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Lecture – 20
Verification of Large Scale Systems

So, hello and welcome to the module we are discussing, that is on verification.

(Refer Slide Time: 00:31)

So, in the last class basically, we had on, in lecture 1, we had basically discussed on very

brief and we had tried to, I mean compact everything, regarding LTL and CTL based

verification and mainly we emphasised how model checking is done during CTL. So,

what was the basic idea we tried to means recapitulate in that class where we are were

trying to basically have the means which was mainly required for the prerequisite that is

to understand basic model  checking before we can go to optimisation techniques  for

verification.

So, what we had seen in that lecture basically that we have to have a formal model that is

a state based model for the system you want to verify and then we there will be some

LTL  or  CTL formulas, which  will  be  basically  you  design  intent;  that  means,  for

example,  if  you have  seen  that  if  you switch  on  the  heater  or  the  microwave, after

sometime, it should start heating. So, some of the basic design intense safety properties,



etcetera with i d in terms of (Refer Time: 01:25) temporal logic formulas and then there

are  automatic  model  checking  algorithms, which  will  verify  mathematically  that,

whether  the  formula  is  valid  in  the  model  or  not.  So,  if  I mean  it  is a  very  high

probability, almost it is mathematically guaranteed that you will get a answer yes, for the

model checking, if both the models and the formula are correct.

So, in case, in case there is certain deviation rather you have written a wrong formula or

the modelling or the system has an error, that is why the model is not capturing. What

you want to implement in that is the model being or the system being implemented is not

correct as per the design intent, then the model checker will tell you an error, also it will

generate the states and the trace is where, which is leading to the error. So, that you can

go and debug and find out the issues.

But then what are the main complexity we have found out? In fact, that lecture we have

found it is quite mathematically, means a sound and it is mathematically guaranteed that

if the formula and the model is correct then there is no error, all the states will be, will be

model checked and it will be told that the formula holds in all the states, then you can be

100 percent sure that the model will work as per the specification then  I mean the, I

mean there  is  no need for  any kind of  simulation, because  the  design  is  correct  by,

correct by mathematical verification, but where the problem lies?.

The problem lies in the modelling itself, because if  you have, when you analyse the

complexity, if you recall, we found out that the main problem arises, because of the

model size, because the complexity of model checking is linear. I mean  it is, it is not

exponential, it is, I mean much lower, compared to the size of the model that is, it is, it is

basically depending on the, on the order of the size of the formula like that, whatever

number of different atomic, I mean propositions or the different type of formulas, which

you have to verify.

So, the, complexity depends on the, on the length of the formula, because for each of the

formula, formula sub parts basically, like always in future something implies etcetera,

etcetera. For each part  of the formula, you have to  label  certain  states  and labelling

certain states is nothing, but it is simply a graph traversal. So, that part is not very highly

complex. So, where the complexity basically, arises is how you model it, because if they

are five variables in the system, the number of states can be two to the power 5, because



already we have seen that, the elaborate example of this, microwave controller and in

which case we have only 4 or 5 variable and the number of states, we have some 6 or 7.

So, think about practical system, where the number of variables can be 20. There is order

of state is 2 to the power 20. So, what actually kills, the whole idea of verification is the

complexity of the model, because that is exponential in the number of variables and in

the, in the most of the cases, a practical system will have 100s of variable. So, that is

where  the  trucks  of  complexity  comes  in, where  you  require  optimisation. Now,

throughout this lecture, we will be trying to deal with those complexities right.

The next two lecture said, will be verification of large systems, where first we will see

about  binary  decision  diagram  based  verification  and  then  we  will  see  arithmetic

decision diagram, high level decision diagram based verifications, in what case basically

BDD is a binary decision diagram, which is nothing, but a very nice data structure. One

of  the  data  structure, most  beautiful  data  structure, I have  ever  seen, which  as

revolutionised, the whole CAD industry that it has shown, how a simple binary tree can

be compacted  and all  redundancy can be removed and we can get a very nice,  data

structure, which is very compact actually.

When I say, you should all have a feeling, whenever we say that the number of states is

the order of 2 to the power 20, order 2 to the power 30, if they are 30 variable, it is not

actually order of 2 to the power 30, it is order is 2 to the power 30, but the real number of

states, there is  much-much lower than that, because all  combinations  cannot  happen.

