
Optimization Techniques for Digital VLSI Design
Dr. Chandan Karfa
Dr. Santosh Biswas

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture – 21
BDD based verification

Welcome to the next lecture on formal verification which was the part of course; on

optimisation techniques of VLSI design.

(Refer Slide Time: 00:34)

So, in the last lecture, basically we were trying to see how we can model large scale

system binary decision diagram that our motivation came from the fact that verification

required explicit modelling of the systems and if you are using a straight forward state

based representation due to the exponential nature of the state encoding the systems size

blows up. So, we were trying to see basic exciting data structure called binary decision

diagrams and we are trying to see, how it can drastically bring down the size of any

binary decision tree; yet not losing any information.

So, in the last lecture that is on the binary BDD based verification is a two lecture

module or two lecture structure because this quite it has quite a lot of material to be

discussed. So, what we have seen that basically that we are if you are given a best span

addition tree, then how we can actually compares, it using a BDD without losing any

information and it was very interesting to find, I hope that in a any binary decision tree

there are lot of redundant nodes which can be easily removed and. So, that the

redundancies are gone and you can get a very efficient representation which is nothing,

but a BDD, but then where you stop we say that given a binary tree we have to how we

can reduce it to a binary decision diagram is what we were discussing that was to show

you that what is the composite power of a BDD.

Or in other words, what is the amount of redundancy that is any binary decision tree, but

if you tell me that I have to design a BDD in that manner, it is not a very good idea to do

that. In fact, it is impossible to do it that way why because if I am giving a such a big tree

and then you are compressing the and the size of the tree is the order of 2 to the power n

where n is the number of system variables. So, it is impossible to built such a big tree, if

the input variables are 20 or more than that a typical number, then it is a it is a foolish

idea that first I blow it up and then I compress. So, that is not a very good idea or in

feasible idea to do it in that way.

So, today we are going to see is that we are going to get to go for such an approach rather

what we will do we will have small small atomic BDD’s and then we will merge them.

So, that you get an entire BDD which will represent the total function or a circuit which

is a more logical way of doing it that is we will try to build up the structure. So, that it

does not grow big at any point of time because the other way around, that take a binary

decision tree and bring it to be ready is not a possible way of handling the solution.

Then we will see that binary decision diagram basically always follows a bit level

structure and whenever we have discussed about testing in the last module, we have seen

that whatever you do whatever optimisation you do if you are working at bit level you

cannot go higher than a certain range.

So, the need of modern day VLSI systems like NOC’s and SOC’s, you cannot think of

anything any representation in terms of bits, you have to go to words or you have to go to

integers and which is more abstract view, then the bit level circuits that is we were

mainly looking at the RTL level diagrams or RTL level circuits. So, in case of BDD’s

also, we have to move to higher level of abstraction like arithmetic decision diagram or

high level decision diagrams which are actually nowadays used in place of BDD’s to

represent large scale systems of systems like NOC’s and SOC’s, the idea is even with

BDD’s, you cannot handle such large systems.

So, the ADD and HLDD based optimisation and there are so many other decision

diagrams like ZDD, etcetera, but we will see the most important 2 of them that ADD and

HLDD.

Basically they will show you how you can abstract down and till you can go for a much

beyond large much larger system than that can be even concept by a BDD. So, we will

now quickly basically go to basically where we had left last time that we have already

discussed that how we can go about constructing a BDD from the binary decision

diagram and tuning it down, but now we are going in the rather the other way round

where we will be doing it from the roots.

(Refer Slide Time: 04:17)

So, basically what it says the ROBDD for the output of an AND gate. So, that taking the

output of an AND gate. So, which is actually which we can compute by the ending of the

2 BDD’s for a and b. So, as I tell you a and b are 2 variables. So, what will be the BDD

look like they are simple as something like that a 0 is 0 a 1 is 1 for any single variable,

the BDD will be looking like this b equal to 0 means 0 b equal to 1 means 1, this is the

simplest way of representing a single variable in terms of BDD.

Now, what you can do. So, this is a AND gate. Now how can we do that. So, the second

point says ROBDD for the AND gate can be constructed by first determining the

Boolean function at the output that you find the Boolean function then construct the

ROBDD using Shannon’s expression that in another way, we can say that basically you

go for the binary decision tree kind of a diagram and then tune it out, but construction of

ROBDD using Shannon’s expansion is scrambled some because of the large size. So, this

an AND gate.

So, it is trivial, but if you with a very big circuit, you will have a big Boolean formula at

the output, you have to do a Shannon’s expression and you have to make it that will not

be a very good idea to do it that is something like you are having a very big binary

decision tree and you are tuning it down to a BDD that is not a very good solution of

doing it.

Rather, what you should do rather basically, you should try applying operations on binary

decision diagrams like we will have one BDD here, one BDD here, we have to go for

and operation we should have the provision of ending the BDD’s and finally, you should

have a reduced BDD something like this with test that a equal to 0 means 0 a equal to 1

means you have to check the value of v if b is 1, the answer is one else the answer is 0

so.

In fact, we have to get this final BDD by operation on these 2 BDD’s not by the way that

for a given big circuit you basically have the Boolean expression and then go for a

Shannon’s method of expansion and going for the BDD generation which we have

discussed in the last class, you should not follow that, but why we are discussing all this

things in the last class to give you an idea what is BDD and what is the power of BDD

how much compression it can do.

So, that was the idea we that is why we were showing it in the last class, but practically

computing a BDD, you have to grow from the leaf level a very big circuit is there, you

take all the input BDD’s which are of this form then you go for BDD operations and

finally, make the final BDD for the last circuit. So, for that is very very important for us

to understand, how BDD’s are operated that is BDD a plus BDD b BDD a dot BDD b b d

b compliment.

So, all Boolean functions we do like and or xor not bar all things are possible on BDD’s.

So, that is why it is not only about the compression power of BDD rather there are. So,

many interesting features of BDD that has made BDD and. In fact, you should be very

thankful to Bryant for finding out such a wonderful data structure. So, basically;

obviously, it is compressed.

Secondly, you can do all Boolean operations on BDD’s that is another good thing and

third is basically canonicity that we if the ordering is same and if the function is same

both the BDD will be or the functions are equivalent rather both the BDD’s will be

identical. So, that was the 3 basic features which make BDD as the most important data

structure for VLSI and digital design.

(Refer Slide Time: 07:16)

So, now we will show you very simple way of handling BDD’s. So, complement. So,

what is the complement very it extremely simple procedure, if say we are considering

that they are the 2 BDD’s I am not drawing the internal structure this is BDD 1 and BDD

2. So, if I just take this BDD B f and I if I just reverse the values that here the 2 BDD’s I

mean take the 2 values of 2 BDD’s. So, B BDD f and BDD g, now I will do some

operations on that, if I want to make because it is BDD B f BDD g are the 2 BDD’s, we

will be considering in this lecture to show all the operation first one is complement. So,

how do a complement extremely simple the most simplest of all operation. So, this is

your BDD f and g 0 one and 0 one in compression what in negation what you do you just

reverse the terminal nodes or make the values of terminal node flip; obviously, the whole

circuit will be or the whole output will be a complemented output entire BDD will

remain same the complement operation will just make this node one and this node 0 and

so on .

So, just you need to change the leaf node values then the BDD will be complemented.

So, it is simple the BDD’s for the complement, it is very you just need to reverse the

values of the leaf nodes that is what is being sent. So, it may be noted that the

complement BDD on ROBDD would result in a BDD that is ordered and reduced one

very important point I have to tell you why it has such a meaning one bad thing about the

operation is that if you operate to BDD the output of the BDD is correct, but it may not

be the reduced one it may have some redundant nodes. So, because I mean there is no

direct way people have not been able to find out any direct way of operating the BDD’s.

