
Optimization Techniques for Digital VLSI Design
Dr. Chandan Karfa
Dr. Santosh Biswas

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture - 06
RTL optimizations for Speed

Welcome everyone. So, in this module we are going to discuss about several RTL

optimization specifically targeting improving speed of your design, how to improve your

area of your designs, and improving power consumption of your design. So, there are

certain kind of RTL optimizations are there and that can be apply in the in your design.

So, that your design have a better timing or say idea or power right. So, in these 3 or 4, 4

modules we are going to discuss about all these things. Today the topic of our discussion

is that RTL optimizations for speed ok.

(Refer Slide Time: 01:09)

So, as I mentioned. So, we are going to discuss about that several RTL optimizations

today, and one we are talking about the speed of our design there are 3 parameters come

into picture, one is throughput, one is latency and the next is timing ok. So, we are going

to talk about. So, speed is characterized by one of these 3 terminologies, and we are

going to talk about all the optimizations that are targeting all these 3 right. So, now, let us

discuss what is throughput. So, you are talking about your design and what is the

throughput is kind of amount of data that are processed by per clock cycle right. So, you

are in every cycle some data input are that coming and some output is coming out right.

So, you basically the number of bits and that are coming out of your design that is called

throughput ok. And what is latency? The latency is something the number of clock cycle

is required to process your data right. So, if you give some data at say time t it might say

some k cycles after that after k cycle only that output will come into you mean will be

available. So, that is k care number of cycles ok.

(Refer Slide Time: 02:12)

So that is latency the number of your design and the next is timing. So, timing is

something is related to the computational delay between 2 register, the maximum

computational delay between 2 registers.

(Refer Slide Time: 02:25)

So, suppose there is a register here and there is another register here, and there are some

logic circuits here right. So, combination magic and all some functional units there is 2

sequential elements here, and it need some time computational time to execute this right.

So, the delay between this register through this is called the computational delay of that

circuit right. And your timing will be determined by whether maximum size maximum of

such delays right. So, you have several pair of registers right. So, there is say 100 register

in your design. So, there may be say 500, 600 path between any 2 registers right and

between all possible paths between 2 registers, maximum delay will determine the

maximum computer bell that is called critical path of your design right

So, this is very well known. So that is the logic between 2 sequential element, sequential

elements and so, this is basically and your timing or the frequency that can your circuit

will achieve will be determined by this factor right. So, you maximum that clock period

should be say if you say this is your clock. So, that clock should be minimum the clock it

will be minimum of that critical path delay right. So, if say your clock period. So, and

your clock period will be determined by this.

So, suppose your delay is say 10 millisecond. So, you will get 1 by 10 millisecond right

your clock period is 10 milliseconds. So, your clock will be in seconds and frequency is

1 by 1 by clock period. So, that will give say a 100 megahertz because this is 10 to the

power 6. So, this is say microseconds (Refer Time: 04:15). So, this is microseconds. So,

this will get 100 megahertz right. So, your clock period will be determined by this

maximum computational delay right and your objective will be maybe different. So, your

object may be only improve your throughput of your design right. So, then you have to

apply certain kind of techniques that will actually improve the throughput of your design

or you might try to improve the latency of your design right. So, that you try to go get the

result as soon as possible right.

So, number of cycle which is less between this and your objective maybe improve the

timing right. So, it is basically the high throughput, low latency and timing also has to

improve; that means, the computational delay or that critical path length has to be

reduced. So, that is the overall objective right.

(Refer Slide Time: 05:03)

So, let us take an example to understand this fact. So, suppose this is my circuit right. So,

there is a computational unit here, the input is coming some computational circuits are

here then there is a registers, then there is a another computational circuit and which

process this data and output stored in this registers and again this computational unit and

then this final results is stored in the register right.

And say for uniform it is. So, my inputs are all (Refer Time: 05:26) all the data for this is

8 bits. So, what is the throughput of this design days? So, once you give some input here,

first we will discuss latency. So, it is. So, the first clock it will come here then the second

clock this letter this process will come here and in the third clock this data will be

processed and it will come at the output. So, in this 3 cycle right; so in the 3 cycle to give

this input; so output will be generated for a given input right then will the latency is 3.

So, it is basically the number of logic this sequential register level from the input to

output right and you can have multiple paths right. So, from your input there will be

multiple path. So, some path maybe, say suppose if this path there are may be 2 register

in this path there may be say 4 registers and there maybe 4 registers, this may have only

one register. So, this latency will be determine the maximum number of registry in path

from the input to output. So, this is your input and this is your output. So, for this path

critical latency is 4 not 1 or 2 right. So, its the maximum number of registers there

between the input and output for any path from the input to output ok.

So, for this circuits is there 3 level of registers the latency is 3 and what is the

throughput. So, 8 bit are coming out in every for this 3 bit set. So, your throughput is

throughput is something 8 bit per block right. So, basically what happened here? So,

after 3 cycle your output will come, every cycle some output will come right. So, this is

something wrong. So, your throughput is basically here 8 bit per cycle right why?

