large Numbers, in the last lectures we covered different modes of convergence,

two of the applications of the convergence concepts are the laws of large numbers and

the central limit theorem, so two important results.
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In fact, celebrated results that is number 1 is laws of large numbers, and number 2 is

central limit theorem. So, laws of large numbers and central limit theorem are concerned

with the behaviour of the average of large number of random numbers. Suppose we have

a  large  number  of  random  variables,  we  average  them  and  how  that  average  will

eventually  behave  that  answer  is  given  by  laws  of  large  numbers  and  central  limit

theorem.

Now, these results that is theoretically very important, laws of large number and central

limit theorem theoretically they are very beautiful results. And they have several areas of

applications which we will be covering in this class and subsequent class. First we will

discuss laws of large number.
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Basically this laws of large number is concerned with the behaviour of sample mean,

what is sample mean? Consider a sequence of random variables and is suppose is has

mean average value or expected value mu i. Then we define the partial sum S n is equal

to summation X i, i going from 1 to n this is the partial sum and if I divided by n then I

will get the average.

So, now this partial sum S n divided by n is the average. Now, how this average behaves

that is the question. First of all let us consider the expected value of S n by n because, S n

by n, how do I define? S n by n is equal to summation X i, i is equal to 1 to n divided by

1 by n. Now, this quantity is a random quantity because these values are random. So,

necessarily we can find out what is the average value of this random quantity E of S n by

n, so that quantity because it is a sum of random variables. So, expected value will be

also sum therefore, this will be 1 by summation E of Xi, i is equal to 1 to n divided by n

and as we know that E of X i is mu i. So, therefore, I can write this is equal to summation

mu i, i is equal to 1 to n divided by n.

So, what we have seen that E of S n by n is equal to the average of the true means,

average of the true means is of the random variable has a mean mu i therefore, we are

taking the average. So, this quantity S n by n has an average value which is the average

value of the true means. So, on the average that means, on the average S n by n is equal

to the average value of the true means, but whether S n by n actually approach this



quantity. So, for that we have to see the variance of this quantity S n by n what is the

variance?

So, let us see that, so if that variance becomes smaller and smaller then we can say that S

n by n a process this quantity as n tends to infinity. So, that way we get this statement of

the law of large numbers; let us first give these statements.
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The sequence of random numbers or random variables X n is said to obey the weak law

of large numbers that is we write it as WLLN, WLLN if S n by n that quantity converges

in probability to the average of the true mean. So, what is the weak law of large number,

that S n by n this is a quantity we are concerned with that is the sample average; if it

converges  in  probability  to  the  average  value  of  true  mean.  Then  we  say  that  this

sequence, sequence of random variables X i’s they obey the weak law of large numbers.

So, weak law of large numbers because here convergence is the in the weak sense that is

why this is known as the weak law of large number. 

Now, the sequence X i’s if it obeys the weak law of large number that it means that this S

n by n converges to the average of the true mean in the probability sense. So, this is the

weak law of large number, similarly the sequence X n is said to obey the strong law of

large, if this average sample average or sample mean converges almost 0 to the average

of the true mean. So, this is the strong law of large number what does it say that S n by n

that is the sample mean. Now as n tends to infinity this is convergent and it converges



almost (Refer Time: 07:28) to the average of the true mean summation mu i i is equal to

1 to n divided by n average of the true mean.

Then we say that  that  the sequence X n obeys the strong law of  large number it  is

abbreviated  as  SLLN.  So,  we  have  to  see  under  what  condition  weak  law of  large

number is true and under what condition strong law of large number is true, but both are

concerned with the behaviour of this sample mean as n tends to infinity.
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We will state one theorem, theorem one weak law of large numbers suppose X n is a

sequence of random variables defined on the probability space S, F, P with finite mean

mu i for each of Xi. If we impose this condition limit n tends to infinity of the double

sum of covariance of X i, X j divided by n square if this limit happens to be 0, then S n

by n converges in probability to the average of the true mean.

