
Optimization Techniques for Digital VLSI Design
Dr. Chandan Karfa
Dr. Santosh Biswas

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture – 08
RTL Optimizations for Area

Welcome everyone. So, today we are going to discuss on RTL optimizations for area. So,

in our last discussion we have discussed about several techniques which improves the

timing of it of a design or say throughput of a design or the latency input the latency of a

design. So, we discussed about certain strategies. Today discussions topic is something

on area. What are the kinds of techniques that we can commonly used on RTL which

actually improve the area?

(Refer Slide Time: 00:56)

So, specifically we are going to discuss about strategies like folding rolling up pipelining

resource sharing and some reset impact of reset, but specifically on FGPA targets ok.

(Refer Slide Time: 01:10)

So, let us start with folding. So, what is folding transformation? So, whenever we design

certain things we do not keep in mind that similar kind of structure is generated many

places right and they are all consume areas. It may be possible in certain scenarios that

those kind of patterns can be clubbed together and can be used only one component 1

module of the same structure which reduce the area by enlarge ok.

Let us take this example suppose I am doing here this multiply and add multiply and in

parallel. So, there are 4 such components in your design you just copy paste from it is a

different part of the design this has and this also in if you just think about the hardware 4

multiplier and the 4 hardware and these are all in running a parallel.

So, what we can do I identify this MAC pattern I multiply and accumulate pattern and I

just use only one of the pattern in your design right and now this input should be time

multiplexed. So, this a input the left input a b a c e and g will be clubbed together as a

left input to a multiplexer and the right input b this b d f and g will be clubbed together

as the right input of this multi player and then this x 1, x 2, x 3, and x 4 will be time

invariant multiplexed again to this atom right.

And this will be now controlled by this control signal same control signal say c s and this

is 2 bit right. So, this is c s and if it is 0 0 I am going to choose a b a b and x 1 right. So,

that a plus b into x 1 is carried out then if it is 0 1 I am going to choose this c and d here

c here here d and here x 2. So, that c plus c a into b plus 1 here c into d plus x 2 is carried

out. So, similarly 1 0 and 1 1 I am going to choose e and f x 3 and I am going to choose g

h and x 4 right. So, this is something in 4 clocks I am going to do this right.

So, we can understand that here your area will be reduce by multiple of 4 right. So,

factor of 4 because I try to plug 4 such patterns into 1 right and now if you can find out

some k such pattern your area will be it is proportional to k times. Of course, there are

certain things has to be taken care because this multiplier is adding.

But usually this kind of pattern that we find out this is a big pattern and consists of the

complex operations which is clubbed together so that extra area overhead of this

multiplier is kind of a negligible compared to the things that we are going to merge ok.

So, this is the order floating folding structure.

(Refer Slide Time: 04:12)

So, there are certain things so this is where I give an example at this 4 upper structure

running in parallel I just clubbed together, but it is also possible to club operator that are

in series right. For example, I have this 2 adder in series I can club them into 1 adder in

the circuit then what I have to do? I have to use this a this a and b as the input here.

So, this is a is the left input of this multiplier and b is the 1 input and that the c will be

another input for this so I will use a multiplier and whatever the results here that has to

feed back to this adder right. So, this is what I am doing. So, I just put a register here and

this output is feeding them right.

So, what happened? So, in first cycle this a 0 and b 0 will be calculated in the second

cycle this a 0 is gradually is already stored in these registers and now this c 0 will be. So,

c 0 will be selected here and then a 0 plus c 0 will be calculated. Again in the so this is 1

weight signal 0 and 1. So, 0 is just you select b and a in the second cycle it will select the

c x and this a 0 to b 0 right. So, this is how the whole thing will work.

So, every 2 cycle this whole this is a 0, b 0, c 0 the output will come right in every 2

cycle ok. So, this is the both are possible if they are in parallel you can merge if you they

if they are in the series then also you can merge them, but you need a feedback register

so that you can reduce that intermediate results as well ok.

So, this is the overall folding transformations and. So, what are the other issues has to be

considered here?