So, that directly you can get a compressed BDD or the most optimised BDD without

redundancies. So, what we have to do you do the operations on the BDD and then you

have to eliminate the redundancies explicitly, but one thing you have to note that the

redundancy will be very slight only a few amount of nodes will be redundant it will be

not be like that that you operate 2 BDD’s and it will become a binary decision tree that

will not happen slight few number of node will become redundant which you have to

eliminate out and then it will actually become a BDD.

So, again repeating take 2 BDD’s operate on them, you will get another BDD, but that

BDD will not be ordered, it will not be reduced, but the ordering will be maintained that

is very very important that basically ordering means if you have a b c d in the one order

and and one more important thing I have to say is that when you are operating the 2

BDD’s you have to maintain the order ordering is very important.

So, whenever you think of operation on BDD’s a common ordering, you have to

maintain across all the functions all your jobs you are doing ordering of the variables has

to be seen under that case, if you are doing any operation accepting the complement, we

are discussing for all cases it may happen that the BDD some redundant elimination

nodes may go into picture, but that will not be very high in number that will become

something as use like a binary decision tree that will not happen. So, you have to use like

tuning of and few nodes will be eliminated and you will get the finally, reduced BDD,

but in case of complement is a very simple operation just you are flipping of the values

of the leaf nodes.

So, in that case, the order will be also maintained order is always maintained basically

and it will be a reduced BDD, it should you will not have any redundant node a coming

into picture once, I will go for some other operation you will find out why some

redundant nodes may come up in a other operations, but for the complement just think

the idea that you are just reversing the value of the leaf node. So, nothing changes very

simple operation ordering of variables remain same in all operations basically not only

this, but a special case of complement operation is that the BDD remains reduced.

(Refer Slide Time: 10:41)

Now, things to start becoming more clear, why redundancy comes basically. So, we are

not taking about 2 more BDD’s that is and or so, 2 BDD’s are there, how I will do on and

or not, they we can you can read the slides that just about what I am explaining I have

written them in text for you to read. So, just see this. So, this BDD what it says that this

is B f b or this is the or BDD. So, B f 1 and I am just taking the left node that is a 0 path

of B f and I am correcting B g and I am just attaching it directly.

So, what it implies if it implies that if B f is equal to 1, then output is equal to all

operation. So, any of the BDD is giving a answer one the answer is one, but if the first

BDD is giving a answer 0, then what ten basically you have to check for second BDD if

the second BDD is also 0, the answer is 0 else the answer is a 1. So, now, you see it is a

very simple way of handling take 2 BDD’s or in basically makes such a similar structure

that basically it will be connected like this of course, the ordering will be you have to

obtain a common order whenever you are taking both the BDD the ordering should be

maintained. I will take give some examples when that will become more clear, but here

you can see redundancy comes in.

So, how the redundancy will be eliminated you have to have basically you have to

remove this node and you have to connect this one to this one to eliminate the nodes. So,

not only at the leaf level internal levels also many redundancies will come in which has

to be eliminated, but they are limited number of nodes that will become redundant, but

anyway just this gives you an idea how it happens and if its and operation, then if any of

the gate any of the BDD’s are 0 answer is 0, if first BDD’s are 1, you have to check for

the second BDD if that is also one the final answer is a one else the answers are 0. So,

now, you can see 2 redundant leaf nodes internally of some redundant nodes may be

there which has to be eliminated and then actually get the reduced order BDD.

So, idea is that you do not go for n number of operations like for example, you may have

to do a plus b plus c dot d, you do not the whole computation and start reducing that will

actually blow the complexity you do one atomic on one binary operation like 2 BDD’s

you will get another BDD which may not be reduced reduce it and then go for the second

operation and so on. So, at any point of time you are not allowing the BDD to blow up.

So, to you do tight redundancy gets in to remove it, then go for the operation with the

third operand and keep on doing it and after every operation you reduce you eliminate

the redundancy.

So, at no point of time, you will have a very large BDD and your complexity will always

remain with bounce. So, what I am saying the whatever I have told you is written in this

one in case of f plus g, if f is 1, then we did not evaluate g and if a is 0 the final result

depends only on g this is reflected by the BDD for f plus g similarly dual will happen if it

is a for g.

So, now you can see the way we are constructing BDD’s it is clear that the BDD’s are

not ordered or not reduced. So, basically the idea is that BDD f may have variables x 1 x

2 and x 3 and BDD g may have variables like a i j k l. So, new variables may come in.

So, the ordering may be changed; changed means order may be may not remain same

that is what they are trying to say and; obviously, the redundancy is lost redundancy gate

seen basically. So, you have to take care of this what do I saying that the ordering is not

maintained it says that it may happen that BDD f may have variables a b c and BDD g

may have variables a b and f. So, new variables will start coming in. So, ordering may be

hampered. So, new variables will be there. So, you have to reduce it and you have to take

care of the new ordering which may be a b c and f.

(Refer Slide Time: 14:01)

So, that way, we will take more concrete examples to do it. So, basically this is a

mathematical way of using the BDD operation called apply which is the most important

one because complement is just a bar apply is you actually take 2 BDD’s and do the

operations. So, the formal way of writing is apply of B f, B g, B f and B g are 2 BDD’s

reduced ordered BDD is and operation is add dot xor, etcetera and the Shannon way of

representing is you can just see over here . So, f of g is nothing, but equal to x bar the

expression f with x 0 plus x with the expression x express as one and similarly, for g and

when you are going for the operation this Shannon’s expression value is x bar f of g with

x x with x made 0 of same operation add star whatever g with same thing all the

variables in function g are made 0 and then x with f where all the x are made one operate

operation with g where in function g all the x’s are made one.

So, basically this Shannon’s way of representating and then basically we will now tell

you the, this is the mathematical way of representation. Now we will basically tell you

the algorithm, how to basically go for operating 2 BDD’s. So, basically they say that this

is where the control structure to apply which proceeds from the roots of B and g

downwards to construct the nodes of B f operand B g. So, basically we start with the

node and then Shannon expansion basically tell that you have to keep on moving from

the top node to the root nodes, it has like already we have seen that we first make x equal

to 0 and keep the function in the left part and make x equal to 1 do it at the right part,

now with the operations the same thing will be done.

We will take give you all the elaboration with examples. So, we are assuming that r f be

the root node of B f and r g be the root node of B g. So, we will start with basically the

root nodes.

(Refer Slide Time: 15:51)

So, now this algorithm; so, I will just give you the gist of the algorithm, then we will take

an example which will make you more clear the algorithm is on the screen please read it

because more I means understanding if the algorithm will come when you go for the

example and then coming back, but I will give you the gist. So, what it says apply we

will go step wise. So, it says that apply B f B g. So, this is the algorithm. So, for the first

step first step we have see if both r b and r g are terminal nodes with some labels l f l g

that is 0 or 1 respectively compute the value of l f l g that is we are starting with 2 nodes

basically say no this is called r f and this is called r g.

So, let let then be 2 terminal nodes may be 0 or 1, then what is may be this is basically

this is basically 0 and this is basically one it may happen in that case you do not have do

anything just take this 2 nodes and operate if we add answer will be 0 if it is or answer

will be one and so forth, if is xor, the answer will be 1 and so forth. So, and the resulting

is the and the resulting o BDD is B naught if the value is 0 and other one.

