
Optimization Techniques for Digital VLSI Design
Prof. Chandan Karfa
Dr. Santosh Biswas

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture - 05
Impact of Compiler Optimizations on High-level Synthesis Results

Welcome everyone, today we are going to discuss on the impact of compiler

optimization on high level synthesis results ok.

(Refer Slide Time: 00:37)

So, if we you look into this this software domains; where if you just say any compiler

like C compiler this is your any other domains. So, you have a lot of optimization

techniques are applied on that ok, because we have a C code, and that is going to map to

a assembly level code by a compiler, and maybe that code is not optimized wanted. So,

there are a lot of research happened and there is a very very rich domain of area in

compiler optimizations that are actually applied and we just see how they are affecting

on process, that I mean that execution in the processor or of a behavior.

So, similarly when you are thinking about high level synthesis; so, we have gone to

obstruction level as high as C code right. So now, we are starting from a C code and we

are generating hardware. So now, the question again how those compiler optimization

techniques can have an impact in the hardware that is given to synthesize through high

level synthesis. Because we have starting from a C code and so, we have the scope to

exercise this particular practice just to see how this optimizations can have impact on the

generated hardware through high level synthesis.

So, that is kind of the discussion topic today. Specifically, we are going to discuss

various optimization techniques basically on data flow-based optimizations; like, tree

height reduction, constant and variable propagation, this common sub expression

operator strength reduction dead code elimination code motions, techniques like that also

whenever you are leaving. And also, certain compiler optimization technique like a

module expansion conditional expansion loop expansions. And also, some recent works

on this area, basically just to review this techniques primarily with some examples. And

then we try to see their impact in the generated hardware through high level synthesis.

(Refer Slide Time: 02:32)

So, we will start with this data flow-based optimization. Specifically, we will start with

this tree height reduction. So, if you remember, when we start discussing on high level

synthesis in the pre-processing step what we do is just whenever there is a big expression

say arithmetic expression, we try to split this expression into small 3 address operation

right. So, that is we have already discussed during this high-level synthesis and

discussions right. So, and so, that is something just to do just to because that whole

expression is not going to be execute in one cycle. So, try to split that big expression into

small small, expressions and just to execute the small expression when each clock each

clock right.

Now, this whenever you are actually breaking this expressions, there are various way to

do it right. So, whenever you do in certain way, and there are various way to do it and

not all of them result in same kind of critical part of the number of types time times

required to execute that behavior right. So, that is what is related about this tree height

reduction. So, whenever you are arithmetic expressions, you just try to split them into 2

operand expression that is it is 3 address code, such that we can exploit the parallelism

available in the hardest at best ok. So, for example, you take this example of this very

simple example a plus b plus c plus d. So, what we can do? We can do this first right,

then we can do this is say x, and then we can do this plus this. And then this whole plus

d, right.

So, that is what a x equal to a plus b, then x equal to x plus c. And then this is x now then

x into x plus d right. So, this is what I am doing. So, if you just draw that dependency

here. So, we compute a plus b here. So, this is x now, and then x plus C this is x now and

then this is final x. So, you can see we need basically there is a sequential dependence

among these operations, and I need 3 cycle because I have I can execute this in time step

one, then this is in time step 2 and this is in time step 3. So, I need 3 cycle to execute this

software behavior right. Similarly, so, and also since in each time step, I have only one

addition operation is happening. So, I need only one adder right, but I need 3 cycle to

execute this right.

On the other hand, if we just execute in this way that I do this a plus b first and c plus d

in parallelism.

(Refer Slide Time: 05:08)

Because we can do that and then I just merge these results right. So, that is what is shown

here. So, I just do a plus b here and then c plus d here, so, this is y and then I am doing x

plus y, this is x equal to x plus y which is doing the same thing, right. So, this is doing

the same thing, but now I need 2 cycle right. So, in the first cycle I can do this to in

parallel and this is second cycle right. So, but I need 2 adders right, because now or 2

additional operation is happening in parallel. But suppose you have this to adder

available, then the then probably this is a better choice. Because now this is taking one

one cycle less than the other one, right.

So, the idea instead is like this tree height reduction is to balancing the expressions as

much as possible. So, that we can execute operations in parallel, which is not dependent,

right and also and what kind of impact it is having is like the height is proportional to the

lower bound of the overall computation time. So, whatever the tree you are getting

syntax tree, the height is basically it determines the number of times (Refer Time: 06:13)

which is latency right so, or the overall or lower bound on the computation time you

need. At least number of time steps to execute that behavior. So, if the height is too high;

that means, your computation time or the number of time cycle times required or the

latency is required to execute too high.

So, on the other hand, if you can paralyze you can do execute this in parallel, now you

can actually have a serious impact on the number of time steps required right. So, this is

something a technique which primary did you try reduce the computation time right,

improve the computation time of this generator design right. And also in some cases, this

is very simple operation, but in some cases this kind of reduction cannot be done directly.

So, we might have to apply this arithmetic properties like say associativity,

commutativity, or say distributivity, those kind of properties of the arithmetic operator’s

just to utilize this tree height reduction.

(Refer Slide Time: 07:19)

So, here is some examples, say for example, you have this right a plus b this ah. So, you

have in this case you have to execute this this first, because this has the higher

presidence, then you can do this and then this right. So, what is happening here? So, b

plus c is happening here, then you are doing a plus this say suppose this is say d, and

then this is happening here. So, you are doing T equal to b star c, and then you are doing

say T 1 equal to this is say T 1, equal to say a plus T a plus t. And then finally, x equal to

x equal to T 1 plus d right. So, this is what is happening, but again in this case you can

see I need 3 step right, I can do this. But if you are just try to directly do this height

reduction on this, this is 1 2 3 do this it is not possible because it has the higher

precedence you have to do it. But since you know this adder is a addition is a

commutative operation right. So, basically a plus b is equivalent to b plus a o. So, this is

there.

So, I can do I can rewrite this expression like this is basically equal to a plus b plus b star

c. So, I can do this. So, if you do this now I can do this operations parallel that these 2

operations. So, what is happening here? So, I am I am doing this b star c here. So, I am

doing T equal to b star c, say this is a T 1 and T 2 equal to a plus b I can do this, and this

operation now in parallelism ok, right. This is what is happening here T 2 equal to say a

plus b, and then x equal to T 1 plus T 2 right. So, then you can actually do this in 2-time

steps. So, this is time step one, this is time step 2. So, this is something an example just

to highlight this tree height, height reduction is not always possible it can be directly

applied or because of the precedence of the operations right.

The multiplication has the higher precedence over additions and so on. So, we cannot

apply them directly, but you can actually manipulate this expression using the this

arithmetic operations property; like, commutativity, distributivity, or assosiativity, just to

reduce that tree height reduction right.

(Refer Slide Time: 09:32)

So, similarly here is another example for this distributivity. So, if you have this

expression you have to do this first. So, you have to do this b star c. and then because

this is a multiplication right. So, I have to do this and then this additional will happen.