(Refer Slide Time: 05:49)

So, the important factor is that here. So, suppose this is the your folded structure right,

but this is not the only component of your design. So, this is just a part of your design

and it is synchronous with the other part of the design ok. So, now, earlier what is

happening? Since this all running in parallel or in the series there is no delay 1 clock you

going to get the results right.

So, now since this is taking multiple clock then your this results whatever the input is

coming here it you have to now at first say 3 cycle, 4 cycle to get the output right. So,

either you have to if you want to do if you want to run all this component in the same

clock then you have to add some synchronous synchronization mechanism. So, that

whatever the data is expecting after 1 clock now it will wait for 4 clocks.

Because now you are things are folding factor is 4. So, after 4 cycle only the data will be

available. Similarly this may be feeding in data every clock now it has to wait for hold

the data for all 4 clock cycle so that the operation can be executed here right. So, there

are 2 choices either you add all the synchronization factor you want to design or the

alternative choice is that you run this particular block the folded block N time faster

where my folding factor is N.

So that means, N component is multi if margin to a single block. So, now, I can actually

run these particular things in clock into N. So, if the clock is say here 10 and say folding

factor N equal to say 5. So, this is be 50 megahertz and this is also 10 megahertz right.

So, what will happen? So even though 1 clock of this is equivalent to the 5 clock so

effectively I am running in 5 blocks but since this clock is very fast it will be

automatically synchronized with the other blocks right.

This is the common way of doing this. So, whenever you fold something you increase

that clock of that particular block by a factor of folding factor which is N. So, that your

synchronizing will be automatically taken care, but is that data will be seamlessly go

through this components right because it is just for him this is 1 cycle, but effectively this

is 5 cycle internals. So, all these things will be properly synchronized.

So, during folding these are the two things either you have to synchronize manually or

you just increase the clock freeze of the folded structure. So, that it can be automatically

synchronized with the other component of your design. So, these are this is the two

factor you have to take care of ok.

(Refer Slide Time: 08:10)

And this fold folding transformation usually apply for this complex operations like

multiplier and is basically time multiplex. So, the inputs are time multiplex and it is very

useful for DSP application where actually you try to input maximum DSP, DSP in the

sense DSP is a specific component in FGPA how which actually can do multiplication

very first and it also have some adder and accumulation option pre adder as well as

accumulation option.

So, you can actually find out a multiplier accumuler multiplier and accumulate or add

and multiply then accumulate this kind of structure you can figure out in your design and

you can actually use the same DSP to calculate that same thing. So, this is something is

useful in DSP applications and if you just think about the automating this step you have

to find out the first pattern right the common pattern as big pattern you can find out that

is beneficial.

Because then the accumulate resource this area improvement will be by that factor you

try to even if you find say on multiplier. So, there is 1 multiplier for this design you can

just find out this multiplier 4 multiplier and you can multiplex this 4 multiplier right, but

if you just find and multiply and then actually you can replace all this 8 by 2 right earlier

only 4 multiplier by 1 multiplier. So, you are actually saving is more. So, as big pattern

you can figure out that will be beneficial for your design right.

So, you have to first figure out the common patterns then this folding factor defined by

the number of patterns you have finally, identified then replace all this pattern by a single

pattern with inputs are time multiplex; that means, you just add multiplexers and the

control signal properly and you apply a faster clock of N time faster clock to that folded

circuit so that the whole thing. So, work smoothly ok. So, this is all about this folding

transformations.

(Refer Slide Time: 09:57)

Now, we will move in to the next topic which is that pipelining also rolling up the

pipelining is something you improve the area right.

So, this is the same example I discuss in one of the previous discuss and now we are

talking about this improvement of the power is this improving the throughput so that x x

cube design right. So, you can do it iteratively or you can actually you can actually this

apply you can do it in pipeline manner that the way I just discuss in the in previous class

that you can do this all operation pipeline so that your throughput is 8 bit per cycle, but

you can roll this pipeline into 1 which is that iterative percent of this.