So, in that case you will have a concrete node called 0 or 1, the final answer will be b 1

or b 0 that is the final answer for this operation if both the nodes are basically r b and r g

are terminal nodes. So, this will happen when your algorithm will terminate because

where we will do the BDD operation is that you will take 2 nodes one node from this tree

and one node from this tree and finally, we will stop when both the nodes are basically

the your terminal nodes and that time the algorithm will terminate basically one is for

termination of the algorithm.

Next the other cases which will maximum happen in the remaining cases at least one of

the root node is a non terminal; that means, you have one 2 non terminals or one is a

terminal, one is non terminal, there is at least one of the non terminal nodes are there,

then they say you just look at this if both the node’s are x i nodes that is non terminal if

both the nodes are non terminal we are taking a node x i we are calling it as r f ok, if both

the node’s are x i nodes that is you are taking 2 nodes say basically we are taking may be

r f sorry we are taking both are x i nodes.

So, when we are calling both the nodes are x i nodes means both are non terminal nodes

of of the same order; that means, it is saying that if that is step 2, it is saying that if both

the node’s are x i node x i node means non terminal nodes of the same order; that means,

say I have a node called r f another node called r g to belonging 2 different say, there

may be node x 3, may be x 4 or x 5 that is they are in the same order because when I

have taking a operator of 2 BDD’s the ordering should be maintained, it is something

like that both are of the same order.

In fact, they are the same level nodes. So, basically what you do if they are of the same

order, then what you do is that basically you take corresponding to this you have a node

and then you will go for this part which one will be equal to r f. So, lo of r f into lo of r g;

that means, the idea is something like this, this is for this node is for first BDD and this

node is for left b d second BDD and r f and r g assume that they are at the same level;

that means, either x 1 x 2 x 3 something like that not at different levels ordering.

Then what you do you have to make another node which will be resulting of this node

what will be in that node that node will basically the left I am making the left node first

because we are combining the 2 nodes. So, what will be the child left child

corresponding to r f and r g, it is something like apply operation it is add or subtract

lower path that is lo child lower child of r f and the lower child of r g. So, basically this

new node will come up which is actually corresponding to the lower child of this that is

left child of this sorry the left child of this and it will also have a left child.

So, both the left child’s you take go for the operation and this one will be resulting in the

child loop child node corresponding to r f and r g and of course, this one this one will

come for the corresponding to the left child similarly we will have a right child

corresponding to r f and r g. So, what will be the result that will be the operation on the

node which is at the right side of r f operate thing on the right side of r g. So, that one

will correspond to the apply op high of r f and high of r g the logic very simple node a of

this tree node b of this tree same level ok.

Now what you do corresponding this 2 there will be a left child and a right child how to

get a left child you take the 2 parent are there you take the left child of both the node

both the parent node operate them, it will become the left child corresponding to that

node that is 0 0eth value and then similarly for the right child that is you take this 2

nodes take the right right hand child that is one for the parent nodes do the operation and

you will find out the right hand child of the parent node that is the solid line. So, 0 and

one you can do it.

That is very simple; that means, it says that if you have 2 nodes at the same level

compatible nodes at the same level, this side will be the node these are the 2 nodes the

child node of the operate operating final BDD will be the end and or or whatever

operation of the 2 left child’s and the right hand side of the final BDD will be the

operation of the right hand side nodes of the 2 parent; that means, this 2 go to the left

operate you are going to get the left child in the resulting tree this 2 parent be ready same

level go to the right child of both the both the nodes operate them you are going to get

the right child operation, you will get the right child of the in the parent tree.

But the that is what they are saying apply of lo of r f lo of r g and right side means that is

the one it will be operation of code of operation high of r f that the high of the parent and

high of the second parent prompt be this is simple if the 2 nodes are of the same level

problem will happen if basically you have something like say there is a node r f.

(Refer Slide Time: 22:03)

And there is a node called r g, these are the 2 nodes in 2 d to the in the truth trees, but

you see j is greater than i; that means, the level of r j is higher than the level of r i, then

what is you are going to do because if they are same level it simple you take both the left

child operate take both the right child operate and you are done, but here actually you

have to do it in a slightly different way as l f r f is slightly above towards the root.

So, what we will do you will operate, but you will not take the child of r j because r g is

always in the in the lower side r f is in the upper hand side of the tree. So, you will not

operate the right child of r f with the right child of r g you will not do that rather what we

will do you will keep the r j constant and try to operate from the right child of r f then

again the right child of r f, then again right child of r f with r g you will keep on doing it

till the level becomes equal. So, what you do operate lower value of r f that is

corresponding to the left and you operate with r g that is basically this r g you are going

to operate on and basically.

In fact, I was saying that it is basically r g not j r g basically. So, for all such g’s and in

fact, when you are going to get the right child you will apply optimisation code high of r

f basically that is the right side of r f, but you are not going to take any child of r g you

will repeat it as long as both the levels are equal. So, what happens basically just look at

the mathematics you can read it, I will just give you the gist what is happening r f at the

top r g at the bottom.

So, you are going to take the left child of this operate with r g you will not use the child

of r g similarly for the right side you will take the child of r g, but operate directly with

us you are not going to take the child of r g because r g is quite lower in place

corresponding to r f height from the tree from the root. So, the number of depth of r g is

much lo this is r this is the root here you have r f and below r g this is something like

this. So, r f is at a higher level. So, what happening is basically you have to bring them to

the similar ordering level then only you can operate.

Before that you have to just take the one which is more near to the leaf node or which is

more further away from the root node that you have to keep constant and you have to

take the left child right child left child right child of r f which is more towards the root.

So, that they come to a compatible level. So, similarly it can be simultaneously done like

what it is saying if r f and r g are vice versa. So, this is actually symmetric. So, in gist

what happens?

(Refer Slide Time: 24:41)

So, in gist take 2 root nodes, then if the nodes are at the same level you take the left child

of this left child of this final operate get it right child of this right child of this done, you

keep on doing it as long as the it will terminate when you operate to terminal, it may

always happen that one node is more towards the towards the root node in one tree and

the other one will be more towards the leaf node that is levels are not similar, then what

you will do you take the child of this node operate on this do not take the child of a lower

level tree lower level node, basically, similarly you keep on doing it till they come in the

level showing with an example that is the gist you keep on doing it.

Now I will give you with an example which will make the things very clear. So, this the

tree I think you can see and you have to do basically and or so, what we will do you will

just tell me that x 1, x 1’s, these are the 2 nodes name is R 1 and S 1, just I will zoom it

for you, see can see they are zoomed versions R 1 and S 1 both are x 1. So, at the same

level. So, the operation will be very simple you are going to have a node called R 1 S 1

which is basically nothing, but you have to operate now you are not going to get a that is

the or you are not going to get any answer because they are the non terminal nodes.

Next what next I am going to take the 2 nodes basically sorry this is the root node fine,

now, what you are going to do now you have to operate on. So, this one is the starting

point, now I have to keep on doing it now basically say I have to now, the I will go to

show you the structure.

(Refer Slide Time: 26:15)

So, this is the R one and S one. So, this I am already gone done this is root node both are

the same level. So, this is done now you just see the next is R 2 and S 4. So, next I have

to find out. So, this is the root node corresponding to tree. Now I have to say that I have

to find out the next level. So, what is the next level here it is R 2 and here it is S 4, you

can see, this is the terminal nodes.

So, it is S 4 till now, it is fine, but now there is a problem, there is an issue, now till now

at this point the levels were similar, both were at the same level. Now I am coming to

another level where there is a level difference. So, what is the level difference it is saying

that it is R 2 and this is S 4. So, the level difference will start coming up from here. So,

next is I have I have the next is basically R 2 is the left child of this and S 4 is the right

child of this. So, you get a node over here up to it is fine, now if I start going for the

higher next level.