Because once you give the first set of data here so, that will after 3 cycle the result will

come right, but in the second clock you will give another set of input right

So, that will be also processed. So, suppose you give here say a and. So, result of a will

come here, here after one clock right. So, if you just write this clock 1 clock. So, it will

give a here. So, this is say register one. So, this is 1 2 3 right. So, you your register these

are all 0, in clock 2 will come here and next input b will come right. So, in clock 3 clock

3, so a will come here b will be processed here in this registers this is register one this is

register 2 this is register 3 and you will some will come right. So, 3 clock this result will

be available in clock 4 again b will come here c will come here some new determine will

come right.

So, after that every clock some output will be available right. So, in clock 4 this clock 5 u

will come d will come and c will be available right. So, and after that every clock your

every clock you will get some output right so; that means, your throughput is 8 bit per

clock and the timing is what? So, I as I mentioned this is the maximum computational

delay of any between 2 registers. So, here there are 3 set of computational delay. So, it

will be a maximum of computational circuit one computational circuit 2 and. So, the

delay maximum delay of these 3 circuit right.

So, for this circuit latency is 3 throughput is 8 bit per clock because its a parallel

pipelined data path. So, after every cycle you will get some output for a data. So, it will

be 8 bit per cycle and your timing is something, maximum of this computational delay

ok. So, now, your objective is something you that you have to improve your. So, if you

are talking about your speed of your design, you try to either improve your throughput.

So, it will be either high throughput or low latency or your try to improve the timing; that

means, reduce the critical path delay so; that means you are trying to improve the

frequency right.

So, this is the objective for throughput. So, we are going to discuss of the how to

improve your throughput, how to reduce your low latency, and how to improve your

timing of your design all these 3 aspects we are going to discuss.

(Refer Slide Time: 09:38)

So, as I mentioned this high throughput is something in number of bit per coming out of

the output, how to maximize this number of bit per seconds by pipelining right. So, as I

mentioned here that. So, basically you have to process multiple data in parallel, what is

happening here right. So, it is not that you give input a here and you can take 3 cycle and

nothing is coming in, because if your circuit demands is such a its implemented this part

is free, and you can actually process of some other part of the data.

So, it will just through the pipelining your throughput actually increases right. So, this is

something happening here. So, basically to the pipelining your throughput will increase

right. So, that is something I just discussed the new data can begin processing, before

prior to data has finished right. So, before it has finished you can actually. So, this is the

processing the new set of data right. So, let us take an example suppose you have to

calculate x to the power 3 right. So, your input is x you have to calculate x power which

is x cube right x into x right x into x into x.

So, you can write an iterative algorithm like this is c right. So, for i equal to 0 i less than

3, i plus plus out equal to x into out; so it will just calculate x x square and x x cube right

after that 2 3 iterations you will get the results out equal to x cube, your out will be x

cube right this is something in the iterative algorithm and its equivalent hardware will be

like this.

(Refer Slide Time: 11:06)

So, you have this registers this is out and you. So, initially you just store this one your

start signal comes, you store x here and you just multiply this x into out. So, initially this

is set to one. So, this is as its set signal and it is set to one initially, and you just multiply

and you store this back right you just store this back to the registers.

So, after start this x will come first little x then x square, because x into one initially it is

going to happen in x in the first plugin x into 1 because x is going here right. So, x is

going here and this is 1, then is the x next clock this is. So, that this is stored back to this.

So, x into x right and then this is. So, it will become x square and then x square and then

you multiply with nx and so, it will become x cube right. So, this is how this the iterative

algorithm work and it needs 3 clock cycle right 3 clocks to compress right. So, this is

something iterative algorithm and I will just group the other signal to make the circuit a

little bit simpler.

These are since it is a 3 cycle you need some finished signal right. So, in this some has to

be some finished signal, that my data is ready now or you need the counter that n count

which is actually can counting this 3 times 3 iterations. So, those are, but those will be

added, but the basic idea of this design is that I can actually do it iteratively and I can do

it in 3 cycle right. So, this is something and what will be the throughput of this design?

Since I am actually and this is something indeed 3 cycle to process one data right. If you

just give me one x it need 3 clock then it will finish then we can only give the next set of

the data right.

So, if you just give a here then clock 1 2 and 3 will just process a right and then you have

to clock 4 you have to give b contract to the previous design where I give this things in

all parallel right. So, in every clock I am giving a new input a b c d e f, but right this

design I have to give you a and for 3 cycle because this will 3 cycle to compute a cube,

then you give b here and clock 4 5 and 6 to compute b cube then you give this right. So,

this basically in every 3 cycle you are going to produce one data right

So, your throughput will be 8 by 3 right because I assume my when all data per 8 bits

and latency is also 3 clocks cycle because this registers though even its a register one, but

effective you can see that my data is processed 3 times. So, it is going through this same

registers 3 times. So, the latency is 3 clocks in the cycles right and the delay of this

register things is maximum one multiplier followed by this mux. So, the maximum

timing is determined by the delay of one mux and the delay of a multiplier right. So, this

is something if we just implement a iterative version of this algorithm similar to the c

code you will get this right. But as I have discussed the pipeline version in the previous

cycle you can have a pipeline version of this design, where I actually used 2 multipliers

similar to mux based my previous design this.