So, I have only 1 multiplier now instead of 2 multiplier, and 3 register I have now 1

multiplier into 2 1 register right. So, if we just roll this pipeline this is just the opposite

operation. So, this is this is the iterative implementation and this is the pipeline

implementations.

and you can just if your area is concern then you should probably take this one, but this

will take 3 cycle right because your latency will increase because your throughput will

be less because now we are actually producing 8 bit in 3 cycles. So, it will be 8 by 3 and

your latency also 3 cycle because in every 3 cycle you are producing one output in this

pipeline design and this all this component running in parallel we have shown that is our

latency is also 8 bit and later sorry this throughput is 8 bit per clock and your latency is 1

right.

So, sorry latency is 3 bit, but effectively your throughput is 8 bit per clock rate because

there are 3 latency is there, but your area is less here because if we just do this iterative

percents ok. So, this is what is called pipelining. So, if you have a pipeline design really

care out about your area, your design is very big and even saving this two multiplier is

useful you can probably do this implementation instead of this right.

But again if I do this you have some others synchronization like finish because now it

will take 3 cycles. So, you there are some finish signal just to cause synchronize with the

other components ok. So, this is something it is your choice it based on your if your area

is I mean crucial factor then you are going to choose this and if you want a throughput is

important then you are going choose this 1 ok.

(Refer Slide Time: 12:20)

So, there is another aspect is also here is sometime your design may be there is no

pipeline nothing, but there are some complex operation like multiplier, but you can think

about as a alternating operation of a multiplier which will actually give you better benefit

right. So, that is something also it is possible for example, if you just think about this

your implementation has only these multiplications A into B.

(Refer Slide Time: 12:38)

So, you are effectively have a multiplication which we assume there is a big complex

implementation. So, because it will be finally, mapped to logic right and it is take lot of

gates.

(Refer Slide Time: 12:54)

But if you just think about I am going to implement multiply by shift add right. So, then

what is happening you just shifting your multiplicand by every time and you just add it

based on the multiplier value that is 0 or 1 right.

(Refer Slide Time: 13:09)

So, if you just abstract diagram like this. So, your every cycle you are going to shift this

your A’s. So, you are doing A into B right this is A into B and if you know that particular

bit is 1, then I am going to shift and I am going to add to the results that that this is my

partial results multiplication results. So, as the otherwise I just discard this shifting value

right. This is very well way well known way of calculating multiplication using as a shift

register and a adder instead of a multiplier.

But it will take 8 clock right because every clock you are just shifting 1 bit and you

calculate on these things. So, if you just assume [FL] my data path which is 8 bit then it

will take 8 cycle at every cycle I am shifting by 1 bit and I am going to add and then

again I am shift by another bit and then am going to add and this will go for 8 cycle and

finally, the result will be generated right. But you can see that I can replace that big

multiplier by a simple adder right. So, it will you give you a big area benefit.

But again it is basically become a pipeline for a iterative percent. So, it will take 8 cycle,

but here the multiplier is going to take only 1 cycle ok. So, it is basically again I am just

repeating the same statement that it is all design choice if you want to just achieve as a

low area as possible probably and your latency does not matter, because then probably

you can replace this multiplier by a simpler version of multiply and by add multiplayer

which will take 8 cycle right your latency will become 8 where as your latency here is 1

ok.

So, this is something also possible and sometime you have to do this kind of

optimization just to achieve your target area because may be in your FGPA target your

design is not get fitted right where you need this kind of little bit changes in your design.

So, that the whole things get placed in your FGPA, because in FGPA the number of DSP

blocks are fixed and the logic that LUT’s and the logic units are fixed.

So, if you have very large number of multiplier you probably not able to fit all of them in

the DSP blocks of the logic units where as you can just replace a multiplier by add and

which will take less number of LUT’s and probably you can probably map it to the

design.

So, sometime this kind of corner case might arise and you have to do this kind of tricks,

so that you can actually map your design into a target FGPA devices ok.

(Refer Slide Time: 15:37)

So, this is about the rolling up pipelining I am going to talk about the next technique is

called resource sharing. Resource sharing is something is again it is kind of folding, but

is in different manner is like if you have some resources is use many places right it is not

folding into one, but some of the resources I can actually share it is kind of folding.

(Refer Slide Time: 16:00)

But it is little bit different in the sense that that the structure may not be exactly same.

But I can reuse that component it is specifically applicable for counter if you just take

this example suppose I have 2 module, where I have 2 counter right 11 bit counter and 8

bit counter.

