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So, welcome again to the course on Optimization Techniques for VLSI circuits and at

present we are going through the module on verification.

(Refer Slide Time: 00:34)

So, in the last two lectures set we have seen that basically the major problem for any

kind of verification or handling any kind of systems, where actually we have to go for a

state space model then actually the size of the states space becomes so large, because it

actually tries to blow up in the order of exponential complexity the number of system

variables. So, that was the major problems of the bottleneck for in for testing as well as

their verification.

So,  whenever  something  you have  to  do  or  some automated  procedure  you have  to

execute on a system, where you have to model the system such that each such that each

state or the set of states use to represent the system is in terms of the state variables, then

actually it may blow up with in which state exponential problem and everything was



down that you can solve only for toy examples and many in our course such we know if

some optimization. 

So, that we can handle very large systems, so the last two lecture series we have seen that

basically  if  you say shear  state  base or  a  simple  final  state  machine  or  a  state  with

exponential number of combination of states are there. Basically it correlates something

to the binary decision tree that for a given set of variables, Boolean variables you have to

go a exponentially in the order of 2 to the power n in the number of variables; like we

have 1 left chain for true right chain for sorry left chain for false right chain for true and

you have to keep on doing it will all the labels are explode.

So, that was the basic problem of explicit enumeration then in the two lectures, last two

lecture series we have seen a very important data structure call binary decision diagram ;

there we are seen basically we can compress, but eliminating all sort of redundancies and

without any loss or in any quality of solution. Basically if you take if you say that I am a

system there is a 100 state variables actually number of states should be much much less

than 2 to the power 100, because there are lot of combinations we can never used in real

practice.

So, basically BDD tries to leverage on that fact then eliminate all the all the redundant

parts I, we actually explicitly model only the set which are absolutely require there is

there is no redundancy and then we can see that the compression level is more than 99

percent or above, then we have seen some additional more advance versus like additional

means arithmetic decisions diagram, high level decision diagram, which can even handle

much larger circuit because they work at a higher level of abstraction.

But now the next 3 lectures basically that symbolic model checking and bounded model

checking,  here  what  we are  going to  do because  as  we told in  the last  class  if  you

remember that all though HDD, but or arithmetic decision diagram can handle very large

circuits because they go for modeling are the abstract level that is the RTI level. But still

the research is going on there how can you go for good can only you can representation,

how can you find out good model checking or that is the labeling algorithms. 

If we are going in the model this systems as in terms of high level decision diagrams,

whether not in the form of a bookie automata or a final state machine because, all the

algorithms which we are seen in lecture 1 in case of CTL and LTL model checking or



rather if you tell me the ATPC in terms of the algorithm; we are very well the algorithms

are very well develop if you consider the gate level modeling or explicit modeling or you

can say the binary bit level modeling.

Once you go to higher levels of abstraction such algorithms are still in the development

piece. So, we are we are not going to focus too much on again on HDD or arithmetic

decision diagram you use them for verification because, this is more or on a research

topic whether what you will try to do is that whether you will again go back to the bit

level because, that is where all the strong algorithms of model checking are available, but

then will see then you already seen that if you are going for a bookie automata label

modeling in the states basement states base level, then the model is has be so large that

leveling or model checking becomes a infusible job.

So, in this 4 and 5 lecture series we are going to the something call a symbolic model

checking, that is what we are going to do in this case.

(Refer Slide Time: 04:21)

In this case basically, we will try to use the concept of BDD and we will try to model

sequential circuits or because you know that bookie automata is nothing, but some kind

of a some kind of a state machines with atomic propositions labeled in the states etcetera.

But  again  the  main  problem  of  CTL or  LTL  model  checking  was  that  the  bookie

automata has it is repairs on explicit state enumeration, the model itself become so large



that labeling itself become a very difficult problem, because of the size of the states place

and we cannot go beyond a large circuit.

So, what we are going to do in symbolic model checking, we will not explicitly design

the final state machine or the state machine corresponding to the bookie automata; rather

we will try to represent the whole automata in terms of binary decision diagram. So, of

course it will be a very very complicit data structure and then we will try to go for the

labeling  algorithms  or  rather  the  model  checking  on  the  BDD  itself  rather  than

enumerator them in the states space model that is the bookie automata again do sum up. 

What we will do bookie automata very large very difficult to do model checking. So, we

will represent bookie automata in terms of binary decision diagram once you are able to

do that, then you have to try to found out how modeling algorithms can be applied to

such BDDs; basically the idea is algorithms are very well develop that same algorithms

which we are seen for labeling the states like their exist for all in all parts in every state.

So, all those formulas model checking for temporary formulas use for model checking,

we see that  we label  the different  states.  So,  in  case of high level  decision  diagram

arithmetic decision diagram these labeling algorithms are still in the development phase,

but fortunately the if you go for a bit level representation and then converting it into

binary decision diagram that is representation of the bookie automata or state machines

in terms of binary decision diagram. 

Fortunately those labeling algorithms can be very easily adopted in terms of BDDs that

is  actually  call  symbolic  model  checking, because we not explicitly  model  the states

whether we model then in terms of BDD and then will go for the labeling algorithms that

is why the terms called symbolic and fortunately those labeling algorithms are model

checking can be very easily adapted to BDD structure, that is what again is the very

beautiful or BDDs. 

But if you talk about high level decision diagrams or arithmetic decisions diagrams those

labeling algorithms are nor very straight forward and still people are doing were to find

out; how they can be adopted. Anyway let us come down to the top, means lecture which

are going to see today basically with what two things we have to see first thing, because

already we have seen BDD in a very simple form that is there is the binary is a Boolean



function, how it can be represented in terms of BDD let me see if these a combinational

circuits how can we design it.