So, I am going to do this b star C then b star C into d, then I am doing addition. So, this

is happening here and then I am finally, I am multiplying this with this multiplication

right. So, I need basically 4-time step. So, I need 4-time step right, because I need

basically for 1, 2, 3, 4.

On the other hand, if I just do the distributive property because multiplier is a distributor

operation. So, I can multiply this I can get this expression right. So, then what is

happening? So, basically distributive in say a into b plus means ab plus a c. So, this is

what I am doing here. So, I just multiply a this is b star c, star b and a into e. Now I can

do this a into e in parallel with this multiplication right. So, here also I can do this and

this operation in parallel. So, I am doing a into b a into b here, and then c into d here, and

then multiplying this whole thing to get a a into b into c into d. here I am doing a a into e

in parallel, then I am doing the addition right.

So now you can see you can see I can do the whole thing 3-time step, right so, 1 2 3. So,

again this height is reduced, but directly from that expression I am not able to reduce, but

I can only reduce just up by applying this distributive of distributive operation right. So,

this is just to this is one kind of technique which is called tree height reduction, and I just

somebody we can actually just apply try to apply to paralyze these operations. And just

to reduce the computation time right. So, the number of times step required to execute

the behavior, it has a great impact on that, right. And another point is there just to reduce

the height we have to apply this, arithmetic operations arithmetic properties like

commutative distributive or associative operations just to make it reduce the height of the

tree as much as possible.

(Refer Slide Time: 11:45)

So, we will move on to the next kind of compiler optimizations which is called constant

propagation or constant folding. So, as the name suggest it is basically if you have a

constant sum, right some very, very basic will become a constant. So, you should apply

all the operands of that variable with that constant value ok. It is a simple as that. So, for

example, here suppose after certain kind of optimization your behavior become like this.

So, equal to 0 so, a is 0, so, a is a constant now. So, you should apply wherever the a

occurs you should apply this 0 directly, right so, for example, here if I just apply this a

equal to 0 b will become 1, right.

So, this is something is called constant propagation. So, I am propagating a to this

location. So, you b also become a constant. And the important factor is that whenever

you propagate constant sum other very well also become a constant might become a

constant tight. For example, here although b is a expression b is a expression a plus 1,

but because I am propagating a as a constant. This right-hand expression evaluator it

becomes a constant. Right now, I can I should propagate b also right. So, I will propagate

b to this expression. So, b equal to 1. So, this will become 2 into one it will be basically

2. So, all these things become constant right. So, this is what is called constant

propagation or constant folding.

So, so, this is something we always do this because what is the advantage of having it.

So, basically if you have this a plus 1 operation or 2 2-star b these are the operations this

has to executed right in the hardware. But if you propagate some constant, and some

expression becomes again constant you do not have to execute that operation right. So, it

has an impact on the resource as well as in the computational time, right, because if we

try to execute this operation. So, for example, this so, you have to execute b a a this is

say a is coming. So, this is a plus 1. So, in this first time step this is become b, and then

you have to do this multiplication, right.

So, you can you have you need at least this is 2. So, this will become C because see this

operation depends on b. So, you need at least 2-time step to execute this right. So, on the

other hand, if we just propagate this constant these all are kind of variable assignment I

mean this is can be done just in one sided right. So, this is the advantage of having

constant propagation. And it has impact both on in the resource as well as in

computational time because I can improve the constant time by just not executing those

operation because those are becoming constant. As well as I do not have to store these

variables. Now right I do not have any some temporary variables or some intermediate

result I do not have to store, or say I do not need an adder or a multiplier in the hardware.

So, it is basically having impact on the resource as well. So, it might reduce the number

of registers in my reduce the number of adder multiplier, that was in somewhere in the

hardware resources, multiplexes as well as and also computational time. Because I do not

have to execute those operations in the hardware now right. So, this constant proportion

and constant folding is kind of or a constant folding is, and very simple operation, but it

has a some very significant or significant impact on the generator hardware.

(Refer Slide Time: 15:02)

So, we will move on to the next kind of optimization which is called variable

propagation or copy propagation.

Just like constant propagation here this some variable is assignment operation, right, say

a equal to b. This kind of operation then we can utilize either a or b, or say I can use only

b right; I do not need a right because that is they are the same value, right. If a equal to b,

then this what say for example, in this example a equal to x. So, x and a are basically the

same way same value. So, in this case I can use only x I do not need a right. So, that is

what is called value propagation a sorry variable propagation or copy propagation.

Because whenever some copy operation is there assignment operation is there, you just

take the right-hand variable. And you just replace the all the operands of the left-hand

variable in the in the next operations. So, what is there here is also an example. So, a

equal to x so, I can what I can do I can just eliminate b, I can use x wherever a occurs

right.

So, I replace this a by x, this a by x, and I just ah. So now, this operation is basically

become a dead code, right. Because I do not need this so, I can delete this. So, this is

called dead code (Refer Time: 16:13). So, finally, this will become this right. So now, we

can do some other operations is something operator strength reduction that I will discuss

later. But essentially this is what is called value propagation proposition or copy

propagation right. So, so, what is the impact definitely it has an impact on the register,

because I am removing some of the variables a.

So, I do not need a register to store is this definitely have some impact on registered

number of registers ok. And also, the important factor this is like once you have done this

it might enable other optimizations, right. For example, here you enable dead code

elimination. And in some scenario, it might also enable operator strength reduction or

constant propagation or other kind of optimization. So, in general and we do not have to

maintain 2 different kind of variable, 2 registers their interconnections, right, all those

compress it will come. So, it has an impact directly on the number of resource we need

right. So, this is something and important operation simple, but useful operation right.

So, also one point to be noted here is that we cannot just replace binaurally all

occurrence of a, right, because if a is really fine here right. So, then you cannot just use it

or another way if the different reassignment of x for example.

(Refer Slide Time: 17:37)

Suppose a equal to say x and then say b equal to a plus 1, then x equal to say x plus 2

then say again c equal to a plus 5. I cannot, I can replace this, right. I can replace this

because now this x is same because the same value is happening here. So, I can just do a

equal to x then b equal to x plus 1 this is a copy propagation. And since now this x

become x plus 2 I cannot use here x, right. This is not allowed, right then because this x

and this a is not same. Because whatever the value of x here is modified here. So, I

cannot use this right.

So, I cannot just remove this operation this is not a dead code, but I can again I can

always do this copy propagation. But I should avoid doing this replacing this a by x. So,

it should be remain as a, right. So, this should remain as a, and I cannot delete this as a

dead code right. So, this is what is this constant copy propagation, but you have to keep

in mind that I cannot just replace all the occurrences of a. Because in sometime, that x

might be reassigned or re redefined then that has a different value now. So, we cannot

just use x for the subsequent operations.

So, those things can be just checked by data flow analysis, right. So, those comma or

though are comfortable with this compiler. Then all those time (Refer Time: 19:05) are

there they know how to doing this kind of check, right, which can be done which cannot

be done right.