So, what I can do? I can just bring out this counter from this 2 module I can you have a

dedicated counter module which is 11 bit counter I can use the 8 lsb as the counter of this

and the all 11 bit as a counter of this module right.

So, now I have a one counter module which is reused in the both the model. So, I bring

out this 2 counter out of this and we create a dedicated counter module and I can use this

right. So, this is what is called resource sharing. So, it is kind of finding out some most

similar type of module means similar type of operations is happening being multiple

hierarchical modules. You figure out bring it out them and do them once and you just use

that particular output in all the modules right. So, that is what is called resource sharing.

So, that is something sometime we usually do because that is also give you good idea

because here I just give a one example where for counter is very common to your design

maybe there are say 100 counters and that is there in different different module and just

doing this in 100 times is lot of area right, but you can just do only once and I can use it

for all the module. So, this is the kind of optimization that will give you very good idea

benefits ok. So, that is also an technique you should always remember when you are

going to do this area optimization.

(Refer Slide Time: 17:37)

Now, we are going to talk about several strategies specifically for FGPA target ok. So,

this impact of reset on area for FGPA so in as you remember or know that FGPA has very

fix kind of structure right it has set of CLV’s CLV is nothing but this configurable logic

unit which logically it is consider the LUT’s which is the you can you can do map any

kind of combinational circuit into that lookup table in a base logic units it has also some

your CLV which consist of memories which is basically register flip flops and it also

have some dedicated ram, ROM this RAM memory unit like RAM ROM it should also

have some shift registers which is very fast having efficient way of implementing the

shift registers and also it is some DSP blocks right.

And the pin configurations the problem with these the pin configuration for this DSP’s or

say FGPA units are fixed right for example, a RAM may have may not have any say

asynchronous reset or say DSP block do not have any say synchronous set or say shift

register do not have any says reset pin right. So, if you try to map your design to FGPA it

is very important to understand the exact pin configuration of your design of the FGPA

block.

Because what happens sometime is you design something without understanding the

exact structure and because only a reset pin or say synchronous reset pin or

asynchronous reset pin that particular whole big RAM or say DSP cannot be mapped to

the target architecture right.

For example, you try to map a big array into array into some memory or say RAM and

because of that asynchronous reset it cannot be mapped to that RAM. Then there is a big

problem because in the whole RAM it will map to registers and it will consume lot of

registers and then your all the register when over used you cannot do other part of the

register which can should be mapped to register cannot be done right.

So, this is something a very small and very partial thing we are not always bother about,

but that actually create a catastrophic effect in your area and it is just because of that that

particular unit the DSP unit or the shift registers or the RAM does not support that

particular kind of pin and because of that it is not able to map that to the RAM or ROM it

is map into the logic units logic flip flops or say CLV’s or the LUT’s and it has a very

bad impact on your area.

So, we are going to discuss about this specific things that means, configuration and what

kind of impact might happen in rest of this discussion ok.

(Refer Slide Time: 20:27)

So, first we are going to discuss about the shift register and in the shift register usually

do not have any reset pin shift register usually do not have any reset pin and then what

happens if you just design a shift register here I just talked about a reset. So, this is the

shift register right. So, I am just shifting and I am just taking 1 bit again.

Similarly, I am here this is a shifting and I am just taking a new bit. So, this is I am just

shifting and just taking around bit at a time. But in this particular implementation one I

have a reset and just reset I just reset the whole shift register and there is no reset here.

So, this reset is defined in this design, but in this particular I do not have any reset.

So, this is a good design practice right we always make a reset, but it may be that in your

design it does not matter the initial state. So, because you just plus out all your shift

register component and you just store your data and then you compute something right.

So, this is very common practice it does not care about the initial data component that

will be it will not it has no impact on your design.

So, in that case I mean you may not define the reset right. So, even if you if you just

ignore the reset you do not have any impact on your design.

(Refer Slide Time: 21:43)

But the problem here is that it seems that resets the shift register do not have any reset

pin. There is no reset pin in the shift register. This particular implementation cannot be

mapped to the shift register dedicated register this shift register of your FGPA whereas,

since this does not have any reset this will be this have the this can be mapped to the

dedicated shift register of the FGPA block right.