Now, basically now we see how to adopt this whole thing, so that we can model final

state machines that is the first thing we are going to learn, then next where going to see is

that how the labeling model checking algorithms can be applied on those BDDs, so that

you  can  do  model  checking  in  the  BDD  version  other  than  the  explicit  model

representation on the bookie automata that is what we are going to see. 

So, we know that all we can represent Boolean function by ROBDDs is a combinational

circuit. So, that is why combinational circuits and BDDs are about direct correlation, but

there does not actually directly apply for the sequential circuit because, in combination

of circuit the output depends on the on the input of the circuit. So, it just a combinational

cloud input and output very easily you can make the BDDs.

So,  combinational  circuits  directly  correlation  to  the  BDD,  but  in  sequential  circuits

slightly allow the philosophy because, the output of the sequential circuit depends on two

things  is  the  input  as  well  as  the  present  state  and again  the  output  that  is  there  is

basically two types of output in sequential circuit,  one is the next step and one is the

primary outputs. So, basically you have to capture these two things. 

So, output will be depending on the present state as well as the primary inputs. So, that

you can thing in a combinational cloud like in something happen like this if this is the

register, there will be a combinational cloud this will be the your input and basically and

again some output from this and there will be another combinational cloud this will be

your output and this is your basically next state.

So,  this  part  is  basically  you  can  thing  as  so  the  other  part  you  can  thing  as  a

combinational cloud that is the output, it will depend on the primary inputs basically and

as well as the output of this present state that is the present state and because of the

combinational cloud will make the primary output. So, these are combinational cloud

directly you can use it in terms of BDDs, but only one thing is that you have to just thing

that this another set of output which is over here, then decides on the next states that is in

the register. 



So, this again a combinational cloud, so these 2 parts you have to model using BDDs.

So, that you can model the and tell sequential circuit and also you have to also take care

of the fact that the sequential circuit move from state 1 to state 3 and so for those for that

sequential behavior has to be modeled.

So, basically in sequential circuit you have to model 2 things the states and secondly the

transitions. So, both of them has been modeling in terms of BDDs then your basically job

is done. So, that is we are going to see is combinational circuit direct map in sequential

circuit  is  2  level  first  you  have  model  this  states  and  then  you  have  to  model  the

transition in terms of BDDs then your job is going to done do be done. 

So, sequential  circuits  slightly non trivial  I should not call  a non trivial,  slightly non

straight forward and we are going to first see then how sequential circuits can be model

in terms of BDDs, whether ROBDDs and once it is done there will see the we have done

our basic background of modeling the sequential circuits or sequential systems which are

in terms of states space that was the keeling factor in verification because, the system

because very large because the verification complexities exponential in the number of

state variables and it is not exponential in the terms of the size of the formula.

Because for each part of the temporary formula to be verify you just have to go for

labeling. So, it is just the graph traverse or some of if you can reduce the graph size or

the model size then our basically job is done. So, that is what we are going to do first we

will model sequential circuits within BDD. So, once that is done your background job is

done now on that BDD will try for go for this label labeling algorithms, so will go step

by step. So, basically this is the slide is I have told you, so sequential circuits are express

in terms of state transition diagrams, so we have some inputs and some outputs and some

variables.
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So, apart  from if  you compare to combinational  circuit  sequential  circuits  are inputs

outputs and some state variables.  So, this is the additional things which you have to

model,  the  state  variables  can  be  either  they  the  state  variables  either  represent  the

current state or the next states. So, there are two kind of variables input that is the next

state and the present state, the next state depends on the current state and input variables

and the output depends on the present state as well as the input.

So, these are very well known digital design fundamental which we can do it. So, again

these step is very very important the next step you have to represent using BDDs and the

transitions also we have to representing terms of BDDs; therefore, this states as well as

the transition they have to be representing in terms by BDDs then your job is done. 

So, in combinational circuit it is just one step here will be two steps as we are going to

see so and then  basically  with  this  philosophy we will  see then  how we can model

sequential circuits or state machines also using BDDs that is what is the idea. But the

basic philosophy is written in the slide which I am telling you overly is depicted in the

slide the basically we have to model this states and you have to model the transitions.
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So, a simple figure I am showing you so will just try to motivate this. So, this is your

simple state machine you can see the transitions. So, there are 4 states, so 2 variables will

be there. So, let us first enumerate them so basically this is enumeration S0 S1 S2 and

S3, so you can see S0 is 0 S1 is 1 0 sorry 01 10 and 11. So, this is very straight forward

now what is we are going to do here is that we make super set of this thing because, as

what the philosophy will come as I told you that basically the exponential number of

states are numerical to represent any model only the require states are use to model this

circuit.

So,  what  will  do  all  are  system,  so  basically  we  first  go  for  a  supersets  kind  of  a

representation that is tell you what is there what do I mean about that is something like

this.
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The state S0 or S1 if all is this two states are their this is the 0 0 or 0 1, similarly S0 and

S2 is 0 0 or 1 0 and last 1 will be your full set that is equal to 1 0 0 0 1 1 0 and 1 1. So,

basically  I  am enumerating  all  the  power set  of  the set  of  states  that  is  all  possible

combinations, so instead I have not shown S0 S1 and S2 and S3 that is obvious basically

this is the 4 states and then they are the all the combinations.