(Refer Slide Time: 19:16)

So, I will move on to the next set of operation optimization called common sub

expression elimination. So, as the name suggest, and whenever there is a some sub

expression which is same, right, common I have 2 operations where the right hand

expression is same. I can use only I can execute that sub expression only once right. So,

that is what is called common sub expression elimination. And I can use that particular

value for the subsequent requirement, right.

(Refer Slide Time: 19:42)

So, that is what is called common sub expression elimination. For example, here you can

see I have x plus y, I have y plus x. But this is commutative operation, this is a single x

plus y. So, these are the common sub expression. So, I can just only execute once and

whenever I have this operands I can replace this by a, right. This is what is happening

here. So, this is what is called common sub expression elimination. So, it is so, and what

is the impact of it have in the hardware; obviously, can see that I do not have to execute

this is 2 times so; obviously, it is saving resource as well as computational time, right,

because here if you just try to do it it will take 3 cycle. And because or maybe in 2 cycle

for example, here you are doing this say x plus y right. So, you are doing x plus y you get

a here.

Then you are doing here plus 1 is your getting b and then say you are doing c plus. So,

you we all although. So, this is you can do here again this is your C right. So, this is

again the same x y right. So, x y, x y, x y, x y. But we need 2 cycle on the other hand, if

you just do it I am not going to do this operation. So, again I know I do not need this

resource. Instead what I am going to do I am going to do this once x and y, and I am

going to assign this to both. A and c, right. And then in the next cycle, I can do this plus

1. So, although I am not reducing the number of time step here, but I am actually reusing

this results to define the both the variable right.

So, effectively I am actually reducing the number of resource. At least for this example,

but in some scenario we might see in that the number of common sub expression is

remaining. So, that expression maybe in 5 places I do not have to execute in 5 times. So,

it might also save your time. So, it can also impact in the number of computational time

as well right. So, there is something is there.

(Refer Slide Time: 21:47)

So, let s take an another example of common sub expression elimination here. So, you

can see here, one common sub expression elimination expression is b plus c and b plus C

is the common sub expression.

Similar I have another common sub expression is b star c, right there are 2 common sub

expression b plus c as well as b star c. So, can we replace this b plus c? yes, because in

this case b and c is not updated in between, right. If b and C is updated in between then

this b plus c, and this b plus C is different right. So, but here in the in this portion of the

code b plus b or c is not updated right. So, I can use I can store this b plus c into some

temporary well e, e dash and I can use that e dash for both this expression and this

expression right. So, this e and a e and b both can be defined using this right. So, this is

what I am I have done right. So now, you can see here I can do this things in parallel

because since I have dependency on this some other operations, in other cases, I have to I

cannot execute all of them in one-time step, but now I can do even in one-time step;

which is saving your own time step right. But for the case of b star c here b star c and

this b star C is not same why because b ah. So, because in this portion of the code. Your

b and C should not change, but here b is updating right.

Since b is updating so, this b and this b is not same right. So, I cannot replace this

expression by this this value of e f q, right. So, this b star c cannot be eliminated. So, this

is also again we have to keep in mind that we just cannot blindly just replace all those

expression. We have to specifically do some data flow analysis just to find out whether

those b and c are same in all the places then only we can do that. So, we can see in this

example was doing simplification, here I need one this is one-time step f really this is

another time step this is another time step. 4-time step right 1, 2, 3, 4 here I need 1, 2, 3-

time steps right. So, I actually saving one time also, right one-time step also.

So, that is what I just. So, he your common sub expression can have impact on both

resource as well as in time ok. But you have to always keep in mind that I cannot just

replace all the sub expression without checking the data flow or data dependency among

the operations. The basic bottom line is that between 2 operation, all the variable that

occurs in the right, that sub expression should not be modified right they should not be

redefined again between the 2 2 sub expressions right. So, in that case we cannot just

replace. And this example just clarify that particular point.

So, I will now move on to the next set of operation optimization called variable

renaming.

(Refer Slide Time: 24:45)

So, again this is a operation where you just rename some of the variable. But what is the

impact of that? It might just reduce the dependency. Some sequential dependency is there

among some operations you just rename some variable and that that so, that this

dependency goes and we can execute this to in parallel ok.

(Refer Slide Time: 25:09)

So, that is what is called variable renaming, you can see here. So, what is happening

here? So, m is equal to a plus b, right, and then this m is using here. And again, is m is

defined here, and is m is going to use here.

So, you can see here I cannot do all this operation parallel. Because this operation

depends on this, unless this operation execute I cannot execute this, unless this execute, I

cannot execute. So, I need 4-time step right. So, you can see here. So, this is time step 1,

this is time step 2, this is time step 3, and this is time step 4. And I need 4 times to exect

this behavior, because there is a dependency. But on the other hand, if I just redefine this

variable, because this m does not depend on this instead of m I can just make m 1, right.

How does it matter? Because this is not the final output right. So, if I assume that final

output of this, or I can just assign this here ah. So, I can just redefine this variable. So,

that I can just break this dependency right this right after it right.

So, this is right after it the dependency which I can break here. So, so that I can just

execute this m equal to a plus b, and this m 1 equal to to d minus a parallel. Because this

2 do not depend to each other. And then in the next cycle, I can do this these assignment

and this assignment, right. So, n equal to m minus c and o equal to m plus f. I can do this

execute. And since my final value of m is this this value, I can just do m equal to m m 1,

right. Because this is the my final value. But you can see was doing this variable

renaming I just reduced this right after dependency as a result I can execute this

operations in parallel, and I can execute the whole behavior into 2 cycle. So, this is

variable definitely helps in improving the number of time step required to execute an

behavior. So, hence the computation time.

On the other hand, I am actually defining some variable. So, I may need some extra

registered to store that variable.

(Refer Slide Time: 27:01)

So, that may increase the number of registers right. So, this might have some little bit

side effect, but, but it has if you are a lot of this write after read after sorry write after

dependencies then if definitely this is going to break that particular dependency, and it

can you can execute your behavior in less number of time step right. So, this is what is

called variable renaming. Next set of optimization is dead code elimination. As the name

suggest, if some code is dead; that means what that a value that is defined there is never

used, right.

(Refer Slide Time: 27:32)

So, whatever the definition you are actually defining some expression is basically dead

right it does not have any use in your behavior. So, in that case you can actually remove

that, simply remove the particular dead code, right, because it does not have any impact

in the generated output right. So, for example, here you can see a equal to p plus q, and

then you have b equal to x plus 1 and C equal to 2 x 2 into x this does not have any

impact here right. So, I can simply delete this dead code, and when final operation will

become b into b equal to x plus 1 plus and C equal to 2 into x.

So, what kind of impact it might have this dead code elimination; obviously, I do not

have to execute this p plus q. So, it will reduce the number of arithmetic units, because I

do not need to execute that. And also, I do not I do not have to execute this. So, I need I

may step some computational time, because I do not have to need any another resource

to execute that. So, that might increase the number of time step required to execute.

Similarly, whatever the express variable that it is in the right-hand side they may also be

didn’t that they do not may have some use in other places. So, if I just reduce it delete

this eliminate this dead code, I do not have to store p and q as well right. So, this may

also reduce the number of registers.