(Refer Slide Time: 14:24)

So, this is now a multiplier right. So, you can think about this is my multiplier right. So,

this computation is just not a multiplier. So, you can just. So, this is that version. So, I

have this x and just multiplying this. So, here it will be always coming x square, here this

is x square and this will be x. So, this it will be x cube. So, x will be the output assuming

the same thing, but I am just making pipeline for the variant. So, I just the pipeline the

whole design, and here you can see that as I mentioned earlier also after first 3 clock

after 3 clock onlt the first data will come, but after every cycle you will get one on. So,

your throughput will be 8 bit per clock, your latency is 3 three set of registers. So, it does

not change the latency, and the delay of this is something one multiplier right.

So, the delay of one multiplier, because maybe here also is a multiplier, here also

multiplier, the delay of this particular circuit will be one multiplier delay of one

multiplier right. So, what happened here? From this 2.7 bit per second per clock to I

make it 8 bit per clock. So, I put the throughput of the design by just pipelining. So,

pipelining is kind of a technique which actually improve the throughput of a design right;

so if we just do this, but here you can understand. So, what is happening here is that x

square and x cube calculation is coming in parallel for a given input right.

(Refer Slide Time: 15:31)

So, this is the important factor, but the resource utilization resource increases right. So,

earlier this is one multiplier, I am now using 2 multiplier right. So, basically the number

of. So, as earlier I was using one multiplier one register now I have 3 registers and 2

multipliers.

So, the resource is going in proportion to the it will increase in proportion with the this 2

factor right the rolling factor pipeline factor. So, we will be determined by this. So, if you

are throughput improves by say n times your area going to be increased by n times also

right we will focus on it to n times some n times, but most likely there is no change in

latency and timing right.

So, this is mostly (Refer Time: 16:14), but so, basically understand that if you want to

improve your I mean throughput of your design, your area will also increase, but if you

do not care about your area because your design is small even if it takes more area it

does not matter for you because your design is small. So, in that case you can if you want

to improve your throughput this pipelining can be a approach, which is actually you can

apply to your design right.

So, this is one you have to make this, but you have to keep in mind if your design is very

very big and area increment is not something is acceptable for your design then probably,

you cannot just apply this kind of technique. So, it all depends on your target

architecture, target design, target design size requirement and right.

So, you cannot actually do all this you cannot improve your throughput, you cannot

improve your timing and improve your latency all access. So, may improve your

latencies in the same the same time, either you have improve the throughput in the

expense of latency or expense of area or if you are going to reduce the latency in terms

expense of timing you are decreasing the timing or you are decreasing the throughput or

if you want to improve your timing with the expense of little bit of extra area and

throughput.

Right. So, this is something is always there. So, there is a trade off and it depends on

your design choice which one you are going to choose ok. So, we are discuss about this

high throughput its a pipeline increments. So, you can achieve that.

(Refer Slide Time: 17:41)

Now, I am going to talk about the low latency one, so when your design. So, low latency

means what? So, you try to reduce the number of register level in your design ok. So, it

is basically just removing some register right pipelined register, you just remove some

parallel pipe you remove some register from this pipeline stages right. So, this is

something you just do.

(Refer Slide Time: 18:02)

So, for example, in the previous design, I have a register here I have a register here. So, I

will just remove this register and I will just remove this register if you just see this

figure, I just removed this register, I can remove this register, then all these things are

working parallel right.

So, this is what I have done. So, here all this things still my throughput is 8 bit per

second because every clock I am going to get output, latency is reduced from 3 clock to

1 clock because now if you want to put in 1 clock, whole things are done in the same

clock and the output will be available in 1 clock itself right, but your computational

delay increase now 2 multiplier.

Earlier it was only one multiplier because there is a pipeline stages here, now I have 2

multiplier in the path. So, you just improve in decrease your timing by a factor of 2.

Earlier if you were choosing 100 megahertz see now 50 megahertz because you are now

there are 2 multipliers in series and multiplier usually a very complex design. So, your

clock period will be reduced by 2 right.

So, this is something is going to happen. Again its suppose if your primary objective is to

get it latency in reduce the latency, then probably this is acceptable. But most of the time

this improving timing is the important factor, most of the design people try to design or

want to improve the timing or improve the frequency, because to achieve more frequency

rather than this throughput and latency.

So, above this 3 these 3 factor this high throughput low latency and improve timing is the

most important factor, and people put maximum attention in improving the timing. So,

we will discuss that timing improvement now.

(Refer Slide Time: 19:38)

So, as I mentioned this clock period or the frequency is determined by the primarily this

computational delay of that as I mentioned here, that computational delay of that that

register right. So, that is something is determined by this right, this computational delay.

So, now we can understand that, but if you just consider the actual factor there are

multiple other factors, first factor is something clock to q which is basically clock time

from clock arrival until data arrival.