So,  what  will  do  basically  will  first  make the  superset  of  the  set  of  states.  So,  this

combination will here it is depicted to show, but basically you have to pick up only those

states which are elements for the design and then we will try to represent them using

BDDs and the transitions. 

So, first what is the goal you have to pick up only those states which are relevant for our

discussion, one thing you have to understand that also in case of a system design we

draw  only  the  relevant  states,  but  when  you  are  trying  to  represent  and  final  state

machine  in  actually  blows  up  because  it  is  not  a  compress  diagram.  Here  what  is

happening here also we are being the same thing that only the relevant states we are

bringing into picture, but will be represent them into BDDs through BDDs.

So, all the redundant elimination redundant states which are not there basically redundant

structure, that is the states which are not represent in the systems will be eliminated out

in the BDD representation, that is the certain difference that if you are going for a simple

final state machine representation even if the number of states are limited, because you

draw only the practical states or which are the reachable states or in fact basically which



are the states under consideration, but if you are using a normal algorithms which is not

in a form of BDD even the states which are not relevant also comes into the enumeration

process, because it is a simple state present enumeration like a binary decision tree.

But if we represent in terms of BDDs we will represent only the relevant stresses to us

and the other parts which are irrelevant because, they are neither reachable they do know

do not there are not matter in the computation. So, it will be happening something like

this as we have already seen that if both the paths lead to 0 that is both variable X if 0

and 1 both has the same value as the output then this state this eliminated. 

So, whatever states is not relevant that it not model explicitly basically get eliminated in

this manner, as told you that that is why the idea BDD will take a subset of this state as

you have see like  for  example,  if  only S0 and S1 are  in  equivalent  to  that  we will

represent this Boolean function as a in terms of BDD, so it will be a very complex data

structure.
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But if we go for a explicit state enumeration, so we will have only S0 and S1 say. So, it is

actually something called 0 0 and this is 0 1, but the other states which are non relevant

like 1 1 0 and 1 1 we still the represented in the all in the algorithm. If will trying for

state for some sort of all sort of algorithms these two is also try to put their presence, as it

happens in case of a binary decision tree,  because in binary decision tree if  you the

variable x 0 may be is a 0 and this side may also same is also 0, but we will have to did 2



explicitly if knows because x 0 is also 0 x equal to 1 is also 0. But you still explicitly

enumerate actually x is a redundant variable would not require that if you go for a simple

state modeling first things will try to appear, but if you are going for a BDD and based

on representation then those redundancies will be gone.

So, what is the first job all these power sets of the states are done then will take some

relevant states set which is require for the modeling and only that will be the represent in

terms of BDD, so will get a very Complex structure right.

 (Refer Slide Time: 15:38)

For example, if you see S1 and S2 and S1 S2 and S3, so say for example for certain

reason these are the states such which are relevant. So, S1 is 1 so S1 is nothing S1 and S1

is 0 S1 is 1 S1 is basically nothing, but S1 and S2, so this is 0 1 and this is 1 0. So, this is

basically represented by this BDD. So, if you see x 1 is equal to 0 and x 1 x 2 is equal to

1 your landing it to 1, so it is actually representing this state.

Similarly, x 1 equal to 1 and x 2 equal to 0 basically this enumerating this, so this are the

two transitions which are the lines I have drawn represent the two; basically this two

transitions is represented by the BDD. Similarly if you are considering S1, S2 and S3

you are going to get this BDD structure because S1 corresponds to 0 1, S2 corresponds to

1 0. I have drawn the paths and showed that they are leading to 0. So, basically if you say

S1, S2 and S3 are BDD seen so small and but if you see S1, S2 and S3 anyway such S1



is what S1 anyway all the enumerations I have not done basically, it will be it will 2 the

power 4 it will be 16.
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So, this I have not drawn but obviously, you can find out that if you will have 3 terms

because, S0 will be equal to x1 bar x2 bar this 1 will be basically x1 1 0 1 x1 x2 plus x1

x2 this is for then x1 x2 huh. So, this was going to be the expression for this, so you can

see there is the size is quite large corresponding to the BDD representation and even the

thing of not only for variables if the system is very large basically you will also have say

xy xy 1 xy 2. So, many number of elements will be added over there if you think many

number of variables are very large. So, the expression will be very large if you are just

consider a 3 stage, but actually all other variables is present are basically redundant. So,

BDD representations we eliminate all  this  and you are going to get a very compress

structure.

So, what we what do we have learn till now the basically will have this state set which is

relevant for us and we represent using BDDs. The advantage will be all the redundancies

variable, which are not relevant to represent the present states will be eliminated and we

are get a going to get a very compress representation of the state set these only a 4 2

variable. So, this is not obvious and as I told you if you 100 variable set and we are only

in interested in these two states may be the all other additional variables like which will



have 0 0 0 all combinations, basically say 0 0 0 0 0 through dot dot dot 11 1 1 1 this is 0

1 this will remain same all will be embedding in the state enumeration representation.

But we are redundant because the cancel  out and whenever you go for a BDD base

representation we get a very small diagram basically. So, that is why the first job is we

represent the relevant states has using BDD and we get a compress structure.
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Now, we have to represent the other part which is basically nothing but you transitions.

So, what you have to go for transitions basically transitions, if these are your variables

we have to have another set of variables by the primes.

Now, why do you want to do it because, basically x this non prime value will represent

the present state and the this 1 will be represent the basically represent the next state,

because as I as I told you that we have three step in case of consequential circuits inputs

present state output and sorry present state, next state, inputs and 1 in the primary output.

So, primary output as now we are not dealing with directly, because primary output is a

combinational circuit we have already shown.