So, next level what you are going to see you are going to see that this is x 2 that is

nothing, but R 2 and S 4 that is your terminal node now there is a level difference. So,

now, you cannot do like previous step previous step what you have done as x 1 and x 1

are at the same level that is R 1 and S 1 of the same level. So, you were taking this and

you are going to take this and you are going to find out a node called R 2 S 4, but now

you cannot do like that now, what is going to happen, now as I told you, the S 4 is always

at a very lower level correspond compare to R 2. So, now, the next one you are going to

have these are all dotted lines left ones are dotted just take it.

So, now what is going to happen now you are going to have from R 2 you are going to

have R 4 that is the left, but here I will actually not go even if is a leaf node, but what I

will do is that I will not take any left or right, rather, I will keep it as S 4 that is here I am

taking the left child, but here I am keeping a constant at the constant level because in the

second tree I have always further down in the level, but here I have to come down. So, it

will be R 4 and R 4 and S 4. So, here I will come over here, but here it will be remaining

over here next from here also you are going to take the value called left.

So, it will be R 6m sorry m it will be R 6 and of course, it is going to a left child, but here

actually is a leaf node you cannot go at any left child, but assume that if you even if its

further upper in the level and it is a non terminal node still as x 3 is at a higher level

corresponding, sorry, towards the if your higher level means it is more towards the root

and it is more down the leaf. So, you cannot take any left or right child from here till this

first tree actually comes to the same level.

So, as of also it is not coming to the same level. So, from R 4 you are going to go to R 6,

but S 4 will remain constant because x 3 is more near towards the leaf correspond

compare to the S 4. So, now, both of them have come to a leaf level now you can do the

operations. So, 0 dot 0 is nothing, but equal to 0.

So, this actually computation, but more importantly to emphasize that it may not be a

terminal node it may be some non terminal node also in that case you are going to have

R 6 and S 4. Now next step, you may have if you have something like this then these 2

nodes these 2 paths will be operated on and you are going to get a new tree new node

again repeating quickly just a gist what we have told you that you have to always

maintain the labels.

Operation is very simple, first you will start off with leaf nodes root nodes they are

similar level; so, no problem. Secondly, you are going to have a path of combination of

this 2 that is the left child of x 1 that is R 2 and the left S 1 that is S 4, you are going to

have a node like that after that the interesting things come because S 4 and R 2 are not at

the same level. So, what you will do the next node will be R 4 combined with again S 4

because they are not in the same level next, what we will do again you are going to take

the left of x 3 and still it will be the S 4 only because now the levels are same now you

are going to do an operation you are going to get the value 0, but had repeat not be a

terminal node after which in this if I consider this a non terminal node then from here

you could have taken the left of this and left of this and find out a . So, you have to wait

till the labialisation happens and, but if you read a terminal nodes, you to stop over it,

very simple over there.

So in fact, this part will be very similar you will have a single node structure over here

both x 3. So, the right hand part will be operation of R 3 and S 2 and x 3, you are going

to have a similar level. So, both this left and this left will be there here you are going to

have a right node this was the levels are same. So, there is no problem. So, right path

there is always maintaining a level same level over here. So, there is no question of any

waiting the operation is at the level by level, but in the left part as I have shown you till

you maintain till the both the operating nodes come at the same level. So, here the order

level means ordering level is 1 2 3 and 4 and then root basically. So, you have to wait till

both the levels are come otherwise one guy only will come down and other has to wait

till there. So, this is the structure.

So, R one and S one then next is R 2 and S four. So, this one basically this is the tree R 2

and S 4 then again this one is R 4 and S four. So, as I told you. So, this is R 4 and S 4 and

then finally, R 6 and S 4 that is sorry that is R 6 and S 4. Now the labialised is happen by

chance this is both are terminal nodes. So, and 0 and 0 the answer is a 0 the right hand

side, already I told you it is a very normal way of building the tree here you can see the

right side is R 3 S 2 same level.

So, it is R 3 S 2 and this is R 5 and s. So, it is R 5 and S 3. So, similarly this is R sorry

this is R 5 and S 3 is this stuff and then again it will be R 6 S 4. So, same level R 6 and S

4. So, both R basically 0. So, 0 or 0 is answer is a 0 so, this is a 0, but if you take the

right side. So, that one is going to become a R 7 and S 5. So, R 7 and S 5 that is equal to

and of 2 ones. So, the answer is a 1. So, this is how the tree will be built up BDD will be,

but up.

Now, here we will be finding out that there will be lot of redundancies like. So, many

leaf nodes will be similar ones will have come up. So, that you have to reduce. In fact,

you will find out that if you try to calculate many of the basically the internal nodes will

also be redundant like as I as you can very easily I can see that may be this part and this

part looks somewhat similar type of BDD’s. So, all the redundancies you have to

eliminate typically the leaf node should have redundancy this part and this part more or

less similar. So, I can have a path from here to here. So, all the redundancies steps you

have to eliminate now, then you can go for another operation.

So, as I have shown you the way of operation is very simple take 2 compatible nodes do

the operation non compatible nodes means non labialised nodes you have to keep on

doing left right left right till the operation comes that when both the nodes are at the

same level. So, if some is lower in the level to the root only the left will come, then it

will have the same level then you can again go on repeating with the same level of

operation. So, this keep on going as the as the tree you have done and finally, whenever

you will have both the operating nodes are terminal nodes, then you get the values and

you stop, but there will lot of redundancy inculcated in this process like many leaf nodes

will come up internal node structure as I have shown you over here are redundant. So,

you have to eliminate the redundancy.

(Refer Slide Time: 34:04)

One very important thing I as tell you here you have to reduce all the redundant nodes at

operating any 2 BDD’s, before you go for operating the third BDD because if you keep

the redundancies things will keep on going up. So, operate reduce operate reduce this

way you go. So, I have no stage in time, you are going to have a very big that is what is

the idea of BDD’s. So, whatever I told you in English is written in the slides like, say for

example, how we have taken R 1 and S 1, then by step 2 of the algorithm in which case

both the nodes are labialised. So, you operate R 1 and S 1 and you are going to get the

next child that is basically equal to R 4 and S 4.

So, whatever I have told you how the operations are done and if the input is this you start

with R one and S one that is the root node; so, you are going to get the root node like this

there is basically R 4 and S 4, how do you get R 4 and S 4 you are going to get if you are

operating state 3 on R 2 and S 4 because R basically S 4 is the node which is quite down

the level compared to sorry S 4 is more down to the leaf node compared to R 4. So, R 4

will basic sorry S R 2 will change to R 4, but S 4 will remain constant. So, which are the

step algorithm step I have used that is the step number 3 and so forth.

So, this slide basically tells you whatever I have told you that what are operations being

done that it is saying that op of low of r f, but r g is keeping in constant because you are

going to take the left right child of r f that is nothing, but R 2, but S 4 is keeping constant

because it is down more downwards the leaf node. So, you are going to operate or on R 4

and S 4 R 4 is nothing, but the left child of R 2, but S 4 is the minimal constant. So,

whatever I told you the steps how they are some of the steps are being illustrated in this

slide you can read it this is just the mathematical representation you can easily correlate.

(Refer Slide Time: 35:56)

So, this is the final o BDD as I told you that there was some similar looking structure in

the BDD. So, I have eliminated the 2 similar looking BDD’s that is the sub BDD’s which

were similar and I am getting to get a final reduced order BDD now I can do another

operation on this that is not a problem it will again may have some more extra

redundancy if I do another operation you eliminate and keep on doing.