So, dead code elimination in general impact in all precise resource in the sense number

of arithmetic units number of registers as well as in the computational time right. So, this

is; what is dead code elimination.

(Refer Slide Time: 29:18)

So, next optimization is called operator strength reduction. So, what does it mean? So,

there will be some operation; which is complex right so, as multiplier. So, multiplied by

constant right; so, this kind of operations can be replaced by a simple shift operation. So,

I actually doing the same of same operation. But I am doing using a less complex

operation right. So, I am just reducing the strength of an operator or say I have x square.

So, I need a multiplier x into x, but instead of doing x into x I can just do x plus x 1,

sorry, 2 into sorry this case I cannot do, but what I can do sorry this constant

multiplication is a plus. So, I can do it so, 3 into n.

So, there what we can do; so, here is an example. So, I have say n into n square so, I can

do n into n. So, I can then, what I can do this I have 3 into n right. So, I can do 2 into n

then plus n; which is basically 3 n, all right. So, whenever you have 2 n, I can just do the

left shift right. So, whenever your are shifting some of by value of say if I have say 5,

right, 1 0 1 1 0 0 1 is what is 9 ok. This is 9 if we just do it left shift 9 left shift by 1 what

will happen? So, we are shifting the whole thing by one bit so, 1 0 0 1 0 so, what is that?

So, this is basically 18.

So, basically when you are shifting some valuable it is just doubling the value. So, I just

make a shift. So, I will get 2 n then I can just do the addition right. So, instead of doing a

using a multiplier, I am using a less costly operation shift. Shift is just you do not need a

basically any operator, right you have to just do the bit manipulation you have to just

shift the whole thing by one bit you do not need any adder multiplier, or any kind of the

resource, just to do this. You just shift and you reassign the value to this bits, right. You

have to just do a 1 equal to a 0, a 2 equal to a 1, a 3 equal to a 2 and so on, right. You

have to just do that it will automatically do the shifting, right. So, this is something is

done. So, I just break this 3 in 2 into plus, and there do this by shifting, and then I just do

make a addition. So, multiplier can be replaced by a shifting an additional operation

right.

So, essentially you can see it has a impact on the resources optimization, right in the

resource, right because a multiplier when you are going to implement in a hardware it is

a complex mix circuit. On the other hand, if the shift is nothing just a bit manipulation bit

assignment. I need just a simple adder right. So, the adder is much simpler (Refer Time:

31:01) and a multiplier. So, this operator strength reduction is useful just to reduce their

resource of your design, right.

So, and some other example is this is one kind of thing while you can actually replace

this multiplier by shift and add kind of operation.

(Refer Slide Time: 32:20)

So, on the other hand, if you have some operations which is basically inside the loop and

which depends on that inductive variable i. So, i is the inductive variable, which is

basically i (Refer Time: 32:30). And some variable which is basically invariant to the

loop. C is not changing in the loop right, so, this is a loop invariant. So, if some

expressions are there which is depend on the inductive variable as well as some loop

invariant, I can replace those kind of expression by a simpler operation right. So, what is

happening here you can see here so, C is initially 7.

What I am doing here y 1 equal to basically, y 1 equal to what sorry y 0 equal to i equal

to 0. So, this is 0 so, y 1 is what? This is basically c, right now this is this I equal to 1.

So, one into c is C, then y 2 is what 2 into C, right y 3 is what? 3 into c and so on. So,

this is what is happening. So, I now we can see here this successive expressions instead

of doing this multiplication, I can compute this 2 C from this only right. So, I can do just

do this whatever the value here y 1 this I can do y 2 equal to y 1 plus c, right.

Similarly, y 3 what I can do? This is 3 C this is 2 C plus C. So, I can do y 2 plus c, right.

So, I can just to this way; so, y 4 equal to y 3 plus c. So, instead of doing this

multiplication, I can just do this right I can do the same thing by an by an addition

operation. So, this is what I am doing here. So, I have initially k equal to 0 because this is

C is 0, and then this is y equal to k, and I am just calculating this directly I can do this or

I can just calculate this because my k is that the previous value. And then I just add C,

and then I am assigning these 2 here right. So, if it is affecting you bring this right this is

affecting into this.

So, what I am doing here is instead I replace a costly operation or a complex operation

multiplier by a addition operator. And this is applicable to this this inside the loop, right.

this specifically this kind of strength reduction looks for expression involving a loop

invariant and a inductive variable, right. And just some of these cases this can be

replaced by a with a addition operation ok. So, that is what is happening in this particular

cases. We might have some other cases of operators strength reduction.

(Refer Slide Time: 35:02)

Like say if you have say division operation right. So, division is basically right shift.

So, for example, say suppose your x equal to say 16 right. So, you are doing x by 8, 16

by 8, this will be 2 right. So, this 16 means what? This is 16, right this is 16 and 2 means

what right. So now, if you just do this 3 writes into this so, this 3 will go. So, this 1 0 and

3 extra 3 0 which is basically 2 right. So, this division by some number which is

basically a power of 2 can be replaced by just simply right shift operation, right,

similarly what I just seen that multiplication can be replaced by a left shift operation.

So, this and this factor can be this multiplication with power of 2 right, 64 is basically 2

to the power 6. So, I can just replace with a left shift of 6, right. So, but as I seen in this

example if it is not multiplication of this then I can find the nearest a power of 2 and plus

some addition operation, right. For example, suppose you have in this case is 6 is of 66

you can do, 2 64 into x plus x into x plus x into x right or maybe 2 into x. Then I can do

this 6 times. And then I also I can shift by one bit and then I can just add it ok. So, this

way I can do also this is also shown here. Or if you have say 15, then I can do this is

what I am saying I can do the 16 the nearest power which is 16, and then I can do this 1

minus. Because this becomes 16 x, and then I just make a minus x. So, that it becomes

(Refer Time: 36:49).

So, the idea is that whenever you have this division or multiplication operation. I can

always replace them by and shift an addition operation, right. And idea is that if it is

exactly multiplier of 2 sorry power of 2, then I can directly do this thing if it is not then I

can find the nearest power of 2. And then I can do either addition or subtraction based on

the value we obtained right after shifting. And also, we can do some operator strength

reduction by eliminating this inductive variable, and this loop invariant variable right in

some in case of loop.

(Refer Slide Time: 37:28)

So, these are this operator strength reduction, and this usually have an effect in

generating hardware in terms of replacing a complex big operation by a simpler big

operation. Right. But affecting doing the same functionality you are accepting the same

functionality in the design, right. This is what is called operator strength reduction. So, I

will now move on to the next set of optimization which is code motion and it has very

good impact on the generator hardware.

What is the code motion? As the name suggest, it is basically moving the code right

moving the code in your behavior. And your movement can be anywhere right. So, you

can be before loop to after loop from the loop to outside or from the outside to inside the

loop or maybe there is an offence block, and you are moving some operation before loop

before. The offense to inside the (Refer Time: 38:19) of from e fells to outside, right both

is possible. So, all kind of possible possibility is there, and you based on that we actually

can have a different kind of code motion is equal to duplicating down basically you

suppose I just consider a if else here we can have also a loop right. So, this is your if else

block right, this is your if else block in this.