So, inherently basically we can say the we have inputs present state and next state, output

also you can thing as a element for the time being you are not making the things more

complicated.  So,  therefore  this  1  will  all  the state  variables  will  be representing  the



present state and the prime versions will be representing the next state. So, we have to

just duplicate the state variable size now will see how to do this.

Now, you have to how do you represent the transitions. So, I will just very theory let us

say you are looking at this. So, basically if we see S0 to S1 is a transition, if you look I

mean just  give  you 1 example it  will  be clear. So,  you can see from S0 to S1 is  a

transition how do you model it, just rename the S0 to S1, S1 to S3, S2 to 1 2 3 4 and

some 5 transitions are there we have the enumerate each of the transitions first.

So, let us take the examples of S0 to S1, so how do you do it let me show it for you. So,

here you have seen the variables are x 1, x 2 and x 1 prime and x 2 prime, so basically x

prime are the next state. So, S0 means x 1 bar x 2 bar they are the present state, what is

the next state next state is S1 that is equal to 0 1, that is x prime bar x 2 bar that is

basically nothing, but is goes from0 0 to 0 1.
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So, that is this is equal x 1 prime, x 2 prime and this is x 2, x 1 prime bar and this is x 2

prime. So, that is what is represented by this formula.

Similarly, x 2 to x 3 is what x 2 is basically we here, so x 2 is nothing but x 1 x 2 bar and

where it is going x 3 that is x 1 bar x 2 bar that is 1, so you are representing this by this

transition. So, whatever transition is very simple this 1 will corresponding to the state

encoding for the present state,  the this state will be state encoding for the next state



another we have to have a prime version. So, this way S0 to S1, S2, S3, S0, S3, S1 is the

whatever transition you will have you have to actually enumerate in this form and then

basically you have to do an because, all the first transitions are present and represent

using a BDD you are job is basically done. 

So, that is what is the idea, so you take a set of all the transitions present state distraction

state present state distraction state, you represent in terms of the binary variables or the

Boolean state variables present state will be non prime next state will be prime and you

make a or representation and that is going to be the BDD representation, so just you can

see you can have.

(Refer Slide Time: 21:56)

.

Just given this slide you can just see over here then how transitions are the represented.

So, I think we have the have S3 to S3. So, at will be equal to x 1 bar x sorry x 1, x 2 and

x 1 bar, x 2 bar. So, this is will be representing this transition, so this where that is the so

very simple. So, just you have to enumerate all this things and then basically you have to

represent.
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So, what will going to happen is they were 5 transitions 1 2 3 4 5, 5 transitions are there.

So, basically the 5 trans will be there 1 2 3 4 and 5, so this 1 this 1 if you look at is

corresponds to S3; S3 that is the self loop similarly all other terms can be found out.

So,  basically  this  is  your  Boolean  function  which  corresponds  to  basically  you  are

transitions. So, if again it is written that as there are 4 states. So, it is a fully connected

graph there will be 16 possible transitions. So, if you are going for a flat representation in

the binary decision tree philosophy it will be again exponentially blowing up; but we all

know that all graph criterial graphs are very very passed. 

So, in this case I have taken a practical example sorry a dummy examples, so you have at

least 5 transitions. But in the practical systems where you have very large states does the

number of transitions are much much smaller than 2 to the power or n square where n is

the number of states, basically if there n variables 2 to the power n is all possible states

and the number of all possible transitions are 2 to the power 2 n that is the square.

But in real life you will find out that this number of states and number of transitions are

much much lower than basically the number of correspond to 2 to the power n; that

means, if there 100 variables number of states will be very much lower compare 2 to the

power 100 and the number of transitions will  also be drastically lower than 2 to the

power 200, basically that is why in BDD; we model only this important transitions or the

transitions on the consideration and if you are using a binary tree to represent it. 



Even if the unnecessary information will also going and it will things makes the things

blow  up.  But  in  binary  decision  diagram  representing  will  cramp  up  eliminate  the

redundancies that is it will mainly model only this trans that also, if there is a redundancy

among them there will be eliminated and then will have very compress representation of

the transitions. So, now what we have?

(Refer Slide Time: 24:12)

.

We this is basically you are the, this the BDD, if you look it is the BDD corresponding to

this transition let us trace 1 transition. So, x 1 equal to 1 and if you see x bar equal x 2

bar equal to 1 and this is 1 transition let me I am talking about S3. So, what is S3? S3 is x

0 x 1 x sorry x 1 x 2 x 1 bar x 2 bar, so that transition should be to 1. So, if you see x 1

equals to 1 then x 1 bar equal to 1 and x 2 bar equal to 1 you are going to a 1. In fact, you

see here once you from this compression still you are saving on 1 variable, but is you are

saving on x 1 x 1 bar x 2 bar, so you are saving on this variable. So, will this part actually

corresponds to these transitions 1. Basically, this x 1 bar is sorry which is saved x 1 sorry

this x 1 is saved sorry not this 1 we are saving actually x 1 x 1 bar x 2 bar.

So, x 1 is there x 2 this is the variable we are actually saving to represent this transition,

so x 1 x 1 bar 1 x 2 bar 1 the answer is a 1. In fact, we do not require x 2 to explicitly

represent  this  transition.  So,  even  after  just  instead  of  2  to  the  power  16  possible

transitions,  we can just represent by this function using BDD and in that also if you

compare the number of paths, because the number of variables are 4 into 4 4 4 4 4 16 5



sorry 1 2 3 4 5 was a 20, but we will not 5 20 transitions in this binary decisions diagram.