Since its in your design maybe that clock arrived, but data is still not computed right. So,

you need some extra time. So, that is called clock arrival until data arrives right. So, that

is something clock to q and then logic, logic is something the computational delay which

is you all know about the computational delay which is the logic delay, computational

logic delay between 2 flip flops and the routing.

So, when you physically place those 2 registers right. So, if you have a register here and

this is another register, they maybe placed very close by in the actual I C or they will be

placed in very far right if it is placed very far then there is some time to remove this

which actually have the routing delays because now you have to connect this 2 pin right

here the output is going to this input this might go directly like this or it might be route

like this right it might be route like this.

So, because of the routing I may be the routing path is very high or they maybe placed

very high. So, the routing path automatically becomes very long. So, there are some time

involves in routing also and also there are some setup time of the registers, which

basically maximum time maximum time data must arrive at the before the next clock

cycle. As you need some setup time. So, the data should be stable at the input of the

register before the clock count so that this it can update in the next rising clock right.

And then the Q is something the clock that is suppose the same clock is coming here to

this register as well as this registers, but there are might be some delay right they may

not come the same time.

So, the time this Q is something the progress in deliver till the launch flip flop this is the

launch flip flop and this is the capture fill flip. So, the time difference between is coming

here versus coming here. So, that is something is the extra time you actually get in your

circuit right. So, which is which you that is why this is minus right. So, this is the actual

the factor it will determine the frequency the maximum frequency to achieve in your

design ok. So, you are talking about improving timing; that means, you have to achieve

more frequency you try to reduce either logic or routing delay right.

So, other is mostly I mean there are other techniques to using Q and all those things, but

primarily the primary factor we are going to talk about how to reduce the logic I mean

computational circuit delay we can do some other kind of techniques so, that you will

reduce that computational delay between 2 registers and so, that this factor is reduced;

and also routing time we can do certain kind of optimization which we can improve the

routing. So, we are going to discuss about how to improve this 2 factor. So, that if this

factor going down so, this will be increase right. So, this is something we are going to

achieve ok.

(Refer Slide Time: 23:01)

So, there are several techniques and very widely used techniques one of them is retiming,

the next technique is add register layers then we can also do the paralyze some

structures, flatter logic structures, reorder paths or replication right. So, these are the all

kind of techniques that is are applying to your timing. So, we are going to discuss them

separately ok.

(Refer Slide Time: 23:22)

So, first we are going to talk about retiming. So, what is retiming? Its basically moving

your registers in your design without changing the functionality of your design ok. So,

you just move your or register in your design so, that the computational delay become

less ok, but you have to keep it in mind that you should not change the functionality of

your design.

So, it is basically move or reposition of your register in your design to improve timing

without violating the functionality of your design. So, let us take an example here,

suppose I have this bit logical. So, this is all my computational circuit between this

register right these are the input set of registers this is the output set of registers. So, there

are many paths, I have one path like this is 1 path, this is also 1 path, this is another path

there are 4 paths right from the input to output and all path are involving the same set of

registers. So, we can consider. So, there are all path are critical path right and if you

assume by this addition is taking 20 nanoseconds 20 nanoseconds and multipliers you are

50 nanoseconds some of the other factor like this Q and this clock to q this setup time

and all those things contributing 10 nanosecond.

So, total delay of this critical path is 100 nanoseconds right. So, you have 100

nanoseconds. So, you are going to achieve 1 by 100 nanosecond means 10 to the power

minus 9 into 10 to this is 1 second. So, this is something you are going to achieve 10

megahertz right. So, this is something this is you can this is 10 to the power minus 9 into

100 right. So, this is the 100 10 to the power and this is 11. So, if you are going to this is

12 right sorry is 12. So, you are going to get a 10 megahertz right.

So, in this circuit you are going to get 10 megahertz, because there are total delay of this

circuit is 100 nanoseconds ok. So, now, we can how we can improve this. So, you can

actually move this registers here right. So, instead of placing this register here, you can

place this register here. So, then your circuit performance will increase right. So, if you

just think about this. So, this is my actual circuit.

(Refer Slide Time: 25:21)

The maximum delay of the circuit is 100 nanosecond here what I did? I just moved this

register here right. So, I just moved this register to here. So, now, what will be the

maximum delay? So, this is something 20, this is 20, this is 50 and there are other delay.

So, maximum will be 60 right 50 plus some other factor. So, there are 60 right. So, you

are going to achieve more clock right 16.7 megahertz.

So, this is something is called retiming. So, you just move your register in your design

so, that you can break the critical path right. So, you have to you try to reduce the critical

path length and. So, that is something and again you have to keep in mind that you are

not going to change the functionality of your design. So, there are certain factors, how

we can move.

(Refer Slide Time: 26:05)

So, if you can move registers if both the input there is a register then you can move it

right. So, for example, if you have this if there are registers here and here then only you

can move it to output right. So, if you can do this then only you can move these registers

to this output right. So, if there is only one here this is not there then you cannot move

this right.