So,  we  impose  the  condition  what  is  the  condition  if  summation  that  is  double

summation covariance of Xi X j summation over i over j, but they are not equal to i

because covariance between two distinct random variables, divided by n square if this

limit n tends to infinity is equal to 0. Then we say we can say that this sequence X n of

hd weak law of large numbers so that means, that sample mean converges in probability

to the average of the true mean. Now this covariance of X i X j means E of X i this

quantity is nothing, but E of X i minus mu i into X j minus mu j, so this quantity is the

covariance.
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We have to prove that S n by n converges in probability to in probability to the average

of the true mean, but convergence in probability directly proving is difficult. So, we will

first see if it is convergent in mean square sense that means, we will see this quantity E

of S n by n minus summation mu i, i going from 1 to n divided by n this is the quantity

which left  hand side should converge.  So, we consider  the convergence in  the mean

square sense. So, that way we consider the mean square value here and this if I write the

values of S n as the summation of X i. Then I can write this as because 1 by n is here, if I

since it is square value is there this 1 by n square can come out into E of now sum of the

deviation. So, we are considering X i minus mu i mu i, so this sum going from i is equal

to 1 to n, so this division sum square so we want to find out this quantity ok.

Now, this we see that this is a square of this sum, so we can break it in terms of the

individual square and then the cross terms. So, individual square terms are there cross

terms are there and then we can take the expected value. So, that way we will have this

quantity first E of Xi minus mu i mu i whole square this sum plus the covariance sum

and its sum is scale by 1 by n square and we notice that E of X i minus mu i whole

square that is the variance sigma i square. So, I can write this as variance sigma i square

summation i going from 1 to n, similarly this term is covariance of X i covariance of X i

covariance of X i minus mu i, so this quantity the covariance of X i X j.



So, that way we have this  quantity this mean square value is equal to summation of

variance  divided  by n  square  n  double  summation  of  the  covariance’s divided  by n

square.  Now our  aim is  what  happens  as  n  tends  to  infinity, we are  given that  this

quantity is finite sigma i square that is a finite variances. So, each of the random variable

has finite variance and also we are given about this summation.
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So, let us see, so if I have to take the limit of the left hand quantity this mean square

value as n tends to infinity therefore, I will have the limit of this quantity and limit of this

quantity. Now, limit of this quantity is equal to 0, because this sigma i squares are finite

and this limit is also 0 because already given that and this is according to today condition

given in the theorem this quantity is equal to 0. 

Therefore, what will we will have that this quantity that means, square value as n tends

to infinity limit  of this mean square value is equal to 0. So, what does it  imply this

implies that S n by n converges in the mean square sense to summation mu i i is equal to

1 to n divided by n average value of the true means.
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So,  we  get  this  result,  so  this  also  implies  that  now  we  know  that  mean  square

convergence ms convergence ms convergence implies convergence in probability. So,

what we conclude that S n by n that is the sample mean converges in probability to the

average of the true mean this is the weak law of large numbers. So, we have established

one theorem according to this theorem what we require we require, suppose if we are

given a sequence of random variable X i’s and each has sum finite mean mu i and finite

second order moment that where variance is also finite.

And if we have this condition summation of double summation of covariance of X i X j

this is over i naught equal to j. So, if this double summation of covariance of X i X j

scaled by 1 by n square if this is equal to 0 limit of this is equal to 0. If this is limit of this

quantity is equal to 0 then S n by n converges in probability to the average of the true

mean. So, this is the weak law of large numbers, so this is the condition we need to be

satisfied.
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Now we what we gave me the general statement, now we can derive several simple cases

suppose this  special  cases  of  weak law of  large numbers  are  suppose a  is  X n is  a

sequence  of  independent  and  identically  distributed  random variables.  So,  if  X n  is

known  to  be  independent  and  identically  distributed  because  suppose  same  random

variable we are observing suppose that different instant of time. For example, if I am

tossing a  coin and corresponding outcome is  a random variable  suppose a  Bernoulli

random variable which takes value 1 and 0.