So, not only the 16 possible transitions even each of this explicit terms in this expression

are also not explicitly require to model in the BDD, because again we can go for a cramp

representation.  So, these transitions basically S0 S2 S3 bar is represented by this and

here also the term basically x 2 is eliminated.
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So, you can see basically we have a very compress represent for the state subset as well

as we have very compress represent as for the transactions. So, now we have represented

the model of any system is terms of state machines, because everything has memory

because you cannot have any system practically designed without having states. So, we

have represent states using BDDs how by modeling the state subset and modeling the

transition in a very cramp manner using BDD.

So, this brings us to the half way that we have given a very nice platform, because the

again the BDD that is why I told you one of the most beautiful data structures I have

personally seen in my life is binary decision diagram; whole with VLSI cad industry

standing on this data structure people have again move array from this that is true, but

that is what is the founding stone.

So, basically we have seen, but this again this BDD is coming to a boon, so represent

state  machines  states  and  transitions  in  a  very  compressed  manner  in  a  system  is

represented and we have already discussed that only this state modeling is problem, once



this  state  is  modeled  this  model  checking that  is  your  labeling  algorithm is  not  that

complex. 

But now we will see that unlike for high level decision diagrams etc, labeling is very

very straight forward using a binary decision diagram that is what we are going to see

now that  is  actually  called  a symbolic  model  checking.  Why it  is  name is  symbolic

because we are not  going to  expressively  represent  the bookie  automata  or the state

machine  in  terms  of  FSN kind  of  a  structure.  Basically,  we are  going  to  use  BDD

representation and we will go for the labeling so this is quite long. So, we will today we

will do half of it and then in next class we will try to basically complete it.
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So,  we have  seen  that  the  CTL is  a  CTL model  checking  algorithm or  LTL model

checking algorithm already seen basically, it is nothing but a labeling algorithm. So, if

the graph is very big there is the input space is input graph is very big you are going to

kill it, because this states place is basically kill it.

Now, what do you have to done because the complexity of the algorithm is related to be

Kripke  structure  basically  this  is  nothing,  but  your  system  model.  So,  for  complex

system the FSM is prohibitively big you have already seen that if you are n variables it

become 2 to the power n and if you are going to keep binary decision tree kind of a

representation that is the flat representation everything is going to blow up, it will 2 to



the power n and number of basically your transition can be order of 2 to the power 2 n

that is the square of it and everything is going to die now.
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So, basically what so that is why basically this state space exp explosion problem in

automatic verification, basically we have still going at a very low level circuits or low

level systems. Truly speaking easily if the BDD we have still not actually able to reach

this  so  called  code  uncode  the  noc  verification,  soc  verification  as  an  entire  block

basically  because  as  I  told  you still  the  BDD is  a  bit  level  and the  binary  decision

diagram at the higher level like HLBDD ZBDD etcetera are there, but still the labeling

algorithms are not been well developed in those cases.

So, still with BDD we can take we have taken the verification to a much much higher

level, but still where you are going for system level verification like nocs and socs we

had being in parts and persons like we will may be verify the router we will may be

verifying 1 core. But it is very difficult to verify the entire noc or soc taking it is details

into picture. So, that is the very very important research challenge and many people are

working towards it, so anyway let us come back to our problem again.

So, what you are basically doing we are representing the FSM in a very compact manner

using for ROBDDs. So, that the representation of the Kripke structure has become very

efficient  and now what  we are  trying  to  do we will  try  to  basically  develop all  the

labeling algorithms like EX all path in future etcetera, all those how can we do basically



on the BDD representation rather than on the state space representation. So, as this is

done symbolically, so the name call symbolic model checking, so now we are going to

dive into that again let us take a simple structure.
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So, basically explicitly we have to show this structure because, otherwise we will not be

able to appreciate the fact; but again from the previous experience nobody’s again find

the first going to make this a finite state machine and then going to make the BDD that

nobody’s going to do from the system we directly make a BDD representation. But for

elastration  basically  we  are  going  to  have  first  prepare  structure  like  this  and  then

basically very one important because, first I have told that first we have a BDD structure

to represent a sub set of state.

Now, why is it because we know that in model checking we may say that some atomic

proposition say high is true only at a state and maybe it is true only at a state, how do you

represent it? That is by representing a sub set of state that is why the first goal is to

represent a sub set of states. So, in this case in the example they are saying whatever is

the atomic proposition is basically say that it is true say S 1 or whatever sorry x 1.
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Some atomic proposition called x 1 p whatever it is rainy or heterozoan some proposition

which is true only a state that is what is the assumption basically right. So, this is the

structure keep it in mind and we are assuming that some atomic proposition which we

are taking into picture is says the x1, is true only in state x2.

(Refer Slide Time: 30:53)

Now, we will try to go for the model checking on labeling in this structure and we will

today we will see only for one operation and like EX today, we are going to study only

for EX another operations will see in the next class, because this is actually it is a quite

long to visualize how it happens.
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.

So, what basically happens so in a model checking algorithm we have a Kripke structure

and a CTL formula, so now the problem is with the complexity of m. So, now we have

we bring it down by BDD representation. So, what we do we know that for checking this

we have to model the sub or label the sub formulas of phi in the states. So, basically that

means,  what  for  initially  we will  have some states  where the formula that  is  or sub

formula is true at some of these states, that is the first state at some of the state this is

going to be true.