Because among  all  the  variables, there  are  only  very  few meaningful  combinations,

which are actually required to model.

All other are very much redundant and can be eliminated, but where if you are using a

very rudimentary banditry type of data structures or a simple finite state machine based

structure  and  the, all  states  will  be  explicitly  enumerated  reading  to  the  higher

exponential  complexities, making  the  modelling  itself.  So,  complex  that  verification

cannot go beyond a toy example. So, if you look at most of the literature, very few of

them handle even a system, which is, which is as complex as a breaking system. It will

be most of the works, basically try to deal with very small system, have been 10 to 20

variable about systems handling.



About 50 variables are very-very rare and you only find in very-very specific cases in

the; if you look at the paper and the literature. So, compared to testing VLSI compared to

testing verification is a more difficult problem in terms of complexity, because testing

inherently is not exponential inherently. It is such kind of a searches, because we do not

require explicit modelling of the, system in terms of states and transitions, but in case of

verification, it is the other way round, always have to start with the modelling of the

states and a state based, state transition diagram is required.

So, whenever we talk over state transition diagram or a graph exponentially, it actually

kills us. So, what we will see called BDD, which will try to compact the representation

and then we will see that B C BDD is again a binary representation can. We go for some

abstraction like arithmetic or high level decision diagram and then we will move ahead.

(Refer Slide Time: 06:23)

So,  basically  we  will  start  that  throughout  the, whenever  from computer  science  is

coming to picture, we know about the Boolean function binary arithmetic that 0s and 1s.

So,  basically  whenever  we  want  to  represent  anything  you  have, a  tree  is  a  binary

decision. Tree is a very well data structure. So, the internal nodes are the variables of the

function and then there are trees with leaf nodes 0s and 1s and each internal node has two

child, the, I mean basically you all know that.

So, there will be a variable say x and this will be for 0 and this will be for the 1 variable.

So, here we actually represent by the dash line. So, whenever will be representing the 0



for 0 variable, if x is equal to 0, we generally take the left x and if x equal to 1, we go the

right x standard data structure, but in this course and most other CAD courses, you will

find out that they actually make a dotted line for easy illustration and only problem is

that actually, it will blow up that is the only thing.

(Refer Slide Time: 07:13)

Otherwise, binary decision diagram, sorry binary decision tree can actually represent any

kind of digital systems. Only problem is that the exponential blow up idea is very simple,

you take the variables, left child 0 right child 1 and all the possibilities you enumerate

and finally, the leaf node will have the values of 0s and 1s. If you take a path from the

root node to the leaf node, you will find out that what is the value of the function, if those

variable  values  are  taken  by the  part  traverse  from the  root  node to  the  leaf  nodes

standard data structure algorithms.

Basically, how a, how do we represent circuits, generally most important one. We study

in our digital design is a truth table. So, we have all inputs and basically, we have all

outputs in a, in the part of the table that, all one side will be all inputs, and one side will

be all outputs and basically, how many rows will be there in the truth table, if there are n

variable, there will be 2 to the power n rows 0 0 0 0 0 1 dot dot dot up to 1 1 1, all the

inputs will be explicitly enumerated and for each of the inputs, what will be the outputs?

We are assuming m outputs. So, that also has to be enumerated. So, how? What will be



size of the table, the size of the table will be easily equal to 2 to the power n for all the

rows and into m, because, that many number of columns will be there.

So, is some-some order of like this, will be basically the size that is, we will have this

many rows and basically, column also basically, I am saying, it should not be,  n is the

output, n is the input. So, basically your table would look like, something like this. So,

you have 1 2 dot dot dot, 2 to the power n. These are all the values and this is O 1, this is

O 2. All the outputs will be enumerated up to m outputs. So, generally they say that, they

will be 2 to the power n rows, and 2 to the power, and n columns. So, basically that is,

what is the size of a truth table. So, basically is nothing, but you explicitly enumerate all

the inputs and outputs. So, that is the most fundamental and easiest way of representing a

circuit.