So, you are moving some operation from before the loop, before the; if else block to

inside the ff block this is 1 2 right. So, this is one. So, this is duplicating down. So,

duplicating up is I mean whatever we. So, this is your effectively this is your if else

block sorry this is your if else block ah. So, this is your if else block, right, this is if else

block and if some code after that you can move inside the if else this is called duplicating

up.

Boosting up is what? Boosting up it is basically from the loop to outside, right. Or

boosting down is from the if else to after the loop. This is called boosting down. Or it can

have a across right something here, you can move it after the; if else or this may be loop

you can do that right. So, you can do across the loop as well. So, this again various kind

of code motion and it might have some good impact ok.

(Refer Slide Time: 39:36)

So, here is an example. So, duplicating down so, here you can see there is a operation

here which is before the if else, right. What I am doing here? I am just moving this

duplicating in both the path, right. What is the impact of that? You can see I just moved

this operation to this branch and this branch also.

So, I also so, this is here and this is here. And what is the impact? Because this d is not

using in this branch. So, I can do this operation, and this operation in parallelism, right?

On the other hand, since this d is using here so, I need 2 cycle here. So, advantage is here

is that if the behavior is executing through this branch, then what is happening? So, I

need 1 cycle, 2 cycle and 3 cycle, right. So, I need 3 cycle to execute the way we are. But

here you can see this is happening through this branch I need one cycle and another cycle

so, one cycle.

So, I am saving one cycle in conditional execution, but whenever the execution

happening through this I need still 3 cycle, right. Because I have to do this in this. But at

least if because in your behavior this if else might execute multiple times. So, in some

time you are actually saving one one clock, right, that is what is the advantage of having

duplicate down right. So, because in some scenario that particular operation may not

depend is not using some particular branch of a if else and there you can do that a

operation in parallel. So, that wills give you a saving here. So, as I have shown here, I

have one times of saving in the if branch, right.

(Refer Slide Time: 41:07)

Boosting up giving me some example of them boosting up is something, suppose you

have an operation here d equal to x plus y I want to move it to before the if else. So, this

is your; if else block, right. And if you just try to do it because this variable is used only

here right. So, if we just put d equal to x plus y here that d might be used here right. So,

there may be some operation here which is basically say x equal to d. So, then this d plus

1 say so, this d is not this right there maybe some other d defined here d equal to 1. So, I

am going to use this d here, but if you move directly this operation here then this value of

x will come here, which is wrong, right.

So, that is whenever you do the boosting operation you need to store that is a temporary

variable, right. What I am doing here this d equal to x plus. So, I am boosting of as to do

it if you put the if else, but I am storing this into d dash, and I am going to use this d dash

here, right, and this d dash have no impact here again. You can see here that this

particular operation I am boosting of and it might impact though if this is not visible in

this example that maybe I am actually saving, some time step because this particular

yeah. Actually, I am doing this because I need 2 cycle here. In this case, you can see here

in the if this these branch right in this branch I need 2 cycle in one cycle I have to do this,

in the next cycle have to do this. Right. But in after scheduling after boosting up I can do

this operation in one cycle. So, if there is an execution through this path after boosting

up, I am saving one-time step, right.

So, this boosting up also again you can actually you can improve your computational

time by just putting some operation before the if else block from one branch. But you

have to keep in mind that when you are moving that you cannot just use the same d

because said, that me a way that d might have some different use in the other branch;

which might be affected by this d.

(Refer Slide Time: 43:13)

So, I have to stored in some temporary variable, right. This is what is the idea of boosting

up just 2 example give example of duplicating up here there is an operation after the if

else. So, this is your if else and I am just duplicating up both of them, right.

So, what I am doing here I am just moving this to this branch and this branch. Here you

can see this operation is not depend on this values this a is computing here. So, I can do

this domain parallel. So, earlier how many time step was required one, for any branch I

need one branch to do the if or else, and this 3 there are 3-time step now I need only 2,

right. One-time step for this one-time step for either going doing this or this right. So, I

have need only 2-time step instead of 3. Again this duplicating down can improve you

computation time right, duplicating out sorry. So, and this way we can actually give other

kind of a example, but this is just to highlight that this kind of duplicating down or say

boosting up or say duplicating up is kind of examples, have an impact in the directly

impact on the computation time, but in conditional branches, right.

It is a not directly if you if you just so, saw binaurally you may not see the effect. But if

your behavior execute through a particular branch then your computation time might

improve right.

(Refer Slide Time: 44:30)

So, that discuss that the reduce the schedule of operation or total computational time

definitely, right. There is another big impact of code motion is something it reduce the

lifetime of a variable right. So, what I am doing I am moving actually I am moving an

operation from one place to another place, right. The idea is that if some operation

defined here right very early. And it is if I use very late. So, that particular definition has

to store in some register for a long period of time. Because unless this is going to use

here, I cannot remove that particular value from the register, right. Because then that

value is required here so, defined and used.

So, I have to store that variable for that long, but if I move the definition and this use

closed by, then I do not have to store it for long time, right. This is just to give you an

example, suppose if I define a here and there is a long sequence of code. So, there is say

a 100 line of code where I do not use a at all when I am not updating a at all, and then I

am using it here right. So, that means, I have to store this a for say this is say 100 cycle

for 100 cycle. But in code motion suppose I just moved this operation, and to near to this

right. So, this operations where this there is no use of a or there is a there has got a

definition of a here right. So, that a is this part of operation in independent of a. So, what

I can do I just moved this operation near to this definition.

So now I I so, maybe I have to just in one cycle, I can just define I can use it. So, instead

of storing this for 100 cycle I can just store the variable a for one cycle, right. So, that

means, this code motion infecting this reducing the lifetime of a variable. And

effectively, this is reduce the number of register as we have seen that we can stroke 2

register if their lifetime is not overlapping, right, that we have already discussed during

high level synthesis discussion. So, so, we can actually reduce the number of register that

is going to be required to store all the variables, right.

That is another impact of code motion. The third impact of code motion is something is

the number of operations also right the repeated operation also then reduced. For

example, here suppose I have a loop in various operation e equal to a plus b. Because a

and b is not updating here right so, this is a constant operation. So, instead of doing this

per n times, I can do it only ones, right, and I can use this T insect, right. And then I do

not have to do it for say this n is a 100, then I am not doing this 100 times I am doing

only one times. So, this is also saving computation time, right, because I do not have to

do this operation for multiple number of times I am just doing only ones.

So, this is also have a good saving because if you if you just have a utility iteration

implementation of this loop, and effectively say be 100 number of cycles, right, because

I do not have to do it 100 times. If this operation particularly inside the loop then it is

going to execute n number of times or 100 number of times, but if it is outside the loop it

is going to be execute only once right. So, so, code motion is very useful technique and

there are lot of work actually happening recent time just to just to show that what are

kind of impact, right in of code motion in generator hardware. And it has impact on

number of computation time number of operation to be executed and also as well as the

lifetime of a variable, and hence the number registered required equal to store this

variable.