Now, this  is  a  sequence  if  I  go  on  independently  tossing  the  coin  then  I  will  get  a

sequence that is a sequence of iid Bernoulli random variables. So, that way if I have an

iid  sequence  of  random  variable  in  that  case  this  condition  will  be  automatically

satisfied, the condition for weak law of large numbers will be satisfied because it is a iid.

So, mean is in this case will be constant and because it is independent covariance of X i

X j will be automatically 0 therefore, S n by n in probability it will converge to mu,

because now a summation that is average of mu i is equal to nothing, but is mu i is mu,

so n mu divided by n that is equal to mu.

So therefore, S n by n in this case converges in probability to mu, so this is one special

case. Similarly now we can drop the condition for identically distributed only what we

require is suppose mu i is given a of X i and the sequence is independent,  X n is a



sequence  of  independent  random  variables.  So,  in  that  case  independence  implies

uncorrelatedness, independent implies uncorrelatedness.

What does it tell that is uncorrelated mean uncorrelatedness means covariance of X i,

suppose if X i and X j are the random variables then covariance of X ij will be equal to

identically 0. So, in this case also because this will become 0 because of independence

condition therefore, S n by n will converge in probability to the average of the true mean.
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So, this is case two, similarly we can consider (Refer Time: 19:32) because what we

require is that covariance of X i X j is equal to 0, for that this sequence need not be

independent this if the sequence X n is a sequence of uncorrelated random variables.

Then also we will have covariance of X i X j automatically it will be equal to 0 because

of  the definition  of  uncorrelatedness  and therefore,  S n by n S n by n converges in

probability to mu. So, these are special cases, but generally what we require that this

quantity that is this covariance sequence. So, this covariance sequence has the property

that if I consider the sum and then divided by n square, then this quantity limit of this

quantity is equal to 0.

So, if we have suppose other conditions also we consider three special cases a b and c

other than that anywhere where this sum becomes 0 summation that is summation X i

minus mu i into X j minus mu j expected value of that that is the covariance. Summation

this is a double summation over i and j not equal to i divided by n square, if somehow



this sequence goes down to 0. So, ultimately depending on the property of the covariance

sequence this weak law of large numbers are obeyed if this condition is satisfied then

covariance satisfy this condition. And of course, other condition is if mean is of course,

mean need to be finite and variance also needs to be finite in that case S n by n will

converge in probability to the average of the true mean. That is the weak law of large

number that is sample mean converges to true man as n tends to infinity.

So, this is a very powerful result that means, what we expect that this quantity under the

condition already stated this S n by n will be as close as possible to the true mean if we

are considering only iid case for example, with constant mean. Then this S n by n can be

made arbitrarily close to true mean S n by n converges to mu in probabilistic sense. For

example if I consider suppose measurement of a constant quantity maybe that constant

quantity itself is mu by means of some noisy observations. Now these observations are

suppose X 1 X 2 up to X n etcetera these are the observation noisy observation of the

same constant quantity mu.

Now that means, X 1 X 2 X n etcetera they are the random variables because of the

noise. Now they represent a constant quantity that is expected value of this E of X i’s are

E of X i’s will be equal to mu is E of X i is equal to mu. Then what this now weak law of

large numbers says that if I take this sample mean. So, summation X i i is equal to 1 to n

divided by n this is the sample mean, what is this is the average of the noisy samples

average of the noisy samples that will converge to true value to true mean.

Now, this quantity is the unknown quantity which we want to observe our which we

want to measure. So, because measurements are noisy we take the sample average and

this sample average as we are taking more and more number of observations then this

sample  average  will  be  close  to  mu.  So,  that  is  our  belief  we generally  in  our  any

experiment we do that way if we have number of observations then we take the average.

So, that that average is more close to the unknown quantity, so that is a consequence of

weak  law  of  large  numbers.  There  are  several  other  consequences  for  example,  the

interpretation of probability as relative frequency that can be easily explained in terms of

weak law of large numbers, we will now consider the strong law of large numbers.
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So, this is the consequence of almost sure convergence, so strong law of large number is

concerned with convergence almost sure convergence with probability one. So, what this

theorem says first of all when these sequence we have a sequence of random numbers.