(Refer Slide Time: 36:17)

So, that is what is the idea of BDD construction using operations you have a very big

circuit take a take a gate take the inputs constructive BDD for the output of the gate

reduce the redundancy there itself then you can take another gate in the forward and find

out the BDD for the next level of gate and keep on doing it for every gate computation

output of BDD, you have to reduce it at that stage only, you it is not like that you will

computer for 2 or 3 gates and then reduce at a time if you do this the intermediate BDD’s

will become very large in size and your whole idea will be lost.

Then one more interesting operation on BDD’s called restrict. So, restrict means

basically you want to see if I make one variable 0 how the BDD or where are the binary

function looks like if I want to make one variable one can the you can ask many

questions like if this variable is 0, then what will be the BDD or what will be the binary

Boolean function look like can it still be one and if it is still 1, what variable has to be

one and. So, forth like if you want to see that this 2 BDD’s are not equivalent or this 2

functions are not equivalent, but what if I make y equal to 0 that for example, I assume

that for circuit or a system the y is always 0 under that circumstance whether the 2

BDD’s become equivalent.

So, that is some very important operation in final verification which is called restrict in

restrict means you stop the value of a variable at 0 or 1 and try to study the BDD’s itself.

So, that is actually called restrict. So, restrict 0 or 1. So, if I want to say that I want to

restrict x 2 0. So, what we have to do. So, if there is any variable called x node

corresponding to this you eliminate that node and redirect on incoming edges to low off

in. So, if there is a variable called x node x. So, this may be the lower path there may be

another node called y.

So, all you have to eliminate this and all paths coming to this node has to be redirected to

the left child of x; that means, because this one is eliminated because I will not consider

in its BDD of sub BDD which corresponds to y equal to x equal to one. So, I will

eliminate this and all edges I will redirect over here similarly for the restrict 0 in restrict .

So, basically this is sorry this is restrict 0. So, I will do it in this one restrict 0 means you

want to study the value of the Boolean function if x is equal to 0 if if you want to restrict

it to one; that means, I will make x equal to one then I want to study how the BDD looks

like as the example I have given you that 2 circuits whether they will behave the

similarly if one input is stuck at one.

Stuck at or in the sense, I restrict it to 1 because I know that that is a reset line and the

reset line will always be equal to one for certain purposes. So, under that circumstance

whether the 2 circuits are equivalent in that case basically you go for the restrict

operation. So, basically in restrict operation we take the node which has to be restricted

eliminate it and all the incoming nodes will be direct to the left child or to the right child

depending on whether its restrict 0 or whether it is a restrict one example.

(Refer Slide Time: 39:06)

Like this is a function and I want to basically apply x 3 equal to 0; that means, I want to

see if x 3 is equal to 0, how the circuit will be or the function will look like and so forth,

there can be different purposes how to do that. So, basically what they will do they will

actually eliminate this x 3 and whatever incoming edges from this will be redirect

directed to here and of course, this will be no longer there. So, this guy will be hanging

you have to eliminate it.

So, that is what has been done you have taken this one from here this one all the

incoming edges to this one to the left because you are assuming that x 3 is equal to 0. So,

everything will be redirected over here it had one path to the rights which corresponds to

x 3 equal to one that you eliminate. So, this is a sub BDD which is hanging which you

have to eliminate it and then basically you are going to get a to eliminate it this is what is

your BDD will be looking like.

Now, it is I have told you we may have another similar function you want to find the

equivalence of this or satisfiability validity whatever by making x equal x 3 equal to ;

that means, I want to see the behaviour of some function or circuit if x is restricted to this

one. So, these are very important operation. So, like add subtract multiply you can easily

do by the off the algorithm I have told you for apply restrict algorithm I have told which

is very obvious complement is a very obvious algorithm now there can be lot of other

operations of BDD like xor satisfiability, whether they are exist, but everything can be

implemented in terms of this basic operation.

So, that is why I am not going into that you have to take some combinations of this and

you are going to find out the BDD which will actually take that implementation xor are

very straight forward some there they are exist for all. So, all such operations can be

done in basic in by the way of this apply restrict and your complement operation. So,

basically before going to the high level decision diagram let us come to again a gist what

we have understood binary decision tree is very good well accepted standard problem is

that exponential complexity.

So, not even circuit with ten gates or ten inputs can be handled what or can be verified

that that because a system with ten input variables the order of 2 to the power ten came

to a boon is BDD, BDD will actually take a basically you started with explanation side

you take a b d binary decision tree is there you keep on eliminating the redundancy you

are going to get something called a binary decision diagram compression is as high as

ninety nine percent plus for most of the cases. So, BDD become a defect to standard of

where you can represent all the systems in a very compressed manner.

Now, the next the question came is that from where I will construct the BDD from a

circuit or from a binary decision tree by using Shannon’s expression we want to do it the

idea is that how we can build the binary decision tree itself is not possible quite large. So,

how we have to do we have to go by the operation method you take any circuit take the

input BDD operate and get the final BDD of the output of the gate then eliminate the

redundancy there itself because I have shown you operation trade redundancies for

operation 2 important things are there, the ordering you have to maintain and after every

operation, you have to go and eliminate the redundancies.

Here the redundancies will be slight, it will not be like it will become a binary decision

tree slight in slight increase in the number of leaf nodes and intermediate nodes may

happen which you have to eliminate, you have to keep on doing it after every operation,

if you keep on doing it never at any point of your time BDD will be larger. So, at every

operation or after every gate of gate the output BDD will be small inside. So, whenever

you get the BDD for the entire second it will be with the manageable .

But still how long if you are going to go for a very big circuit like NOC and SOC even

the BDD is going to fail people have found out that typically hundred input circuits if

you are directly going to apply BDD there will be lot of issues. So, they break up the

circuit into codes of inferences some divide and concurrent policy they do, but anyway

they cannot handle a very large circuit like NOC and SOC. So, people said that we have

to go away from the bit level to higher level as we have already seen in case of testing

that we have to go from stuck at faults or bridging faults to higher models of faults like

which are more near to software engineering and you have to go for register transfer

level modelling similarly in the case of binary decision diagrams.

So, decision diagrams lots you can find out in the lot of papers, but the godfather is

Bryant, he gave the idea of this compression after that people have used it for different

kind of binary decision diagram like arithmetic decision diagram high level decision

diagram etcetera and there are. So, many, but mainly in this class we will construct

around ADD and HDD.

(Refer Slide Time: 43:33)

So, one the First one is actually called the multi terminal BDD. So, what is a multi

terminal BDD, basically if you have a function in which the outputs are non Boolean

generally we may have if you want to do some expression on 3 plus 5 and we want to.

So, the answer is in integer if you want to go for BDD you have to make represent 3 as

binary 5 as binary and things will start blowing up. So, multi terminal binary the idea is

say that it is very similar based on the success of BDD, there has been several efforts to

extend the concept to represent over Boolean variables, but having non Boolean ranges

the first is something like that BDD is very good x is 0, x is 1, x 2 is 0 1 that is binary

enumeration of the variables will be there or the answer may not be represent in binary it

can be 2 3 4 5 or integers that is why they call it as a multi terminal BDD.

So, functions of a Boolean variables, but output is non Boolean they may be integers or

real’s where they are apply many places like probability technology mapping program

verification arithmetic verification etcetera. So, many n number of places you may find

out because if I represent the numbers in binary size will be larger if I can represent in

decimal the smaller. So, therefore, the called lead are the multi terminal BDD or

sometimes it may also call it as arithmetic decision diagrams because we have in the

terminals you are going to have basically the integers or real numbers.

So, this are the very straight forward approach keeping the variable Boolean. So, if you

keep the variable Booleans you can have the same branching structure like a BDD or a

binary tree or the or the same philosophy you can apply, but the number of leaf nodes

will be more and will be more compress because if you are going for a binary. So, 4 will

be a implemented by 1 0 0 5 will be 1 0 1 and things will start blowing up.