(Refer Slide Time: 22:06)

So, if you just do this so what is happening the implementation one is going to be

mapped into the normal flip flops which is in the CLV’s and that will be connected right

it is a big chain of registers where as the implementation two because it has does not

have any reset pin it can be mapped to the dedicated shift register right.

(Refer Slide Time: 22:23)

So, if you just think about the resource implementation I have only 1 flip flop here and 1

slice because this is just for the implementation we just go into that dedicated shift

register Whereas this is actually map into multiple flip flops and slice.

So, slice is basically in a CLV we as what I just talked about in a FGPA I have set of

CLV’s right. So, these are all CLV’s and in CLV’s configural logic blocks either I have

LUT’s or memories right. So, so there are two types of units inside either it has logic unit

which is basically memory slice. There are two type of slice either memory slice or I

have logic slice.

So, memory slice nothing, but the flip flops and this logic slices has LUT’s ok. So now

since I have to map it this whole 16 bit register into multiple unit 9 slices and you need

16 flip flops to implement this shift registers inside the CLV’s right and in 1 CLV can a

maximum 2 units either 1 2 logic units or 1 memory unit, 1 logic unit or 2 memory unit

right. So, this is something inside the CLV.

So, you need 9 slices and 16 flip flops because this is not map it to shift register where it

is just store into 1. So, this is something you can understand that your area is getting I

mean area will be over spot this if you have a as a reset right. So, this is something we

sometime we do not care about this sometime you need this, but most of the time I do not

have the defined reset state because it does not matter to your design.

So, probably this is a better choice because that will result it in finding a shift register

instead of a mapping it to the normal registers of your design. I mean of your FGPA ok.

(Refer Slide Time: 24:08)

So, I will move into the next issue like in DSP resource without the set. So, DSP unit of

your FGPA does not have any set it has reset, but it does not have any set. So, now, I am

going to set some registers right. For example, in this design what I just do the

multiplication so my primary interest is to map this multiplier to DSP because DSP is

very high speed multiplier.

So but it has a set that I am going to set some value to this register right under certain

condition. So, this is synchronous set right because it is not this I reset is synchronous to

this clock. Because this is because this is not coming another which is not asynchronous

to this clock right even it is a synchronous set, but it is not because I am setting this. So,

this is not possible to map into this exact the whole these things into single DSP.

but if it is reset if I just write this oDat equal to equal to 0 say, then this whole thing is

going to map it into a single DSP whereas, because of this has to be carried out outside

right ok.

(Refer Slide Time: 25:11)

So, you just give an example here. So, if you just do it here. So, this is your DSP unit.

(Refer Slide Time: 15:12)

Now, these setting up this 6 this setting of this value you need some additional logic here

which is this. So, this logic is just setting up this multiplier results with this one right all

16 1. So, this is something is the additional resource that you require just to have the set

value right. So, for example, here you just see that for the set example you need 9 slices,

because this will going to map this 16 flip flop and this 1 DSP and 1 LUT and for the

reset 1. Because this all this thing whole thing I just reset means you just replace this by

this identical to 0 everything can be mapped into single multiplier right.

So, this is kind of you can understand that just do not having that set pin and if I set it

you need a extra resource to just execute that particular set of percents in your design ok.

So, this is one one issue the DSP in the set.

(Refer Slide Time: 26:11)

And the second was like the asynchronous reset right. So, again this DSP has

synchronous reset, but it does not have any asynchronous reset ok. So, asynchronous

reset means is that the set does not sync with your clock it can come anytime. So, so this

is then it will have a problem right. So, this is something as generic DSP structure of an

FGPA ok. So, we are discussing like when DSP has reset signal and it does not have any

set. So, it is create a problem if you want to set it in the previous example.

But again it does not have any asynchronous reset right even if have resort reset in your

design when it is not asynchronous then that it will create a problem right. So, here I give

an example standard DSP unit. So, you can have a CLV’s there is a multiplier, there is a

pre adder, and there is a accumulator right.

So, there is accumulator and there is a pre set of registers here, there is another set of

registers here, and this is set of register here. You can see how many things you can

clump just put into a single (Refer Time: 27:17) you can put a single multiplier into the d

sp or multiply an accumulate into DSP you can multiple put a pre adder as well as.