So, that sequence obeys strong law of large number if sample average converges to the

average of the true mean almost sure, that is the strong law of large number if sample

average converges almost sure to the average of the true mean.

So, that is the strong law of large number, but we will be considering a special case of

strong law of large number that is Kolmogorov’s strong law of large numbers. It says that

if  X n  is  a  sequence  of  iid  random variables  here,  we are  concerned  with  only  iid

independent and identically distributed with common mean mu we are considering the

special case common mean mu and finite variance. So, if we import this iid condition

then S n by n converges almost sure to mu, so it converges almost sure to mu. So, we

will try to prove is a special case of this so this is the strong law of large numbers.
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Suppose we impose this condition this sequence this is iid with constant mean mu and

finite variance, but we also require that finite fourth order moments. So, this is the fourth

order central moment E of X n minus mu whole to the power 4 that is less than infinity

that is that is finite, we require that we impose the condition that this sequence it is a

sequence of iid random variable, but it is a restricted case where the fourth order central

moments are also finite. 

So, in that case we will prove that S n by n converges in almost sure sense to mu. So,

what we want to prove then we want to prove that and that is S n, suppose S n by n

minus mu this deviation suppose if I consider the deviation of this is greater than m

suppose we will  consider the all  sample points for which this  happens.  So,  what we

require s such that this deviation from mu is greater than 1 by m if we consider this event

ok.

Now, we will consider the limsup of this event as n tends to infinity. So, we can define

the limsup of this deviation, so we are considering all those s for which there is some

deviation and here m is greater than it is a positive integer greater than 0. So, now what

we require is that probability of this event should be equal to 0. So, convergence almost

sure means this quantity that probability of limsup again tends to infinity of those values

of s for which S n by n minus mu that deviation is greater than 1 by m. So, if I consider

the infinitely often happening those deviations and probability of all those deviations,



infinitely occurring deviations the probability should be equal to 0 that is the condition

for almost sure convergence
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So, we will  prove this  first  at  this again this  also will  be proving using the Markov

inequality, Markov inequality and Borel Cantelli Lemma BC Lemma. So, because we are

given a condition on fourth order moment,  so we will be examining the fourth order

moment first that is E of Sn by n minus mu to the power 4. So, this is if I simplify this

then I will get an expression like this and this quantity now I will denote by Y i. So, that

Y i is a 0 mean random variable, so Y i is equal to X i minus mu, so that way Y i is a 0

mean 0 mean it is 0 mean E of Y i is equal to 0.

So, but here this quantity is summation of Y i to the power 4, so it will because it is a

power 4 we can expand the expand it and in the expansion we will have terms like this Y

i to the power 4 then Y iq Y j then square terms then Y i Y j Y k square etcetera. And we

have to take the expected value of each of the terms, but if we observe closely then we

see that what will be the expected value of any term involving Y iq, because these are

independent  sequence we are considering iid sequence.  Therefore,  expected value for

example, if I consider the expected value of E of Y i cube Y z, so what it will be that will

be equal to E of Y iq into E of Y j.

Now, E of Y i cube because Y i is a 0 mean it is a centred around mu, so that way this

quantity will become 0 this quantity will also become 0, so because of that this will



become 0.  Similarly, all  odd moments  will  become wherever  any odd term is  there

suppose this term Y i Y z. So, this is Y i there Y j is there Y k square is there because of Y

i and Y j this term will also expected value will become 0. Similarly, if I consider the

expected value of this will become also this will also become 0. So, with this observation

now if I have to expand this expansion can be simplified I will have only this quantity.
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So, this will be 1 by n to the power 4 into n E Y i to the power 4 plus n C 2 into 4 C 2

into E of Y i square whole square. So, this we can further simplify and we can write like

this we are just writing the expansion for n C 2 and 4 C 2 and therefore, we will get like

this. Now, we are considering as when n is large now suppose if I consider this quantity,

if I take n outside then this will be n square. 