(Refer Slide Time: 09:04)

Then basically the truth table can be easily converted into a binary decision tree like, for

example, this is an simple-simple circuit, if you can look at. So, the output function is a b

plus c d. Let me just zoom it for you. So, this is a simple circuit a b plus c d and this is

the function a b plus c d. Now, if I want to represent it in terms of a truth table. So, we

will have a b c d. So, we will start from all 0s to all 1s, because only 1 output. So, it will

be O 1 and you can write out the values over here, for all the rows explicitly.

So, this is actually the truth table representation. Simply, it can be represented also as a

binary tree, a this was standard data structure. So, we will have the first variable that is a,



the second will be b. So, all will be b, 3rd will be c, as you can see, this is 3rd, is the 3rd

variable in the sequence is 3 and 4th is d and explicitly enumerate. You say that if a is

equal to 0, I go this side, if a equal to 1, I go this side, then basically. So, if a equal to 0, I

go this side, then if b equal to 0, I go this side, if d equal to 1, I go this side. Similarly, for

this and similarly, for d basically, all the paths, you explicitly enumerate in terms of a

tree standard.

Digital tree is there and you get the values like for example, if a equal to 0 b equal to 0 c

equal to 0 d equal to 0, the output is basically equal to 0. So, you for that, you have to

actually look at this part of the tree, if you can look at. So, a equal to 0 b equal to 0 c

equal to 0 d equal to 0. So, this leaf node is marked with a 0.  Similarly, you have to

enumerate for all the cases, if you count 1 2 3 4, in the leaf node you will be 16 leaf. Leaf

nodes for that basically, for, but if you have the values of 1 1 1 and 1 the output will be 1.

So, 1 1 1 1, if I put the output will be 1.

So, basically 1 1 1 and 1, the output will be 1. So, for all the individual values, for all the

these are actually, these leaf nodes are all the output. All the row correspond to all the

rows of the truth table and if you take one path from the root node and if you come to

any of the leaf node, this corresponds to 1 entry in the truth table. So, this is basically

nothing, but a graphical representation of the basically your truth table.

So, very-very nice graph, you can do lot of reasoning and you know that if the number of

inputs are n, the number of leaf nodes will be 2 to the power n and all the node in the

non leaf  nodes  will  be 2 to  the power  n minus 1 standard data  structure. These are

basically the orders. So, if you have a 100 inputs circuit. In fact, you may practically not,

cannot even draw that tree, even if for a 15 input circuit, such trees cannot be drawn. So,

that is where actually the complexity comes.

Now, why I am taking about all these, basically this, binary decision tree, etcetera. When

you are talking of verification basically, whenever it is a system, basically there are flip

flops and then we have state variables and state enumeration, which is mandatory for

verification, but state I mean, if you, if you, if you can recollect your sequential circuit

design fundamentals, we always have basically a combinational logic, which is the next

state function block and then you have a flip flop. So, and then we have a flip flops.



So, we actually try to model the whole finite state machine in terms of a next state logic,

that is your flops sorry, we have something like this. If you take something like, this is

your basically, your flip flops, the register bank, then you have an input, this is your

combinational cloud that is your next state logic block and there are feedbacks from here

and  also  there  are  in  primary  inputs.  So,  this  is  basically  your  nothing,  but  your

combination  circuit.  So,  if  you  have  some  good  data  structures  to  model, this  a

combinational cloud modelling. The flip flops is nothing, but just enumerating the state

values.

We will have an explicit lecture to see how actually binary decision diagrams can be

used to represent models, state model, which is the most difficult part in verification. So,

first-first you are trying to see how to model this N S F block, that is a combinational

circuit using some good data structure. Once you can model this modelling, this state

variables is trivial, because there is just flip flop, means just take, take the value from one

state to the next state.

This just a state transition that modelling is not difficult, if you can very have a good data

structure to model the N S F block, that is the next step, functional block, which are

combinational circuit. So, that is why we are mainly dealing with combinational circuits

here, where we are explaining binary decision diagram, because from, for the time being,

we just take assume that if  I can model the combinational circuit  in a very nice and

efficient manner, we can help the complexity, there then modelling of the flip flops will

be trivial right.



(Refer Slide Time: 13:17)

So, the problem here is that, told you. So, that basically the n input rows and m output

rows, the order is 2 to the power  n into  m, basically that is the truth table and for the

binary decision diagrams, basically one thing you have to know, know that 1 1 binary

tree, binary decision tree will be for 1 output, if there is another output here, may be then

another gate will be there, another output will be there, as many outputs will be there,

that many binary trees has to be there, because 1 binary tree represents 1 output.