So,  in  BDD representation  first  we are  going to  represent  those states  as  a  sub  set,

already we have seen how to represent the subset in BDDs. So, we will represent as the

subset then we will be then from the labeling function of the Kripke structure we know

the states in which is the atomic proposition is true; that means, first we have to label the

states which are directly which are having this as true that is what we are doing, so these

states can be represent as the subset of sub this states subset is represent the BDD.

So, what is say the first statements is that we are having m the Kripke structure in BDD

form and formula  phi  then  what  we do phi  is  then  phi  is  broken down into  atomic

propositions and then we will find out in which states the phi is true that will actually

that subset will be representing as a BDD.

Then basically we have to find after that things will change for different formula, if it is

EX some algorithm will be there EX some other algorithm is will be there EU some



other  algorithm  will  be  there,  but  first  state  we  to  find  out  the  set  of  states  I  will

representing BDD for the phi is true. Then basically today we will see about EX. So, the

basically what we do in EX basically if there is a state and there is a state where phi is

true this is going to have value of EX phi is going to be true over here, because all such

parent states has to be marked with EX phi if in the adjacent state the phi variable holds

true that we arrive already you have seen it.

So, what we are basically going to do first we are going enumerate all those states which

are having the value of proposition phi true, that subset of states will be represented by

BDD. Then we will find out an algorithm in terms of BDD which we find out these states

from where there is a transition throughout the states with phi is going be true, that is

what is the return over this one.

Now, we will elaborately see that algorithm this is what as I have told you this is written

in the slide, so you can read of this anyway the notes will also be uploaded, so we are

going to this one.
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So, one very important function which we are going talk to these pre of X that is actually

the representation, therefore that means basically this is a set of states and we are going

to find out this is a this is a X are set of state with some special property in this case,

these are the steps where phi is going to be true and then basically pre of X means all the



set of states which actually have a transition direct transition to the states z which has a

special property may be the X is where the phi is true.

So, this one actually represents states from where there is a transition to a state X with

some property holds and is there exits, so there exits one transition is phi, but when you

are going to for all operation the same thing. But all the transition from first states to

good should hold for the states with this property phi is true, this is for all and the first

one is for X; that means, if all transitions need to states where phi is true then this is

going to be true; that means, this is first subsets will be found out and if you recall an

existential property then other pass may go anywhere I am not bothered, but there should

be at least one transition for state X where the phi holds, so anyway first we are going to

see about it. 

So, what we are going to have we are going to have a BDD where exist that is the first

thing first statement.
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If you see what we are trying to do we are trying to find out all those states, we are going

to find out BDDs in terms of BDDs state B x. So, B x is the subset of states where X is

true, that is in our case may be the proposition phi is true because, we when I given state

may be only two an a two states are there where the proposition phi is true.



Those two state subset will be represent in terms of BDD, then we all should also have

been had the transition relation or the transition level BDD or the BDD represent in the

transitions; then what we are going to do then basically rename the variables of B x to

their  primed  versions.  So,  there  is  one  BDD  basically  that  this  BDD  B  x,  which

corresponds to all the states where the phi is true. Then we will actually just label the so

say let us this let this is one state where the phi is true that is say represented by B x 

Now, we will makes B x prime, so what do you mean by B x prime; that means, it will

virtually make this X prime, that means it will virtually make something like this that is

the next state where phi is true, B x means present state where phi is true and if I make B

x prime then it will make a dummy structure like this next states where phi is true, then

we are going to make this operation called apply, apply dot transition into B x. That

means  what  we  are  going  to  do  in  the  next  state,  so  we  have  the  B  x  bar  means

something like this where phi is true.
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Then we are going to take the BDD of the transition structure that is called by b arrow

mark, then if you are going to make a dot product of b transition into the next state where

this one, you are going to have a structure like this so this is X, you are going to have a

transition structure like this that this all the transitions in which the next state is X prime

that is where phi is true. So, this operation apply dot B x, B x bar basically gives you all

the transitions which are of this part present state there exist at least 1 transition. 



So, the next state where phi is true because, you are taking the entire set of transitions

doting  it  product  that  is  dot  product  with something like  this  you are making a  dot

product  means  something  like  this.  That  means,  we  are  now  going  to  have  some

transitions like this 1 which will be after output of this.
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After that what we are going to do then basically now we are having something called X

and we are going to have something called X bar where phi is true, this you are going to

get after this 1 is there.

Now, what we are going to do now somehow we have to basically eliminate out because,

we are going to have because something like this, so a transition is represent as you have

seen if it is represent in terms of some X 1 X 1 may be X 2 bar something like this dot X

1 bar and X 2 bar something like this. So, we have already seen this.

Now, what we require we finally require this we have to eliminate this part has to be

eliminated because, you want to find X where in next state if phi is equal to true; that

means, this one basically this one this is going to give you the transitions. So, transitions

in BDD as we have seen we will have all the prime variables or the nonprime variables.

Now, we have to somehow eliminate this part that is you have to eliminate this prime

portion,  so  you should  only  keep  this.  So,  basically  operation  called  exists  we will

actually do it for you. Now what is the operation this is a very simple just you have to



just look at the philosophy slightly because, already we have discussed in the operations

of BDD that is something called a Restrict operation.
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So, whenever you say restrict 1 X Bf; that means, we are going to get the B f B I means

BDD if some variable X is equal to 1 and also if you say that restrict something called 0,

then you are going to get a BDD where X is equal to 0 and this is a BDD where X is

restricted to 1; that means, how the BDD we look if X is equal to 1 then we can also

make a BDD, X is some variable you can call it yz or whatever that BDD where y is

equal to 0 that is also possible very well. So, this BDD corresponds to the fact that where

X is equal to 0 that is going to the BDD look like. We can have another BDD where X is

equal to 0, so we will have a BDD where X is equal to 0 we will have 1 BDD called

where X is equal to 1. So, there are we are fixing some variables to either 0 and 1 and we

are trying to find out how the BDD looks.