Those was interested you can go into this kind of technique like reverse speculation you

can search internet, lazy execution and early condition execution; like, speculation loop

shifting right, or say branch balancing or conditional speculation. So, there are a lot of

specific type of this code motion, I am not going to detail of each of them because this is

can be whole new topic the code motion different kind of code motion. And there are a

lot of work actually going on they are actually showing the impact of say conditional

speculation in generator hardware or say branch balancing in generated hardware

through high level synthesis. Or say, speculation loops shifting early condition execution

say reverse speculation. So, those are specific type of for code motions and there are lot

of studies happening on that. So, those interested you can search for those kind of work

right.

(Refer Slide Time: 48:54)

So, now I am going to talk about this control flow-based optimizations, and here I am

going to talk about specifically 3 kind of technique module expansion conditional

expansion and loop expansion.

(Refer Slide Time: 49:05)

So, what is that module expansion? It is basically just replacing the function body by the

body right. So, if you remember when I am talking about this code this coding style. So,

what I have discuss that whenever there is a function it will create a module in the

hardware, right. And it that function is going to call multiple places, I am going to reuse

that particular module if they are non-overlapping, right. If they are schedule is non-

overlapping. So, that is how this function is going to synthesized. But in certain scenario

there is a small small function is only called once, right they are not effectively calling

multiple times.

So, then instead of making a function or module for a function, I can replace that call

function called directly by that function body, not will be the advantage because

whenever you have module you have to keep telling me some control; that means, a

extra control signal. So, that will also other complexities come into that just maintaining,

right, and it just have only one use. So, there is no point maintaining or doing all those

extra things just to maintain that module for one call, right. What you can do you just

replace that that call by the function body, the advantage of that is that now I solve the

optimization that we talked about so far can be applied on the whole code right.

Whenever there is a module what about the optimization that will be local to that

module, but and whatever the optimization is happening in the main function that is local

to that. So, what about the optimization? That does not go into this module to optimize

something because that is a different module right that might have some other use

somewhere. So, I cannot do this context specific optimization. But if I replace that

function call by that function body in that place, now I have more scope to apply

optimization in the whole setup code right. So, that is a big advantage that will actually

give you some benefits on in terms of resource number of devices. But the bad side of

this particular or say negative side of this particular optimization is that if the particular

function in multiple calls then I should not do it, right.

Then basically if I just do increase the code size, right, instead of one module I will if I

there are say 10 calls I have 10 body to be replaced and if the body is weak then it

increase the code size, and hence the number of operation to be executed, right. Because

if it is between a module and it is only one hardware you got for that or I need 10 copy of

the hardware if I just replace the function body right. So, that is something the negative

side of this and you should do this kind of module expansion only if we have only one or

2 call of a function right in this.

(Refer Slide Time: 51:41)

So, here is an example suppose I have this is my main code, and I have a function calling

here. And this is doing nothing just doing say p plus q, it is q plus p .

So now I can replace this function call by this function body, right. If I just do it, since I

call through a b, I can replace this q plus b by a plus b right. So, this if I do the model

expansion my code will become this. Now by applying this common sub expression this

common sub expression I I can replace this 2-common sub expression I can replace them

right. So, I can do this x equal to a plus b and I can just do z equal to x so, that is actually

improving. So, in this case I cannot apply common sub expression elimination, because

this tend to different body and these 2-different expression I cannot do that, but once I

apply this model expansion now, it increase the scope to apply the other optimization like

common sub expression elimination in this case.

I can replace this common sub expression by a single a, right. That is what I have done.

And I am not done yet I can have some other optimization also. So now, this is become a

copy operation I can do the copy propagation, right. So, I can just do this do here. So, I

can just do it x here. So, once I do this x equal to f then I can replace this, right, then this

out will become out become only y, right. Then once I do this x equal to a plus become

dead code and because that have no use. So, effectively this become out equal to a star b.

Again, I can replace this y because I do not need to store that because it is happening.

So, effectively this whole code is doing a out equal to a star b. So, this is just to highlight

an example just to highlight that if you do the model expansion, that will increase the

scope of application of the other optimizations, and that might reduce the code by a

significant amount. So, that is the advantage of model expansion, but you have to always

keep in mind that if the particular function says by a multiple pluses, then it is not a good

idea to replace all the all the call by a body because it will you have to execute this

operation those many times. So, there should be some tradeoff between this model

expansion where whether we should do or not even in certain scenarios.

Or maybe it if that particular function has a say 10 calls. So, we might just replace one or

2 calls because that might if we see there is a very high chance of have other

optimization possible of or some other optimization in certain places we can actually

replace those calls. But I can keep other calls there so that I can use that function body

for other calls, right. I can reuse that particular function body or the hardware

corresponding into the function body for those other calls ok.

So, there might be trade off and that is has to be analyzed based on your application or

the example that you have right.

(Refer Slide Time: 54:33)

So, I will move on to the next topic is called conditional expansion is; basically, when

you have a say a conditional expression if say C say are doing something at else I am

doing something right. So, I can always do say I am doing say here s. So, I can always do

c to s plus c bar into c bar into say this is say T right c bar into T. I can always do that. So

now, instead of doing this in sequential I can do it in parallel.

(Refer Slide Time: 55:10)

So, here is an example. So, so suppose I am doing if a equal to true, then I am doing this

else (Refer Time: 55:14) with this.

So, I can rewrite this whole thing by this, right. Instead of doing this in conditional, I can

do everything in parallel right this is a into b plus d, and then a bar into b T, right. This is

what I can do. So, this is what is called conditional expansion. So, I am replacing the

conditional body because whenever you have conditional body you have some marks,

some decision maker whether you could do this or that. So, all this control signal will be

enumerated. I can do it directly, right, this is what is the advantage of the conditional

expansion. But the disadvantage is that earlier in hardware I had to do either this, or this I

do not have to do both, right.

Suppose this is also b minus d. probably I can use a same ALU which can do plus or

minus to do both the operation, right. Because they are mutual expressive operation

either this will be executed or this will be executed. So, in hardware I can share a

resource for this right. So, for this if I just suppose this is b minus d, I can just do b and

d. And I have only one conditional control signal that will decide whether plus or minus

ok. Then it will just do this either b plus d or b minus d based on a right this is if this is

basically a equal this is a or not right. So, if it is a then it will be done or like this right.

So, but I can share this recourse for both the operation, but if you just do it here I have to

do both the operation right. So, if instead of b b d, I can do b b minus d. So, I have to do

both b plus d as well as b minus d just to in this case.

So, this is the negative part of this, it will increase the resource, but I can do instead of

this things I can do in the all these things in parallel. And another advantage of doing this

conditional expansion that it is if these variables are Boolean variable right. So, it will

actually increase the scope of application of logic optimization. For example, suppose

this is a Boolean expression, I can do certain kind of optimization, right some

manipulation Boolean manipulation and finally, I can reduce this big expression by a

smaller expression, right. This is what I can do. So, that is another advantage of

conditional expansion in case of Boolean variable. So, I can apply some Boolean logic

optimization just to get a simpler version of expression, right. Instead of doing all this

bigger expression I can have a simple operation to be done right.