Then that is a function will change right. If you have only one register here then you

cannot move it right because then the functionality will change because earlier what is

happening? Both input is delayed by one and then calculation is happening. So, say

output was like a say suppose this is a and this is b and there is a register here. So, earlier

this is out equal to a t minus 1 whatever is coming in t minus 1 is going to this is this is

plus and b t minus 1 and if you just and if you just move it here what is happening here.

So, you can say let me just consider this example, I have only one register here and. So,

this is what happening.

Then you are actually calculating this right a t minus 1 whatever the t minus 1 time data

comes, you are adding with the current time b b t right t is the present time clock right,

but in this circuit is happening. So, in this case out is calculating like out equal to a t

minus 1 plus b t minus 1 right because there is a register here. So, whatever the

computation is coming it will be delayed by 1. So, this 2 are not same right. So, if you

have register in one path you cannot just move it to output. You can only move if there

are register in both the input, you can then only move it to the output. Similarly if there is

a output here it has to be move in the both the input right.

So, you cannot just move into one of the register. So, you have to move it. So, it will

come here and here you remove it and then you can again move this to here right. So,

you can move this. So, that is what I have shown. So, that is moved here. So, and this is

this is again moved to both the inputs. So, this is the retiming circuit. And you can

understand the earlier the delay of these 3 units now I have only 2 units right. So, all

maximum path length is 2 units. So, here is 1 units, there are 2 units here, this is 1 unit

this is 1 unit this is 2 units. So, maximum delay will be 2 unit of this particular module.

So, this is what we call retiming and retime is very widely used technique to improve

your timing. So, this is and this can be automated we are going to discuss how to

automate this whole process to improve your clock period of your design. So, this we

have a separate module to discuss that. So, we will we will go into detail of retiming in

that particular module.

(Refer Slide Time: 28:46)

So, I will move into the next technique which is called adding extra register layer. So,

retiming is something you are not adding extra registers. What you are doing you are just

movie your registers, in your design to improve reduce the critical path length.

So, here what we are doing? We are instead of moving we are adding some extra register

layer right. So, if you just consider this design.

(Refer Slide Time: 29:10)

So, suppose I have this f I r design what I calculating this A X into B X 1 into C X 1

where this X just shifting to X 1 and X 2 right. So, this is something which is happening

here.

(Refer Slide Time: 29:21)

So, this is the circuit. So, this is my X 1 this is my X 1 and this is my X 2 and this X 1 is

coming here it is storing here. So, I am calculating A into X here, where this B into X 1

here and then C into X 2 here right, but these 3 are all in parallel and then I am just

adding them up right.

So, this is what I am doing here. So, but the critical path length is what I have a multiply

adder and a multiplier that. So, all path is has one multiplier and one adder right. So, the

critical path length is something is like this. So, what I can do I can just add just one.

(Refer Slide Time: 30:04)

Extra layer here. So, that is what I have done here. So, that the critical path is now the

layd of the maximum of one multiplier right. So, this has one this path has only one

register adder, but this paths have one multiplier and usually multiplier is more complex

than adder. So, the critical path will be determined by the delay of this multiplier.

So, you can understand here that if you just add register your latency will be improved

by it will be improved by increased by 1 right. So, but that has to been taken care of. So,

its not that if you if this is something is actually changing your functionality, but you

have to synchronize your design with the other component, that your data will come after

one cycle earlier if it is coming after 5 cycle now it is going to take 6 cycle to computer

this thing because I am just adding one extra layer right. So, you have to just take and

take care of that particular factor. So, that you can actually synchronize your whole other

you can design synchronize this part of the design, with the other component of your

design ok.

So, this is something you can do, but again there are other factors that has to been taken

care right. So, what I just say that adding register layer to improve the timing by

specifically dividing the critical path into smaller path, but your you have to basically it

is improve the latency right improve the latency so; obviously, it is going to increase

because you are adding it to your design, and is basically its not be affected if you have

to just, but you have to be careful about this. So, when you are adding a layer, you should

add in all parallel forces that is what I am mention.

So, if you just add here not here then its a problem right. So, suppose if you are say there

are 4 parallel path from the input to outputs right. So, this is my input and this is the

output and you can add one register here because this is very critical if you want to add a

register here you have to add in all parallel path even if this is say there are 4 multiplier

in this right. So, if you assume that there are 4 multiplied here, and this path are simpler I

mean I have say one multiplier right. So, you just I have to add latency and I will just add

in between and I am done then this is wrong because now that then there is a if you just

add one latency here, then this data will be delayed by one, but this will all come in as

earlier right

So, then the problem what will happen this is not synchronized. So, the idea is that when

you are going to add extra latency, it has to be in the all parallel path. Even if it is not

required for this path because you need only this path, but you have to add in parallel

path to keep your functionality intact of your design. So, this is the factor that has to be

taken care otherwise your function it will be differed right. So, this is something the

factor that has to be considered and also as I mentioned that whenever you are reading

this extra layer you have to take care of this latency it is increased by one. So, have to if

your block is synchronized with other block that has to be taken care right. So, this is

these are the 2 factor you have to understand, but using adding register you can actually

improve your timing right.