Now, if I make a or of it then what we are going to get that is actually call the add. So,

you are having 1 BDD where X is equal to 0 we are having 1 BDD when X is equal to 1

and you are or it then directly from Boolean representation, find out the BDD which is

irrespective of x; that means, this 1 if X is equal to 1 if I or with X equal to 0 resultant

would be something which is nondependent on x; that means, the sub part of the BDD

which has nothing to do with X equal to 0 or X equal to 1, that is independent of x.



Similarly, we can do with n number of variables that is why something called an exists

operation. So, what exists operation does basically it eliminates some of the variables

from that function; like for example, may be I have some function called X 1 bar and

some function called a is there and then you have some function called X 1 then again a

is there.

So, if you can easily find out, but here basically this X 1 is not very much required, so

even if  I  fix it  I  am going to get  some BDD; the idea is  basically  say Boolean sub

Boolean function it is there we want to find out only that part of the function we does not

get changed with that X is equal to 0 or X is equal to 1 ,may be I have a very big

function, but only few terms will remain if X is either 0 or X is either 1. 

We want to bring a those terms that is some part of the functions we will remain some for

some parts of the formulas will remain true, whether X is equal to 0 or X is equal to 1.

So, actually apply will brining it out right for example, I told you X equal to 1 means that

part of the BDD which is true if X equal to 1, X equal to 0 means that is a restrict

operation that part of the BDD which is true when X is equal to 0 or it.

So, the resultant BDD will be something which is true if X is equal to 0 or X is equal to

1, that is actually  called the apply operation and apply operation basically eliminates

some of the variables. So, now basically this 1 as we have seen what it does, it represent

something called X something called X prime and there phi is equal to true and as I told

you it is represented in terms of some variables like X 1 X 2 X 1 bar something of this

terms actually it is there.
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Now, we have to just retain this terms we have to eliminate this terms, so basically what

we have to do we have to apply X bar, here X bar means basically all the terms which are

in the inverted from like it x 1 x 2 x 3 primer or available. So, we have to apply x 1

prime x 2 prime and x 3 prime or the parts of the BDD we have to bring it out which are

irrespective of X prime equal to 1 X prime equal 0 and so for, then you are going to

actually get this term out.

So, basically that is what they are doing, so X these are nothing, but your vectors. So, I

having  this  transitions  if  I  apply  exists;  that  means,  from  the  time  being  you  just

understand that and eliminating this parts, only if only those transitions will come out

where x 1 and x 1 prime are irrelevant for them either 0 or 1 you are going to get the

same thing, so you are going to get this transition as a output.
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I will give you an example that will make the things very very clear. So, basically let us

see that X prime and X prime bar are nothing in this case, if you see they are nothing but

your basically your state variables and prime version is the next state variable. So, first

what we do consider set of state X and represent B x, B x is the subset of state where the

formula is true we are represent this vector.

Now, basically what we do basically we have the B x bar is the next state and then B x is

the present state. So, here we will have all the nonprime variables, here we will all have

the prime variables. So, that is so this is actually they are represented by X bar.
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Now, basically what you have to be say when you are going from the apply operation.

So, what is it is doing basically apply operation is trying to get your state called as I told

you X 2 X bar and this phi is equal to true and it will have variables from both X and X

bar because, at this state transition representation is inverting both prime and nonprime

versions.

Now, we have to just bring it this state, that is the state from with the next state is X

prime with phi is equal to true; that means, we have to somehow eliminate the prime

variables. So, that is why we are going for the exist operation on the primes, that is we

are going to find out transitions which needs to 1 in the BDD which is irrelevant of the

prime variables, that is X 0 X 1 X 1 prime can be any variable, but that needs to be 1.

So, basically if you are going for this 1 it will make the BDD independent of all the

prime variables. So, therefore pre of X by this formula will give me the state this 1,

slightly involve this thing only you will get the idea that is first we are trying to find out

a subset of states called X phi, where the X bar will phi is equal to true then if you are

going to apply this  state  subset BDD true multiply with the transition,  subset of the

transition represented BDD of course we are going to have such transitions which lead to

a state call X prime means phi is equal to true ; means what we are going to get after this

apply operation, but and this is actually your x.

Now, we just want to this and not the other part this one we have to eliminate, so this is

done by basically your exists operation we exist operation as I told you we eliminate out

some of the variables which you do not want to the in that one, so all the prime variables

are you know then you are going to get the answer.
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Example this one we have to slightly go back and look at the literature or the text will be

uploading on the exists operations, restrict we have already discuss and then it will be

very clear to you. So, now let us assume that some proposition called X 1 capital X 1 or

for the time being it can also called phi whatever you want is true only in state S2.
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So, what I have to do I have to represent your BDD x is nothing, but your S2. So, this is

the subset which is actually B x, so if you see X this is actually nothing but X 0 prime,

see this is x 0 prime and x 1 and x 1. So, basically 0 and 1 is there into 1, so this subset is

represented by this 1 and of course as I told you we have to go for a representation of the

next state because it is We require something like this sorry we require finally.
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Something like this is what is your answer basically, finally we need to represent X 2 S2

bar basically because, the next state should be something like this. So, which is means in

this form S2 transition pointing to this has to be measure. So, it is something like this

fine now, this is the transition relation or this Bookie automata. This is the transition

relation for this sorry, this is the transition relation I have already shown you.
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So, anyway I am not going to again it is in just show below in maybe we can just see

there is a self loop between 0 0 to 0 0, this self loop just we see that whether it is here so

0 00 0. So, if you look at it. So, it is 0 0 0 0 so it is going to be 1 that means, this

transition is represented by this part.