(Refer Slide Time: 45:17)

So, that is what is the idea of multi terminal BDD or arithmetic decision diagram and

example is better to illustrate because operating on this BDD or multi terminal BDD also

possible compression is also possible reduced ordering is also possible all the stuff we

have seen in BDD’s are also applicable over here, but I am not going into the details

because that is more involved compared to BDD, but the idea is similar take 2 nodes

operate take the right child maintain the labialisation the algorithm will remain same, but

slight integrities will come in. So, without details we are not discussing in the course, but

we are trying to give the philosophy how it evolved. So, there is a function which is

actually you can see it is x 0 2 x plus 3 x.

Now, x 0 x 1 and x 2 are binary variable either 0 and 1, but 2 and 3, I am not going to

represent as a binary I will keeping at a decimal. So, how the tree look like it is is very

interesting to see the tree is something like this 2, 1 and 0, this is the level. So, what I am

having x is equal to 0 x x x 2 equal to 0 x 1 equal to 0 x 3 equal to 0 all 0, the answer is a

0 because x 0 x 2 into 0 3 into 0 all 0, but if the value is x 2 equal to x 0 equal to 1 x 0 x

1 equal to 0; that means, 2 into 0 is 0 x 2 is also 0 3 into 0 0 the answer is a 1. So, 0 0 x 0

the answer is a 1, I will take some other path it will be more interesting.

Let us take the case x 2 equal to 0 sorry x 2 equal to 0 x 1 equal to 1, x 2 equal to 0

means this one is equal to 0 x 2 equal to 1 means 2 2 into 1 is 2 and again x 0 is a 0. So,

the answer is 0. So, 0 plus 2 plus 0 is equal to 2. So, this is the path and you can see, I

have a leaf node which is equal to 2, had it been binary things would have blown up

another interesting case x 2 equal to 1 x 2 equal to 1 means 3 into 1 is 3, then x 2 equal to

0; that means, x sorry x 2 equal to 0 means sorry sorry sorry this one is x 1 extremely

sorry, this one is x 1 same labialisation.

So, x 2 is equal to 1; that means, the answer is a 3 x 2 a sorry x 1 is equal to 0; that

means, the second term is 0. So, the answer is 0 finally, x 0 is also equal to 0. So, 0 plus

0 plus 0 is 3. So, this 3 is a i is a redundant node. So, I could also have a 3 a here, but

actually I do not require a 3 over here because already the leaf node is their redundancies

eliminated.

So, because another way I can get tree because x 2 is equal to 0 x 1 equal to 1 and x 0

equal to 1. So, this term goes 2 plus one becomes one. So, that is 3. So, that is another

path which is the redundant leaf node. So, I am actually merge them. So, you get the

structure very similar to BDD the architecture is very very similar to BDD the logic is

very similar to BDD here, I have only shown how the leaf node because the maximum

value can be one plus 2 plus 3 that is equal to 6. So, the highest value of the leaf node is

6. So, this is actually a multi terminal BDD you can express any kind of integers there.

So, the leaf nodes are not one, but not two, but rather more compared to each of integer

variables, but if you can see the structures somehow looks like a binary decision not a

binary decision diagram it looks a binary decision tree, but some philosophy I have

applied in the leaf node. So, the answers are eliminated over here. So, people actually

started with when people moved away from BDD to abstract level they started something

called a multi level BDD just like it philosophy will remain same. They will take a

binary decision tree and they will start applying the philosophy of redundancy

elimination in slightly roundabout may not in as simple as you can do it in BDD for

multi terminal BDD the elimination of redundant nodes etcetera is slightly non straight

forward.

So, you can will put up the references in the way. So, which you can which you want to

see, but basically the idea is similar you take a BDD you can reduce the if it is a binary

decision diagram concept of BDD will reduce redundancy and make it compact same

thing, they have tried over here they have started a multi terminal binary decision tree

not a diagram then they will start reducing the redundancies and they will get a very

compact representation which will be very synonymous to binary decision diagram, but

with multiple terminals.

So, that is what people call as the arithmetic decision diagram that is what is the idea

have not shown the details steps of how redundancies can be eliminated accepting in the

leaf node, but the structure is slightly I mean involved because here is not 0 and one you

are having multiple values, but still the same philosophy will be applied and you are

going to get a very compressed structure. So, that is one school of thought which actually

started moving from BDD’s to arithmetic or multi terminal diagrams, that is more

abstract or compact representation so.

(Refer Slide Time: 50:00)

Ah the problem here is that multi terminal BDD’s can implement a large range because

2000, 3000, 4000, this integer can be there, but the problem is that there is 2 two to the

power n possibilities because is its looks very similar to a for the philosophy is very

similar to a binary decision tree, but idea is that that is what this are the some extensions

like edge valued BDD binary moment BDD’s they actually take the philosophy of binary

decision diagram and applied on multi terminal BDD and they compress it and finally,

people found out that such philosophy can be applied, you can get a what you call they

call it binary moment diagram not actually binary decision diagram which is very similar

to a binary decision diagram well compressed no redundancies, but you can still

represent integers, but as I told you these mathematics behind is quite involved.

So, you can look at it, but in this course we are just going to give a given the idea how it

happens by actually eliminating the redundancy at the leaf node. So, that it can motivate

you that the same philosophy can be applied rather what we will go to is something the

most advanced version one which is actually called the high level decision diagram that.

In fact, rather than trying with this, binary variables itself because in this case the x 0 x 1

x 2 are binary variables.

There are then go in binary and taking the output as decimals or real the whole thing can

be itself.

(Refer Slide Time: 51:22)

Converted into a high level abstraction that is the most advanced version of so called

most advanced means most published high level binary decision diagrams or high level

decision diagrams is what is the most advanced or it can handle the most complicated

kind of circuits by the philosophy of high level decision diagram that not even the input

variables will be binary it is that everything will be at the RTL level at the c functional

level or the very log level or the hardware definition level. So, that is why you are going

to look more into HLDD. So, as I told you BD is an HLDD are good for digital systems

are logic gate level, but wherever you go for abstract system of systems like NOC and

SOC no way you can look at binary you have to go at RTL.

So, the HLDD’s or high level decision diagram sometimes we call HDD, sometimes we

call at HLDD were introduced 2 knows that gap that if you have a HDL representation or

RTL representation, how do you go about it. So, HDL is are very very popular for high

level and hierarchical test generation, it can be very easily you can represent or model

circuits at the RTL level. So, it is can be used for fault simulation test generation a

normal means verification of circuits at the RTL level.

So, when you are verifying circuitry RTL level we assume that when the RTL level will

be converted to gate level the equivalents will not be lost because nowadays from RTL to

gate level conversion is more or less automated by some of the algorithms which

Professor Chandan sir has already taught you that express O 2 level minimisation and so

forth. So, given the RTL the gates can be always obtained by some state forward

algorithms which are known to be correct by construction.

So, we are not much bothered at the equivalence level at the gate and. In fact, you cannot

do that it is infeasible taking consideration of the size of NOC’s and SOC’s. So, what

best we can have we can have the equivalents tests at the RTL and below that we assume

that as they are more or less mechanised. So, equivalence will be there. So, therefore,

basically the Boolean values are now extended to basically high level high level means

representation in terms of RTL. So, that is why variables in form of Boolean values are

now extended to vectors Boolean vectors or integers that is and Boolean functions are

extended to data manipulation operations; that means, we are all moving it from binary

or Boolean level to functional level.