(Refer Slide Time: 33:05)

So, that something is one of a one technique which you can consider ok. So, next the

topic is like parallel structure. The parallel structure is something if you are computing

something in sequentially right. So, that will be added up right you to just starting from

there are say 4 modules and you just do this component. So, you are. So, this is one

registers and this is one registers. So, the computation the computational delay of this

whole 4 unit will be added up to and which will determine your clock speed right, but

you can in certain time you can change your design as a whole, its not like that you can

do something here you can, but you can change you are a logic little bit so that you can

actually paralyze these things.

So, for example, you can just maybe you can do something like this here. So, that the

delayed will become maximum say 4 now ok. You mean sorry earlier it was four. So,

suppose we can do something so, that your delay will become now 2 maximum 2 right.

So, you can do certain kind of optimizations, but this is you are your design choice and

this is the expertise of the design right its not possible in all places, but certain time you

can do that. So, for example, if you just take the same x s cube power 3 example when

your input is X and now we can think about. So, my X will actually put in 8 bit, but we

can think of what that X is has 2 components, this is the 4 m s bit 4 bit and LSB 4 bits

right and we can do and we can store this MSB 4 bit into register to A and lower LSB

into register B and we can do this sum multiplication separately right.

(Refer Slide Time: 34:36)

So, that detail I am not going into detail we can computation refer some other places, but

the idea is that now your X into X is nothing, but this 2 component and you can do this

multiplications of the smaller unit, this is all 4 bits right you can do and in combined

these results to get this results X square right. So, this is possible. So, the basic idea is

just try to understand give you the notion here is that instead of doing this 8 to 8 bit

multiplication, I can now do 4 bit multiplication and all these 3 A into A, now this A into

A and this A intoB, this is A, this is A B, and this is B B this can be done in parallel and

these are all 4 bits; earlier what I am doing here.

So, the example is source. So, earlier what I am doing here. So, you are just doing a

multiplication here, which is 8 bit right though there is you can feel I have only one

multiplier, but the delay will be determined with the computation computational delay of

this multiplier, but now what I am doing instead of this 8 bit multiplication, I am doing 4

bit multiplication. So, all are 4 bits which will be the computational delay; obviously,

less compared to this 8 bit and I am doing all this thing parallel and I just combine these

3 results to determine the output result right.

So, this is something can be done, this is just to give you the idea that in certain time

complex and can be splitted into smaller component, and smaller operations and

combining this smaller operation results can generate the actual output and where this

smaller operations can be done in parallel right. So, this is the objective of giving this

example without going into detail right. So, this is kind of we can paralyze your structure

to improve your timing this is one more technique.

(Refer Slide Time: 36:15)

The next technique I am going to discuss about is the flatten logic structure. Again some

time we write something without understanding how it will be finally, implemented in

hardware.

Let us take an example like this where you just write key if control. So, you have input

say control 4 bit control, and your actually setting some register bit based on this set the

control bit 0 then you are going to you, you put in one beat right. So, you are you are

storing this input to the 0 bit of the route right. If it is one then you are going to update

this input the bit 1 of the output similarly if it is control bit 2 is 1, then you are going to

update the route 2 the third bit of the register and similarly this it is allowed 3 v other bit

will be remain as it is it right

So, if we just write this is very obvious this else if you are writing like this right, but if

you just think about what is this equivalent hardware implementation you just look into

this.

(Refer Slide Time: 37:17)

So, if your control bit is this is 0 bit. So, if it is 0 this is the 0 bit you are going to. So,

you are taking this your register this is r out is going here, I am taking this 3 to 1 bit and

the 0 bit from here and combining this 3 to 1 bit here 3 to one and combining this 0, I

will update right. So, this we will basically I am taking this input directly this is the input

the raid is input. So, input is coming. So, input is the 0 bit this is your v and I am taking

this 3 to 1 as it is and that will determine this result.

So, this is what I am doing here also right. So, this I am just updating the 0 bit other bit

as it is. Now if this else is true that if else if; that means, that time the control 0 is 0 right

this is 0, then only this else will be true. So, I have to though now I add a and get where I

have to check this control 0 is 0 that is the negation of is 1 and I am going to check the

control bit 1. If it is true then I am going to take I am going to update the 1 bit. So, I am

going to take 3 to 2, I am going to take 3 to 2 at 0 bit and the 1 bit will be updated from

this right. So, this is the input will be the 1 bit I am combining this to get the results right.

So, similarly when this both is 0 control 0 is 0, control 1 is 0 then I am going to take out

this control 2 right. So, if this is the case, then I will now check control 0 bit is 0 control

1 bit is 0 and control 2 bit is 1, then only I am going to update this third bit. So, I am

going to take this 0 to 1 and 3 from this register, and the second bit 2 is going to updated

by the input. Similarly when I have to check when this third bit, this third bit then I have

to check this 0 is control bit 0 is 0 1 bit also 0 say second bit is (Refer Time: 39:005) and

the third bit is 1. So, I need big adder to just to realize this right because its all possible

computation is coming and then I am just going to update the third bit.