That is another advantage of conditional expansion.

(Refer Slide Time: 57:37)

.

So, I will move on to the next topic which is called loop expansion. So, this loop

expansion is nothing but loop unrolling, right. If you have a loop body you just unroll it

and replace by the whole loop body by a series of operation right.

(Refer Slide Time: 57:52)

For example, here suppose we have this loop, where this I is going from one to 3, I am

doing this I can replace this loop by this set. So, I can just do x equal to x plus a 1, then x

equal to x plus a 2, and then x equal to x plus a 3. So, I just replace this loop by this what

is called loop unrolling. And what is the advantage of having this? the advantage is that

once you have done this, probably you can actually apply the other kind of optimization

for example, here I can apply tree height reduction because this is nothing but doing

these things in series right.

So, you are doing x plus this is your x you are doing this is a 1, then you are doing this is

x you are doing a 2, and then you are doing this is your x. And this is a 3 right and then

you are getting this. So, instead of doing this, we can do in parallel right. So, I can do

this x equal to this is basically you can do a 1 and a 2. And this is your x and then you

can do a 3 this is your another addition this is your a 3 equal to x. So, instead of this 3,

time step I need basically now 2 times step, right. I can do it in 2-time step. So, basically

idea is that when you do this unrolling, it actually widens the application of other

optimization. So, that you can optimize your code ah, but and also the up and also

another advantages is that you have to maintain all this condition this control signal will

be more here, right because we have to check whether this I less than 3 or not those

things you have to maintain, but here you do not have to maintain.

(Refer Slide Time: 59:45)

So, your the complexity of the control will also get reduced if you just do a loop

expansion. But you understand that in this loop is very the number of iteration of the

loop is very high. So, if you just unroll blindly it will increase the code size by and large,

right. And that is not something is good right because if you say this instead of 3 you

have 3,000. So now, you have 3,000 operation it has to be executed, right. That is may

not be a good idea to do a execute instead of doing it it is better to do it truly.

So, you should have some have some have some trade off. So, you sometime we just

look for partial number. Instead of whole things unrolled. So, there also as I had

mentioned I I unroll it say your loop is 300 3,000 times and in 3,000 times I can unroll

by 3 only, then I I am doing 3 operation in one loop and I am going to execute the whole

loop of thousands time thousand times. So, I can also go for partial unrolling if you are

by loop interest is too high, right.

So, you should always think about a tradeoff between the code size versus. this control

size or the kind of benefits that you are going to have in a loop body. What is called loop

unrolling?

(Refer Slide Time: 60:47)

So, in fact this loop transformation is very is very important in the context of others

synthesis, because loop has a huge impact on generating hardware right. So, a lot of

work has been done on this people have tried to check what kind of loop transformation

is going to improve your locality of references. So, that during successive operation you

do not have to read multiple data from your from adding. So, that whatever operations

happening through some variable values that are going to be done together right .

As I have mentioned earlier, also that whenever you have a a loop or say a loop and you

are add is going to mapped into the memory. And in memory we do not have multiple

port, right, we have only one or 2 ports. So, if you have say multiple access 4 5 access at

a time I cannot execute all of the in 1 plus so, I need multiple. On the other hand, if I

found a 5 is going to use say 5 scenarios. So, I can do those 5 operations at together

right. So, then I can read a 6 and whatever, the value operation is going to depend on a 6

I am going to do that.

So, if we just do some certain kind of loop transformation so that all this operation which

has a locality of references, they have greater locality operations happen in successive

iterations that will improve your number of memory read, and hence the number of time

required to execute that right. So, that is something I mean a lot of work has been done

and looping is one kind of operation or loop skewing another kind of operation which

actually improve this locality of references, also people try to do it x merge to loop or

loop merging try to merge 2 loops so that you can do some kind of paralyzation, or

number of time step is required to execute that can be eliminated or other kind of

optimization just to improve the pipe training opportunity like loop reversal and certain

like this.

Actually, in fact, there are a lot of loop transfers and techniques are there and there are

various work actually done on this just analyzing whether how hard type kind of effect

how certain loop transformation have in the in the generator hardware. And that is in

fact, is a another discussion topic that maybe another lecture just to discuss on that. So,

instead of going into detail of that because this is just to give you a highlight that loop is

an important factor, and there are a lot of optimizations and that has a significant impact

in the hardware right.

(Refer Slide Time: 63:24)

So, that is just I am going to highlight it and those who are interested going to much

detail of this research area. Just for your references, I just copy some 4 recent work that

actually working on this loop transformations and their impact on high level synthesis.

This work (Refer Time: 63:34) for example, is working on the optimization and memory

hierarchy allocation for loop transformation for high level synthesis. Similarly, this is

working on loop splitting for efficient pipelining in high level synthesis. This work is

working on say a high-level synthesis optimization opportunity through poly hydral

transformation, polyhydral is another way of applying loop transformation or

representing in loop, and this paper works on that how to improve the optimization

opportunity through loop transformations. Another work is something impact of loop

unrolling in controller delay in high level controller delay in high level synthesis.

There are many more so, this is just as a starting point for you. And since we have

already discuss about this loop expansion and loop unrolling, I am going to discuss this

work briefly. Just to give you the; what kind of impact of loop unrolling on the controller

delay ok. So, if you take an example of this right. So, you have an example where I am

doing this for 32 times, I am doing this operation right.

(Refer Slide Time: 64:30)

So, I just as I have mentioned I am going to partially unroll, I will just unroll by 2. So,

what I am doing here? I am doing 2 operations in the loop, this 2-successive iteration, I

am increasing the loop iteration by true early I am increasing it by one. And I am doing it

16 times, right. Earlier it was I am doing it 32 times I am now doing 16 times. And if you

just draw the data flow graph, I am doing this loading operation loading is basically

memory read right.

So, I am just read z i and x i and then I do this multiplication. I am doing this

multiplication I am assuming that I have multiplication is of 2 cycle operation and this

load addition comparator all are using a single cell operation. And I have one multiplier,

one adder, one comparator and 2 loader available, right. And then I just do this x into z is

after 2 cycle, I just do q equal to q plus this right this is what I am doing here. And in this

place, I am just doing I equal to I just do I plus 1 and then check whether this is less than

32 or not. So, what I do? I just to execute this I need 4 cycles just to satisfy that

dependency.

(Refer Slide Time: 65:49)

Since this is going for 32 iteration, roughly, I need 120 8 clock cycles. I need someone or

2 clock step to initialize all those I just ignore that. But roughly I need 130 32 into 4 128

clock cycles. On the other hand, if you have this partial unroll, I have this load here xyz,

then I am doing this xi to zi. And then I am doing q equal to q plus, right. Q plus q plus

this is xyzy that I have done. And here I am doing this i equal to i plus because this i plus

is used for i plus 1. Then I am reading this xi plus 1 here, and there is a xi plus 1 here,

and then I am doing this multiplication for 2 cycle. And then finally, add this result with

this ok.