(Refer Slide Time: 53:43)

Rather, I will just very quickly I means go into the mathematical definition which I will I

will try to deal with bit quickly because this can you read it offline and understand what

it means rather I will focus more on examples. So, what is a HLDD? So, basically it

represents it is representate by this formula GDD, it has some nodes initial nodes some

transitions some functions within the nodes some other variables like output function and

all. So, it is a 1 2 3 4 6; 6 tuple.

So, now what is n? N is the set of nodes n and n is the initial node that is always there

then n is partitioned in 2 sets here actually one important thing is there here the nodes

will have terminal and non terminal nodes is non terminal node has an expression called

exp n i. So, do not think about the mathematics that you can read offline just you think

that it is a graph and there are some nodes some nodes are terminal and some nodes are

non terminal that is leaf nodes and non leaf nodes and each node non terminal node, we

will have an expression and each terminal and each expression may be a control signal or

a condition.

And terminal nodes basically have a operation and each terminal node is associated with

an operation like add or subtract and each non terminal node basically is a control signal

or or a condition like signal input signal a equal to one input signal a equal to 0 input

signal a is or a is greater than b, some conditions checks based on the input signals or the

register values will be the non terminal nodes terminal nodes will be some operation a or

b, b or c, c or d which will update the register it is something like depending on some of

the some of the variable values like a is greater than b, a is less than b; that is more or

less the register outputs that will be represented by the none terminal nodes and based on

the conditions some operations happen which update the value of the registers. So, that

will be represented by the terminal nodes just take it that way.

(Refer Slide Time: 55:38)

Then there are of course, transitions there are of course, transition they represented by

the transitions and the another important thing which are which are additional basically

compared to any normal finite state machine or be if any structure there are some finite

functions dependent on the non terminal nodes to evaluate the expression associated with

them that is the non terminal nodes will have some functions like which I have told over

here which will see while other they will be used then they are the expression associated

with each non terminal node n I is abbreviated by tau i.

That means, if you have a non terminal node, then you will have some expression

internally that is expression gap and there is a function this one which will evaluate this

expression and based on the evaluation basically you are going to take the outgoing

transition if this function on this expression is true for this path it will take this or it will

take this or transition will have some fixed marker condition whose truth will tell

whether it will go or not; that means, these non terminal and expression is fixed the

function which is which each non finite non terminal node.

It will operate on that and it will find out some answer if that matches with this transition

it will fire otherwise the other one and so forth and output of each node as I told you, if

you look at this these are the 2 these are 2 things I have discussed they say that the third

point says that these are some of the finite set of functions defined on the terminal nodes

that is as I told you each of the terminal node will do some operations. So, this will be

depending on that one the operation associated which is terminal node is evaluated by

the function.

Now, one more important thing that is each of this state will have a finite set of constant

associated with transitions these are some of the constants; that means, as I told you there

is a state.

(Refer Slide Time: 57:30)

And there is some expression this expression will be evaluated by this and there will be

some outward transitions and the constants basically like x of tau one x of tau 2 this state

is x tau 2 some conditions will be or some constants will be assigned to each of the

transitions. So, if this expression on this function corresponds to this condition if this one

will fire otherwise this will be fire; so forth. So, this is way the things will go on this is

the mathematical representation I mean just as we all defined such complex mathematics

before we go to a real example.

(Refer Slide Time: 58:02)

So, this just the mathematical if do not go means go means just think that it is very

complicated it is just a mathematical way of representing an HLDD.

So, when I will just tell you the example I will show you an example things will become

very very clear, but when you are talking some formalism of decision diagram anyway

you have to tell the formal definitions. So, a transition basically from one node n tau to n

tau plus basically is generating is always something happens that it will always from a

non terminal to a terminal or a non terminal to a non terminal. So, this actually the initial

tau this, the final tau and each transition basically we have some expression over here

this is a function and there is a constant x of tau over here that is what is being told over

here.

So, this one will evaluate this and if this one will match this constant then the transition

is going to fire that is what is being told by this formal definition. So, the transition tau is

said to occur successfully if the evaluated value of the association expression this one on

tau is matching to x of tau this the capital tau, then basically that is what is being told

over here that if expression of tau evaluates to equal to x of tau; that means, this is x. So,

this is x of tau, then this condition will take place example.

(Refer Slide Time: 59:21)

So, this is basically your graph. So, as you as I told you these are the or the these are the

non terminal nodes non terminal nodes these are the terminal nodes these are the

terminal nodes. So, now, as you can see each of the non terminal nodes have some

expressions and sorry this is terminal node terminal node has a operation operation n

operation n 4, there can be a one plus a 2 a 2 plus same thing like that non terminal

means some expression.

So, expression may be a one greater than a 2 or it can be just one signal itself like reset.

So, it will evaluate whether reset is true or not and this x of tau 3 is a constant for

example, is I say that expression 3 is reset and this one x 3 is equal to one so; that means,

what this is going to fire if and only if reset is going to be a true; that means, tau of this

one is going to be a; that means, tau of capital tau of n one node will check whether reset

is one or not if it is one it is going to fire similarly here I can say that there is a signal

called hold.

So, capital tau of this of hold will be evaluating let this be equal to one x of tau one is

equal to one x of tau 2 this is the constant value is equal to 0. So, this transition is going

to fire if the hold signal is one and this one is going to fire if the hold is equal to 0 now

who is going to verify this tau function which is expression with this one here expression

n 0 is nothing, but here hold . So, which very very simple on that the few slides, I had

shown before is the mathematical way of representation. So, whenever you are going for

verification when you are going for binary decision diagram representation you have to

go for the automata theory way of representing.

(Refer Slide Time: 60:49).

So, this is just the example I have told you. So, it says that what are the set of nodes these

are the set of non terminal nodes n 3 and n 4 are the set of terminal nodes what are the

transitions what are the constant values the x i is constant value then basically how this

one tells that how the function is evaluated like if tau expression evaluates with n if the

value of tau naught 0 expression is equal to tau of x 1 then expression one will take place

otherwise the expression 0 will take place that is what I have expect that is written in this

slide in text.

So, that you can read in when you are doing the lecture because whenever we are trilling

the example it is simple to understand, but when we are going try to correlate

mathematics with it then it requires some slow phase of understanding. So, you have to

just read through the slide and try to correlate anyway the nodes will also be there.

(Refer Slide Time: 61:36)

Just finally, before we close down with the decision diagram see example this is a simple

multiplexer circuit there is a multiplier over here. So, what it will multiply it will either

multiply in 3 and it depends whether in one or in 2 will go because it is a multiplexer is

over here this is a multiplexer. So, the multiplexer will actually tell you whether in one

will go or in 2 will go and the multiplexer will this multiplexer will be either multiplying

in one its selects in equal to 0 then in one is going to come it will be multiplying with in

3 and if this is equal to 1 and in 2 will come and you are going to get the multiplication

and you are going to basically get the answer.

So, that is what is the circuit and there is of course, a register which will latch the value if

the register enables signal is equal to one.

Now, internally you can see multiplier can be very very be it can be a 32 bit multiplier.

(Refer Slide Time: 62:69)

So, it can have multiplication values from 32 bits means 2 to the power 32 can be the

range order of that. So, you can understand if it is a multi terminal BDD how many

nodes it will have infeasible numbers. So, how it, but here it is only a simple structure

because is an RTL level. So, the whole data path has been actually compressed all this

already we have basically discussed when we are discussing RTL level testing that if in a

data path if you are going to explicitly enumerate the numbers. It just going to blow up

even if it is a BDD, it is a multi terminal BDD forget BDD multi terminal BDD.