So, 0 to 2 I am going to take from the r out and third bit I am going to take this as the

input right and there will be fourth case as well. That all of them are 0 right then you

have to just copy paste you are not going to if this is the become the enable of the design

right. So, if this is the case then I am not going to update this in data right. So, if it this is

something, in the implementation of the circuit in hardware right and you can understand

these are the bit adder is happening here right. So, we usually when you are writing code

we do not consider about this putting this else, but it may be the case that in your design

your control can maximum say kind of decoder right.

(Refer Slide Time: 39:55)

So, only one bit will be the 1 right among this control 0 1 and 3, it can have only this

right. So, this control 0 0 0 1 or 0 0 1 0 0 1 0 0 or 1 0 0 0; if you know this in this case

even if it this is your design. So, your control bit can be its a kind of a decoder only

maximum at most one on the bit is one then if you write this is your actually if you write

this code this is actually generating a lot of redundant extra adders rights. So, these are

all big adders unnecessary these are unnecessary because you know that your design is

actually a maximum one of them it is 1 and you can rewrite code is like this right if there

is no else here you can see that there is no else here, and that is a big improvement in

your design.

So, if this control bit is 0, then I am going to update 0 bit it if is 1, then I am going to

update 1 bit if it is 2, I am going to update 2 bit and if it is right then the equivalent

circuit will be like this right.

(Refer Slide Time: 40:45)

This my this output is going here. So, this is the third bit, second bit, one bit and 7 bit

and you this control is the signal of this right if this sorry. So, this should be 3, this is 2,

this is 1, this is 0 ok. So, if your third bit is one then it is going to choose this one right.

So, this it will automatically choose the third bit as one put here, and all other will be in

the original bits right.

So, only maximum one of the bit of this register will be updated by the second because

my know this my controller is this is decoder. So, either the 0 bit will be updated or the

one bit will be updated your second bit will be updated or the third bit will be updated

right. So, we can understand if you are you know that it is a decoder circuit and your

circuit is not something that all of them in 1. Even if you write this code this is correct

there is nothing problem, but its generating a complex resource and computational delay

is also be great because you are now have this big mux versus this error delay will also

come right because this adder is something 4 adders basically a 3 right.

So, this is a adder of 3 right. So, this all is something come into picture and your

computational delay will computational delay will improve, but if you know that your

circuit is like this you can actually flatten this and yours now the delay of this only one

mux. So, it will be improved by a lot right. So, this is something kind of flattened logic

structure you know that your circuit has specific type of behavior. So, you should write

this kind of input instead of writing this if else right. So, that is something will generate

complex hardware and your timing will be your timing will be can be affected by this

kind of coding style ok.

(Refer Slide Time: 42:36)

So, this is something you should always think about when you are actually designing an

circuit, and based on the input parameters, we have to write our code judiciously. So, that

u mean some are optimized hardware is not generated by the synthesis tools.

(Refer Slide Time: 42:52)

So, now I am going to talk about another technique is again this is something designer

choice is the reorder path. So, when your check is writing this if else kind of code some

nested conditions that is actually generated in the hardware in long computational path

right. So, if you just take this example if condition 1 I am choosing output equal to 1, if

condition else if that is condition 1 is false and condition 2 is true and this is less than B

then I am going to do this right else I am going to choose this.

(Refer Slide Time: 43:22)

So, if you just see the hardware. So, if condition 1 is true I am going to choose A. If

condition 1 is false and condition 2 is true plus C less than 8, this is C less than and this

through output and then this will then I am going to choose B right.

So, this will become the conditions and if this is not true then I am going to C you can

see that the computational delay of this path comma involve these 3 gets right. So, this

gets this gets and this gets. So, total delay of this path will be 3 and gets right, but you

can actually rewrite your code a little bit different manner, because you have finally, you

have to choose between ABC right. So, we can rewrite such a way that these 3 can be it

will become parallel right. So, if we just. So, if we rewrite.

(Refer Slide Time: 44:05)

What I have did? I just do this condition 1 into conditional 2 and these become condition

B, and I am choosing B first. So, earlier I was using condition A first, then B and then C,

I just do it now here, I just choose B first and then A and then C and what I did here

actually I do this condition 2 and condition 1 versus this C less than eighteen parallel

right.

(Refer Slide Time: 44:30)

So, if you just see the circuit, I am checking condition 1 condition 1 is not true of

condition 2 and I am in parallel I am and checking C less than 8 and then I am combining

these 2 right. So, this and this then I am choosing B. So, I am doing the same operation

as this design, but I am my delay of now have maximum of 2 right and which is less than

the previous circuit. So, this is all called the reorder path. So, its kind of a design that is

why when you actually have a long if else structure, you should actually think about how

we can reorder your this condition. So, that you can the design that critical path, that is

generating will be less than the little less than the previous one right. So, as I showed in

the example.