This is my final que, and this part is similar to this I am doing I plus 2, because now it

equals to I plus 2 it is I plus 2, then you just checking whether this is less than 30 or not

right. So, you can see just to satisfy the data dependency here I need 6 clock steps, right.

And this is I just mentioned is going to execute 16 cycle. So, 6 into 16 I need 96 clock

cycles. We can see directly I have savings of 25 percent of clock cycle. If I just do it

partial unrolled by 2. So, it is good right I have a very good. In fact, of unrolling in the

number of clock cycle we need to execute this division. So, it is good, but let us now try

to show in another angle that what is the kind of impact of this unrolling because this

unrolling factor can be different, right.

So, this is to I will just do it unroll by 2 I can do it unroll by 4, 6, 7, 8, 9, 10, 11, 12

anything. I can do partial unrolling by anything so, we will try to, this one try to this one

specifically try to find out what kind of impact of this unrolling in the latency the number

of clock cycle is required to execute this. And also, it is impact on this controller delay

ok.

(Refer Slide Time: 67:43)

So, they have plotted this that in this graph right.

(Refer Slide Time: 67:47)

So, what is that? So, let me just figure it out. So, the let us so, let us put this latency

variation. So, as I mentioned this for unroll factor 2 I have get 128. So, initially I have

there is no unroll this is 128, right, if you unroll by one, then I am getting 96.

So, if I just plot this ideally if you just unroll by 3 this should go down right. So, it is

going down and then finally, it is become not exactly this right. So, I expecting like this,

but your number of time step required is not reducing exactly this way, right. Why

because this is not linear. So, why this is the case? Because if you just do unroll with the

because the actual loop is executed 32 times if you just do unroll by 2 now it going to do

exactly 16 times and you can do 2 operation at a time, but if you just do it unroll by 16

again, you can do this 16 operations at a time. And I can iterate the loop 2 times.

But if I just unroll by 17, what will happen? I can do only 6 17 operations at a time when

I and the remaining operations 15 I have to do without loop right. So, another loop I have

to do the tailing loop I have to write.

(Refer Slide Time: 68:56)

So, that is what is given here. So, if I just do unroll by 16 either 16 operations, and the

loop is going increase by 16. So, this loop will execute 2 times it is fine, but whenever

this is a 17. So, I have this 17-operation written here, you can see here this 6 i to 16 and i

to 15 because there are 17 operation, but if I increase the I to 17, and this I less than 17

will not be true so, I have to come out.

So, from this 17 18 to from 17 to 30 those operation is still remaining that has to be

executed right. So, that is a trailing loop, what is called and that has to be executed. So,

this is cannot be this has another separately, and that is actually causing this latency in

this right.

So, you can see in this figure 16 has a good around you need around 64 or something

right 679. But for 79 need a almost a 90 or 95 or something. So, the number of latency

does not linearly decrease with the unroll factor. That is clear right, but the; what is the

controller delay that let us understand now.

(Refer Slide Time: 70:02)

So, if you just see a generic data path that is generated we have a, few and there have

been mux at the input of a few and the output of a few if go to register.

And there will be some mux again right we have discussed all this things right and

whenever. So, what is the controller delay? So, based on the current stage you generate

the next stage. So, there will be some delay here and that signal will come here it will

come here and it will come here. So, this signal effective propagate to this multiplexer

this a few this a few to register. So, this is the controller delay path right. Now if you

increase this unroll what will what will happen here? So, just see the number of state

increase right.

So, the complexity of the controller will increase. So, the controller complexity of delay

of this particular thing will increase right. Because now a lot of state the decision making

here is bigger. So, the controller delay of the ff will increase. And also, similarly if you

see here I am doing earlier only 2 operation in chain now 3 operation in chain I am now

doing 1 2 3 4 operation in chain. So, this chain operation chaining length is increased so

that then you have to now it put extra mux here and those cases. So, that delay of the data

path will also increase right. Because that multiplexer chain will be increasing sharing of

research possibility increasing the size of mux right since the delay.

So, if you have to do the unroll effectively this delay here also will increase, and delay of

this path will increase because the number of mux the mux will come when this path will

high and also the number of operator will come high right. So, the total delay of these

controller will increase right. So, unrolling is not good for controller delay right. If you

just so, delay will increase and that is actually plotted here. You can see whenever the

unroll factor is increasing your delay is actually monotonically increasing, which is not

like this. So, we can understand that so, you should have a trade off right you can adjust

a do a arbitrary number of unroll, because your computation delay may go beyond your

clock period. And in that case, you basically the kind of target clock you may violate the

target clock, because your if you computational delay go very high say suppose your

target clock is 3 millisecond if it becomes 4, then you are actually violating the time.

So, your design is not meeting the time step right you just unroll by say 20, you are

violating the target clock (Refer Time: 62:26) right. So, that is a serious violation. So,

there should be some trade off. So, you can see here probably this is the best choice, right

in this case your latency is minimum which is 16, but in this 16 also the total delay is say

3.5 or something. And suppose your target clock is 3 point you are meeting the time

(Refer Time: 72:47) ok. So, this is something that is trade off is among this all this unroll

factor probably, I should change this 16 which is a better choice or maybe something

else.

So, based on the target clock, you are target clock is not that high probably you have to

choose this right-angle factor of say 8. So, that is the point here right. So, basically given

of design and your target clock your what this unroll factor you choose right, so that your

controller delay is not going so high that is meeting that does not meet the timing; on the

other hand, you have a good benefit in the latency as well.

(Refer Slide Time: 73:24)

So, that is what is work all about this work specifically propose an algorithm that we will

have to find out the tradeoff between this and this latency number of latency required

versus the number of this computational delay. So, the; it meets the target clock, but you

achieve the minimum latency right.

This is what is all about. So, similarly if you looking into this other work. They are also

tries to do this kind of advanced kind of checking. Just to see for example, this work

actually work on memory hierarchy right. So, how do you improve the memory

hierarchy using loop transformation? So, these are the kind of techniques are there so,

this can be used just to utilizing this can be used to utilize your improve your

performance of a design right.

(Refer Slide Time: 74:16)

So, this is another area of research. So, in summary, we can see that this compiler

optimizations are have a significant impact on the generator hardware. And we have

specifically discussed 3 kind of work specifically the data flow-based optimizations. We

have also discussed some control flow optimizations. And also, we have discussed some

recent works and loop transformations their impacts on hardware. And I can say this and

active domain of research, and people are trying to find out the impact of this

optimization techniques various area like in memory in optimizations of the bit width

optimizations of the computational time, optimizations of power optimizations of routing

length.

And various aspect you can always think of having implementing or applying this kind

of optimizations. And see their impact on the generator hardware. So, with this I am

going to conclude this session, and in the next session, we are going to discuss about this

article optimization technique for powers timing.

Thank you.