BDD means 2 to the power 32, even BDD fails for such high input size and BDD never

works for multiplier is already been seen that compression is always very good, but for

multiplier circuit BDD generally does not work that well does not work means

compression is not that efficient. So, in that case basically anyway those part aside. So,

here the multiplier is given as we have seen, but when you are taking an RTL, it is as

simple as what I have shown over you just 5 nodes because it is at a RTL level means it

is quite high abstraction and. In fact, it is the only optimisation this is the only way of

optimising circuits that is going from circuits bits to RTL level is only way if you want to

model large system like NOC’s and SOC’s.

So, what you see these are the 2 terminal nodes this corresponds to the multiplication

answer evaluation. So, n 2 into n 2 into n 3 and this one is n 1 into n 3 because as I told

you there only 2 ways of doing it n 3 is constant, it will be multiplied either with n 1 or n

2, then next what. So, these are the non terminal nodes. So, register enable is the

expression behind this and if I consider the function tau over here, it just checks whether

the value is 0 or 1 just reads and find out what we enable is one or not.

If the enable value is 0 then register is just going to hold the old value. So, therefore, this

terminal node the expression is reg, this actually evaluation a kind of dummy evaluation

that it just retains the old value if register enable is equal to 1, then only it is going to

latch. So, then I am going in this direction if the multiplier select is equal to one; that

means, this terminal is going to come in you are going to get n 2 into n 3.

So, this is what is the expression if mux is equal to 0 n o is going to come and the output

is equal to n one into n as simple as that. So, even RTL circuit just you have to model it

in terms of this high level decision diagrams and lot of, but one thing I should tell you it

is not as convenient as BDD because till now there is no very widely accepted result that

it is canonical or whether it how it can be reduced or how equivalence can be studied.

So, they are people are all trying to work out the good things about BDD’s canonically

canonicity or if you take 2 orders if there is equivalent the system will look similar

redundancy if you eliminate then you are going to get a minimum structure for that

function and so forth. So, all thing operations on BDD all the Boolean operations can be

done. So, now, people are trying to work find out algorithms that how those philosophies

can be moved to high level decision diagrams.

So, as I told you that these are all not much these are not much I mean there is not much

published work or well accepted work that how this can be directly mapped into the

philosophy of BDD they are all open problems. So, one of the idea of doing this course is

that to lead you into good research problems.

So, one of the research problem is that how you can verify large circuit at RTL level

because at the gate level BDD is there lot of tools are available over there which

Professor Chandan has already discussed with you, but when you go for the abstract

level you will have a binary decision diagram or a high level decision diagram arithmetic

decision diagram, but we are do not we are I mean such type of well established

algorithms which will prove the canonical that the or the algorithms which you are based

on the properties of canonicity or if the ordering is same you will same BDD.

So, all those philosophies actually are not that way widely accepted or not yet published.

So, the idea is set that you have to go at the RTL level, you have to go at the high level

decision diagrams, but what will be the exact structure of the high level decision

something like this or slightly something has to be modified. So, that the structure you

are going to get is canonical and if you and if you take a same variable ordering you are

and if the 2 functions are similar, you are going to get a similar HLDD which are the

most important parameters required for verification hold or not.

So, the research you have as a students or I mean industry people or researchers you have

to try think again that direction that how I will go for high level decision diagrams and

still go still have the philosophy of BDD built in it ok. So, this slide is nothing, but

whatever I have told you.

(Refer Slide Time: 66:48)

In English that basically that how this BDD has been constructed is written over here that

is basically that is it has first input is a n, it is always there is a multiplexing in between

this then how basically how the register enables signal, etcetera.

(Refer Slide Time: 67:07)

And how the BDD is basically constructed that is explained in these 2 slides, it tells that

n node is the initial number. So, the 2 multiplication operations this and this are done by

the terminal nodes and all the non terminal nodes basically have these signals called

multiplexer select and basically the register enable. So, that is the signals which

corresponding to the non terminal node these are the operations which corresponds to the

terminal nodes.

(Refer Slide Time: 67:33)

So, whatever I have told you in the example is written in the slide. So, that you can read

offline and come out with it one just before I close down basically this was about the

data path because already when we have talked about testing we know data path is very

very difficult to do because now 32 bit, 64 is starts going up, but similarly there is also a

control path the control path can also be very easily modelled using BDD or HLDD

because if you have a circuit one part you are modelling as BDD other part you are

modelling an HLDD does not look good.

So, some people have also tried to taught that thing how we can represent control paths

in terms of HLDD be, but control circuits are generally smaller BDD’s will suffice, but

just they have given the example just to complete for the sake of completeness. So, say

that there is some state which are present state some control inputs are there these are

next state and these are the output how do you represent very simple basically obvious it

will be just like a case structure.

(Refer Slide Time: 68:19)

So, the initial node and may be this may be the S 2 is the current state we are talking

about because for that example now are present state is S 2 and we are going to see what

is the next state depending on the control variable. So, this is initial state these are for

state its one up to state S n we are just going to look at for state S 2. So, S 2 these are non

terminal node which corresponds to signal c 1 will be another non terminal

corresponding to signal S 2 what are this terminal nodes here doing the terminal nodes

here will be the outputs and what are the next state. So, ones next state is S 3 and the

other next state is S 4.

So, in case of data path the non terminal nodes are expression and the terminal nodes are

some operation data operation a plus b, a minus b, etcetera, but here they are basically

which next step to who and what are the control outputs. So, for example, if c n equal to

1 and c, n equal to ,0 you are going to get S 3 in the next state and the output is 1 0 1 0

basically that is what is 1 0 1 0 and next state is S 3 similarly if i c 1 is 1 and c in 2 is 0

you are going to next state is S 4 and the control signals are 1 1 1 1.

So, basically that is what. So, this is just a I should call it as a modelling, it is just a

translation from the table to a high level decision diagram, but in fact, basically those

things can also be done using a binary decision diagram also. You need not go to high

level decision diagrams because generally controls circuits are generally smaller the

problem only happens with the data path already we have elaborated this states in the test

module.

(Refer Slide Time: 69:32)

So, basically again the whatever I have told you control path has been designed the high

level decision control path has been designed is this line you can read it. So, anyway this

2 lecture series actually brings us to the end of decision diagram for verification we

started with binary decision tree then we have seen for BDD’s then we have seen that

what are the gains we have got and. In fact, we should always be thankful to professor

Brandt who invented such a nice data structure and in fact, all, but as circuit started

becoming larger the bit level did not work then people started moving into arithmetic

decision diagram high level decision diagram etcetera, but the main philosophy still

remains the same as BDD’s redundant reduce redundancies first thing and the structure

should be canonical what do you mean by canonical the canonicity means basically if the

ordering of the variables remain same and the 2 functions are similar you are going to get

the same BDD that is what is a very very important property of BDD that is very much

required for equivalence checking.

So, therefore, HLDD is a long way we have come from BDD, but still some main

philosophies of BDD’s still needs to be proved on this. So, as researchers I want you to

please think and work on those directions that at higher level, how we can have a

canonical high level diagram high level diagram how I can do verification using those

structures.

Thank you and in the next classes onwards, we will try to see how this BDD and

HLDD’s, etcetera will be used for exactly modelling sequential circuits or state machines

because this, we have seen that verification main problem is we are getting stuck with

the circuit, I mean model size state model size the BDD’s and ADD’s whatever we have

seen are basically showing how to represent the functions in a compressed manner. Now

we will use that philosophy to model the states that is basically a called symbolic model

checking bounded model checking were we will see how the finite state machines can be

modelled using binary decision diagrams. So, that problem of explosion of the state

space modelling of the model for verification is solved.

Thank you.