So, you can just do a plus b. So, here this is really a plus d into b right you can do this

also and then you can just accumulate this is basically x equal to x plus this. You can do

the whole thing in the same multiplier and also not only that in this design you can have

3 set of register as well. So, you can put this so that this called delay become less right.

So, you can actually put set of register also. So, you can understand how many what is

the function mean? How what are the different variations of multiplication the operations

can be performed by a single DSP’s it is your choice you have all these configuration.

You can choose either only multiplier multiply and add pre adders. This one set of

register two set of register 3 set of register. So, all these things can be done right. But the

and it is very efficient and have very fast dedicated unit right, but if you have a

asynchronous reset in your design then it will create a problem right.

(Refer Slide Time: 28:20)

For example in this multiplier I have to do this multiply and add this is MAC, multiply

and then you just add it right that is what I am doing here, but I have a asynchronous

reset right. So, this is posedge of clock or negative edge of ireset. So, this is

asynchronous right.

So, then I am just reset because I am just resetting the multiplication factor and the

output, but the problem is that since this is asynchronous reset this cannot be the whole

structure because this cannot be just this reset pin cannot be just connect to the reset pin

of this.

So, there may be a reset pin here you cannot be connect to the reset pin of that particular

MAC because this is asynchronous. So, what will happen this particular extra thing has

to be implemented outside of the DSP block. So, this can be mapped to DSP, but this has

to be go outside of the DSP block.

(Refer Slide Time: 29:05)

And if you just see here so and that will actually create problem right because this is your

DSP. So, this is the multiplier will go to the DSP. So, DSP and then there are some logic

right just to logic to async reset. So, this has to be there. So, that you can do this

asynchronous and this will create extra area right that will need extra area you just I just

the results are here.

So, if you just do the synchronous reset; that means, this is not there then I need only 1

DSP.

So, all these reset everything will be mapped to the same DSP, but if you have this

asynchronous reset then I have to this extra logic has to be map into this LUT’s I need 16

flip flops. Because now these are some set of register required I need 17 slice and 16

LUT’s and I need the DSP just to do the multiplication this is the extra resource I need

just to do this asynchronous reset. So, these are the kind of things that actually have an

impact on any area.

And you should actually I mean I want to further if this may be not be absolutely

necessary to make it asynchronous right. So, then probably you can remove this. So, you

should aware of that particular kind of issues when you are actually mapping these things

to FGPA ok.

(Refer Slide Time: 30:22)

So, now we are going to talk about the RAM. So, we have discussed about shift register

we have discuss about DSP’s. Now we are going to discuss the pin configuration of

RAM. So, RAM as synchronous reset does not have any asynchronous reset or

asynchronous set ok.

So, if you have use any asynchronous reset for your design and it has a bad impact

catastrophic impact on your optimization because then the whole because add a RAM is

a b you unit right and you cannot map the whole thing. If you do not map that particular

thing into RAM those will be map to registers and it is a disaster right because that will

consume lot of a register of your design.

So, in general resetting a RAM is a poor design practices right you should not usually do

not reset a RAM. So, that is actually have a very bad impact on in FGPA design

specifically if your reset is asynchronous, because in that case that RAM will map to the

huge number of registers ok.

(Refer Slide Time: 31:14)

So, you just take an example here. So, in this particular RAM I have asynchronous reset

right. So, this is not and I am just be resetting there resetting that register in this RAM

right.

Suppose in a synchronous reset then the problem is that the whole thing cannot be map

this particular memory the being memory cannot be map to the RAM. And what will

happen here this will be map to the normal registers and you can see the difference if is I

have a synchronous.

(Refer Slide Time: 31:32)

I have a synchronous I do not have this asynchronous reset then I can probably infer a

single RAM for the whole design.

(Refer Slide Time: 31:38)

(Refer Slide Time: 31:42)

Because this is nothing, but a memory just I am adding memory operation I just storing

some memory reading memory and writing memory right. So, so I have just inferred a b

RAM Whereas if it is asynchronous reset I cannot infer a b RAM and everything map

into to LUT’s right the memory and this slices and CLV’s and you can see the kind of

impact of this right I have just a RAM which is mapped there and it is taking thousands

of slices ok.