This is just a example, but if you just think about your complex logic structures some can

be real big and you can actually paralyze this operation separate condition check in

parallel so that you can reduce the length ok. This is what is all about reordering of paths.

(Refer Slide Time: 45:31)

The last one I am going to talk about is the replication what is replication. So, this all the

previous techniques I talked about is just to reduce that logic delay, that is the

computational logic delay. The other factor that I talked about was that routing delay

right. So, the replication is strategy that actually helps to improve this routing delay and

what is this. So, if you just think about this high fan out note right. So, suppose from this

note there is a 1000 fan outs, it is very common in design that when you go to logic level

or when you this get level, and there is some source like clause and all which actually is

very high fan out thing like this is other pin which actually its a very high fan outs right

10,000 10,0000 pins fan outs.

Now, you think about the placement finally, when you actually going to do the synthesis

all this note will be places somewhere in the time right. So, if there is a high fan out note

like this, it is not possible to place all of them nearby places. So, it is a source we cannot

because the resource around this is limited, you cannot place all these 10,000 around this

source note right some of them have to place in very far right and that will become the

long path because there is other no choice right. So, some of the path definitely is going

to be in very long and the routing delay of those path will be very high ok.

So, how we can actually improve those things and that is what is called replication what

we can do, I can just replicate this source I can make it multiple source right.

(Refer Slide Time: 47:08)

So, what is I just discussed here. So, I have a this high fan out source and its going to

very various designs is a 10,000, I can split this I can create multiple source zone right

and what about the things input is coming I just copy to all of them. And I just split this

fan outs to these sources right. So, I just split these fan outs there are multiple here I will

split combine these 2 and make this fan out of this, I will combine this I just make the

fan out of this one and this component I will just make the fan out of this.

So, maybe I just split a 3 and this 10,000 can be splitted into say 3,000 I just give a. So,

this maybe say 10 we can copy 10 copies I just give 3, but we can actually get 10 copies

and all of them have the less fan out now. And whenever there is a number of fan out is

less the possibility of placing those fan out notes nearby is possible or high. So, then

probably that during placement and routing your synthesis tool is able to place those

components near to this place, and the routing path or the delay of that longest path is

reduced and is which is effectively improve your timing ok.

There is one factor here which you should when I have a discuss this how to club this fan

out right. So, what I just talked about I just split these source into multiple source now

ok. And now I will just say there are 10,000 fan outs how to club which 3,000 I should

put as a output of this which 3,000 I should put as the output of this and which 3,000 I

should put as the output of this source right here I should always maintain the hierarchy

of your design. It is very obvious that whenever there is a hierarchy new design all these

notes are little bit connected and the synthesis tool try to place those notes inside a

particular hierarchy close by places.

So, if we just put one hierarchy to the same source, then there is a high chance that all

these things should be placed in nearby places right. So, that is something very important

as I will repeat again it is like if there are say a 100 component of this fan out is

connected to this to this fan out right. Now if we connect all of them here to this source

and then there is a high chance this all 100 will be placed nearby places. So, then this

there will be no long routing, but if you just the way you are splitting these fan outs it

maybe that this is place this component is connected to this, this component is connected

to this, this component is connected to this, then your purpose is lost. Again this same

hierarchies different component are connected to different sources, again they cannot be

placed to near to also sources right. So, then some of the paths will be lost.

So, the idea is that when you are actually splitting this fan outs, you should keep track of

the hierarchy. So, that all the fan outs in the same hierarchy you place them into the same

source. So, that your place placement tool could not find difficult replacing the nearby

places, and as a result of that you are routing delay will be improved right and you might

ask me the same question again if you split this I mean create multiple source its not only

3 usually you do it you say 1000 right because there are 10,000 I want to make it simpler.

So, I want to make it say instead of 3 I say 1000 source, then the source of this may be

bigger fan out right high fan out note. Earlier I have only from this source I have only

one fan out now this will be giving to all this fan outs. So, this become now 1000.

So, this something again we have to do this replication for this node as well. So, this is

kind of a repetitive or say recursive way to do this right. I have to apply this recursively

starting from. So, high fan out node to this source and then this source and so on finally, I

find out some node which is not that big. So, this is something its kind of a we can apply

during this logic synthesis, which actually improve the timing of your design ok

(Refer Slide Time: 51:11)

So, this is what is called replication ok. So, with this I am going to conclude as I

discussed today we are discuss about several strategies which actually improves the

either its the throughput of your design or reduce the latency of your design or primarily

improve the timing of your design or you achieve higher frequencies ok. And some of

the technique can be automated like replication, retiming, adding register layers, but

some of the techniques like flattening logic structures or parallel structure or reorder

paths is kind of a is (Refer Time: 51:41) with the designer right.

So, if you find some long path its choice of a designer one has to do it manually to

improve the circuit performance, but some of them can be done automatically and its

actually implemented which is implemented well in the any industry level synthesis tool.

So, we are going to discuss one of them in coming classes on retiming ok. So,

Thank you.