So,  basically  this  is  nothing,  but  the  whole  transition  representation  of  these  whole

Bookie automata,  if  you can recollect  and you can see that  will  be represent in this

manner I have just shown you 1 part which corresponds to this self loop. So, now we

have this  basically, next is  nothing but you have to make a product.  So, what is the

product this B transition and this state x.
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So, that means this is your state and the whole state transitions your product tool. So,

what you are going to have you are only going to have this two transitions into picture.

So, let me just see if you can look at it this is nothing but X 0 bar X 1 and self loop.

So, basically next state is S2, so only that those things should remain because we have

producting S2 next state with the whole transition diagram. So, it is nothing, but X 0 just

let me let me correct it X 0 bar X 1 in the single bar X 1 and of course the next state was

present state X 0 bar and X 1. 

So, that is the self loop that will remain because the next state is S2 that is what we are

trying to look, because our goal is next state is S2 and here producting with the whole set

of transition.
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So, only two transitions will remain like in this case this is your next state which is your

sets subset and then you are producting with the n this is your next state which has to be

true and you are producting with all transitions only this and this two transitions qualify.

So, let me just trace 1 transition so X 0 0 prime then X 0 X 0 prime and X 0 bar is this

way then X 1. So, we are going to here and then basically X 1 bar equal to 1 so this is the

1 and you can see this is the 1, so that self loop is represented by this 1.

Similarly, you can track out all paths which is reading to one by this methodology right,

this is one path will be there and this will be another path which will be corresponding to

this only two path should be one, because only two transitions qualify. So, this is one

path which I have already shown you and there is another path. So, there will be only

two paths reading to one which is capture by the BDD 

Now, what we have to do so this basically represents the two transitions where the next

state is S2, where phi is equal true next we have do is very simple you have to eliminate

out all the prime.
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So, this level has to be eliminated and this level has to be eliminated, so that means we

have to find out the BDD we does not change whether this 1 is 0 or 1 or this 1 is 0 or 1

basically you are going to find a something like this.

So, this is nothing but the state S1 and S2 you can easily see. So, this 1 will be nothing,

but your state S1 and S2, if you just do the apply operation over exists operation over

then you will find out, so S1 and S2 will be there. So, like if you want to see this is 1 0.

So, let see 1 0 we can track so there will be two states basically, so 1 0 this is 1 state and

this is 0 1 so S1 S1 and S2 are the two states, so two paths which is 1 and all as a 0.

So, very easily you can go for the labeling algorithm which tells that EX phi that is

nothing but S2. So, we have seen first state we label it represent the next state that is S2

is BDD this is your whole transition structure, product it you are going to get only those

transitions which are leading to S2. So, this is one path and another path will be this one

and then we go for this exists operations that we are removing all the prime variables and

this is nothing, but use the S1 and S2. 

So, these by this where we have shown how EX can be easily operated or easily obtain

from model checking from symbolic model checking, without explicitly modeling the

bookie automata in terms of states we modeling’s in terms of BDD and we go.

Just before we will close how to go for the for all, this very simple just the dwell of it.

So, what we do is that so basically we take Sis the entire set and then what we do we take

the pre of S minus X and we do it. So, what is the idea basically S is all the set of states



of all transitions X and X is the subset of states under interest; that means, we want to

find out say these are the states and the where phi is equal to true and we have to find out

of state with all transitions are going to this one. So, rather what we do we try to find out

some states y, where one transition is basically going to some other states where phi is

equal to false that is the phi prime.

So, we are going to find out that is nothing, but your S minus X, we are trying to find out

all states basically from where this is a transition which goes to some other state, where

phi is not equal to true then we go for the same existential operation, that you are going

to trying to find out all states from where there is a at least 1 path where phi is not equal

to true; that means, those states should not belong to this category because, the category

all states from all states from where all paths reading to next states where phi is equal to

true.

So, what we will try to do we will try to find out all states because we know how to solve

the existential quantifier because, we know that preexist X we already know how to we

will be using this to find out this is for all. So, what we are trying to do we will try to

find out all states y where there is at least one path to a next state where phi is equal to

false and that is the states which does not qualify our requirement S minus X will give

you the answer. 

So, that is what is the written in the slide very simple just the dwell of it you can easily

find this out, because already we know that existential is simple to solve and how we can

find out for all, that is states S X where for where in all for all the next state phi is equal

to true all transitions.

So, just we do in the negated way we will find out all states from where there is at least 1

path  because  existential  we know where  phi  is  not  equal  to  true,  though those  you

remove from S job is basically done. So, that what is what is written in the algorithmic

states.  So,  basically  this  brings  us  to  the  half  part  of  the  lecture  unsymbolic  model

checking because, already we have seen EX and maybe or A x. 

So, this one actually corresponds to A x EX means there exists a path when in next state

phi is equal to true, the other one this one actually corresponds to A x all paths when next

state  phi  equal  to  true.  But  there  are  so  many  EU au  future  global,  so  many  other

constructs where there LTL means temporal formulas are there we will next class we will



try to see all of them and how we can solve by the same approach, modeling the states

substrates where phi is true then producting with your basically your transition function

and then exactly what the algorithm has to be followed.

Thank you.