So, this is something is very have a bad impact. So, when you are designing something

for FPGA, you should avoid resetting a RAM ok. So, that will have a impact specifically

if it is if it is specifically asynchronous reset ok.

(Refer Slide Time: 32:26)

So, here is that extra logic is showing just us to do the asynchronous reset part. So, this is

that small RAM and this is the asynchronous reset part which actually resetting that

particular output ok. So, this is something give you a very fare idea how that

asynchronous in reset impact in BRAM inference ok.

(Refer Slide Time: 32:50)

So, now I am going to talk about this the last component of this. So, even if the flip flops

the registers have the set and reset pin and utilizing them actually have a area benefit

right. So, we try to utilize you should you try to utilize those particular set and reset

whenever possible because that actually give you give area benefits and if it give any

improvements right.

(Refer Slide Time: 33:16)

So for example in this particular design so I have this some combinational logic and then

there is or gate here and then I have a signal so or with this right. So, if this signal is 1

and this signal is 1 right and it does not matter what is computing here.

So, what I can do? I can just make this as the set signal right. So, I just remove this or

gate from my design and I just put this as a set because once this is this the register will

definitely become 1 right does not matter what is coming here from other part. So, I can

just set the register based on this signal A, so which actually reduce the 1 or gate what we

just talked about here right. So, you just remove 1 or gate. So, you area will be refilled

by 1 or gate and your combination delay is also improve by 1.

Similarly, if you are and get I can actually infer a reset pin out of it right.

(Refer Slide Time: 34:02)

So for example, here again the same example of what I have and get here. So, if this is 0

this will become 0, right the output will become 0 because this is a resetting that thing

that does not matter what is this?

So, what I can do is as I remove this and gate I can put this signal as the reset pin to the

reset pin negation of reset pin right. So, if it is if the input is 1 then it is definitely 0,

otherwise it will just consider so if it is if it is 0, then it is become 1 and this is reset and

if it is 0 sorry if this is 1 then this will become 0 it will not reset the pin. So, now it will

the input depend on the combinational logic.

Again if we just try to utilize this you actually have you have a area benefit you, can

actually improve your design you can remove 1 and gate from your design and again it

will give you some timing benefit as well. So, overall the idea is that using that set and

reset pin can prevent certain combination like optimization. So, we should always try to

keep this option open so that I can actually and this actually primarily done by the

synthesis tool right.

So, if you do not use that set and reset pin unnecessary from your design and if you have

this kind of things the tool will automatically map those and or gate to the at the set and

reset pin. So, you do not have to do anything, but you have to keep in mind that if we just

unnecessary use your set and reset when this is this will not be done by the synthesis tool

and then it will just unnecessary and 1 gate or gate in your design.

So, the idea is that when you are designing something you should always try to keep

your set and reset pin un use so that this kind of combinational optimization can be done

by the synthesis tool specifically for FGPA target ok. So, so we will just conclude with

this.

(Refer Slide Time: 35:42)

So, what we are discuss today we have discussed several strategies that actually have a

impact on area of your in your design we have discussed about this folding how folding

can improve your area we have designed this pipelining rolling up pipelining. So, that

you just make it alternative so that you can actually have a good area benefits.

We also design discuss about certain resource sharing of specifically for counter. How

can I share a same counter for multiple designs even if they are not the same exactly

same counter and also we have discuss several strategies that how to use that reset and

set pin of this FGPA devices from a different component of FGPA devices so that your

you can actually map better way in a FGPA right.

(Refer Slide Time: 36:35)

Specifically we have discussed about this shift register you should not use reset for shift

register you should not use asynchronous reset or synchronous set for DSP’s or as a

whole you should not have use reset for RAM specifically you should not use

asynchronous reset for a RAM. Because those are have a very catastrophic effect in area

performance also we have discuss about that usually for flip flops you should keep the

reset and set been opened.

So, that synthesis tool can actually map certain logic as a reset or set of this which

actually have a better area benefits. So, in the next class we are going to discuss about

this optimization technique for power how to improve power using some RTL

optimization technique.

Thank you.