So, that way I can write this equality in terms of this inequality because this is a some

constant K divided by n cube plus 1 by n square into K 2. All other terms suppose we

consider this quantity n 3 etcetera all combined into this K 2, so what we get is that Y i i

know that that is X i minus mu. So, that is fourth power of the average expected value of

that that will be less than equal to K by n cube plus 1 by n square into K 2, so this is the

result we have established.
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Now, let us see, so we are interested to determine the probability of the deviation. So,

probability of S such that S n by S S n by n minus mu that deviation is greater than 1 by

m, so this is the event we are considering the probability of the limsup of limsup as n

tends to infinity of this event. So, this is a sequence of event is there because S n by n is

there, so we are considering the limsup of this and probability of this limsup should be

equal to 0 that we want to establish.

So, for that we consider this event, so probability of this event now we essentially we

want to apply the Borel Cantelli  lemma for this we want to evaluate this probability.

Now, this probability is same as probability if I both side if I take the fourth power and

right hand side also fourth power. So, that way this probability is same as this probability

this is less than equal to now we can consider the expected value because we can apply

the Markov inequality, now Markov inequality we apply Markov inequality. So, because

of Markov inequality we will get that this probability is less than equal to this quantity

ok.

So, now we have already established that this is less than equal to m 4 because m 4 will

come because of this into K by n cube plus m 4 by n square into K square into K 2 m 4

by n square into K 2. So, now, if I have to consider the sum of this probability as n tends

to 4 n is equal to 1 to infinity that is infinite sum of this probability sequence if I consider

wherever there is a deviation all probability if I sum up. Now that will be less than equal



to sum of this quantity and I know that 1 by n cube either convergent series 1 by n square

is also a convergent series. So, this sum will be finite, so we got a condition that the sum

of this deviation probabilities is less than infinity.

Now, we can apply the Borel Cantelli, Cantelli lemma and, so and prove the theorem. So,

now, it is simple because this condition is satisfied, so this part is my S n by n. So, what

does it say then this implies that S n by n this is a condition for almost sure convergence

S n by n converges almost sure to mu. So, this is the consequence of Borel Cantelli

Lemma.
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So,  this  is  this  strong law of  large  number therefore,  what  we have  established that

probability of limsup of the event S such that S n by n that is the quantity of our interest,

interest minus mu that is greater than 1 by greater than equal to 1 by m this is 1 by m.

So, limsup of that is equal to 0 this implies that S n by n converges in almost sure sense

to mu. So, this is this strong law of large number we have established for a particular

case where the fourth order central  moments are finite for the sequence considered a

fourth order central moments are finite. And in that case if X i’s are iids then the sample

mean converges almost sure with probability one to the true mean mu this is the strong

law of large number.



So, that way we discussed about weak law of large number which requires a condition

that sum of the covariance sequence divided by n square that quantity goes down to 0 as

n tends to infinity. That is we considered we club large number what is the condition we

establish that X i’s are sequence with finite mean and variants and if in addition to that

covariance of X i X j if double summation i j not equal to i. If I considered a double

summation divided by n square if that goes down to 0 then X i’s will already weak law of

large number.

Then we consider the special cases if X i’s are IID if X i’s are independent if X i’s are

uncorrelated,  then  weak  law of  large  numbers  are  satisfied.  For  strong law of  large

numbers we saw that we need this special condition that is independent and identically

distributed  sequence  of  random  variable  a  sequence  of  independent  and  identically

distributed random variables was considered in the case of strong law of large number

SLLN strong law of large number. So, X i’s are X i’s are iid they are iid and we proved it

that is with finite mean and variance, but we impose another condition that finite fourth

central moments, moments.

What does it means that is E of X i minus mu to the power 4 that is finite in that case

what we proved that this S n by n that is the sample mean will converge almost sure to

the true mean. So, this is the strong law of large number, so that way we establish two of

the very important result in probability that is strong law of large number and weak law

of large numbers. We discussed weak law of large numbers in more details, but strong

law of large numbers special case a special case of that we covered. 

So, next we will cover another important result that is the central limit theorem.

Thank you.