So, basically, the order will be 2 to the power n minus 1 plus 2 to the power n that is the

leaf nodes, non leaf nodes into m. Why m? Because there are n, explicit trees required

for  m  outputs.  So,  huge  complexity, so;  obviously,  nobody  can  even  think  about

modelling a practical system in terms of a binary decision tree.



(Refer Slide Time: 17:04)

Basically, then something actually which revolutionised, it was by Bryant, R V Bryant.

So,  we  are  all  thankful  to  professor  Bryant for  finding  out  such  a  interesting  data

structure, which actually revolutionised the whole CAD industry. So, binary decision tree

cannot be generated in practical time lines for a reasonable complex circuit. Reasonably

complex  here  means  even  if  20, it  is  very-very  difficult, the  main  reason  is  the

exponential  number of nodes, in  a  binary decision tree. Now, what  professor  Bryant

observed that, there are lot of redundancies, we have to start eliminating the redundancy.

(Refer Slide Time: 14:36)



If in, if a child can tell that, if you look at, even a child can tell  you, where are the

redundancies. So, even a class, I mean junior school student can tell you there are  so

many redundancies in the leaf node, because leaf nodes can have only two values or, or 0

or 1, but redundancy means there is 1 2 3 4 5 6. You count, there will be around, around

say 50 percent of 0s and may be another 50 percent of 1s; that means, basically in this

case, may be sometimes, we will have 25 percent, 1 or 25 percent, 0 or some numbers,

but actually if you can find out that, very simple is that.

I can write only 1 0 and only 1 1, only 2 nodes. I will have and I will make a redirection

for everything. This 1, I will put it over here, because straight forward I can say, there are

lot  of redundancy in the leaf  node.  So,  I eliminate  all, I just  keep two of them and

redirect the edges like that a 50 percent is 2 to the power n minus n that is the last node

complexity will be gone, in just a click.

So, but very interestingly before professor  Brant, nobody could think about it. People

were  just  thinking  about  a  complex  handling, complexity  in  different  manners  were

abstraction etcetera, but this practical feature, on this practical observation was the one of

the  key  observations, which  actually  found  out  with  leaf  to  the  direction  of  the

development of this data structure called binary decision, diagrams quite interesting, but

just  like  as  a, as  you  have  seen  as  I told  you  like  scan  chains  and  many  other

fundamental, data structures of fundamental algorithms in the VLSI design test.

Verification are based on very-very simple observations, I in this case, there are so many

redundancy in leaf node. Eliminate the redundancy, just put 1 0 and 1 node, because in

case of, binary, whenever talking about binary system, there can be only 2 outputs 0 and

1. So, throw away all repetitive 0s, put only 1, 1 0 and 1 1 block and redirect your job is

done, but then that is only one part of the story. Now, people have found out that, not

only in the leaf node, in the non leaf nodes also, there are lot of redundancies. We have to

try to eliminate them.

Now, that is what is basically, something called a binary decision diagram. So, this a 0

and 1 can be redirect accordingly. Similarly, this reduction is carried out at all layers, till

the root, that is how what is binary decision diagram, you reduce the leaf node done. If

you find similar type of redundancies, you go to the top and keep on doing it, we will

take examples and find. So, binary decision diagram, the directed acyclic graph, Boolean



expressions, which cannot be further reduced by redundant. So, redundancy means, if

you can throw away that node and do some kind of redirection, the Boolean function

does not, does not get changed.

So,  therefore,  sometimes  BDD people  better  actually, call  it  reduced  BDD,  R BDD

basically. So, basically BDD, wherever talk, you sometimes, it is a reduce time, is no

longer  used directly, but  it  means that  the BDD is did not  reduced form, because it

cannot  be  further  reduced. Whatever extra  or  redundant  variables  or  I mean  all  this

duplicate stuffs are there  I have, all been eliminated then it becomes a binary decision

diagram and surprisingly the compression or mean and as I told you, this is one case of

optimisation, where there is no loss in quality;  that means, you have a very big data

structure, the very big tree.

You eliminate the redundancy and you get a smaller size tree that is the binary decision

diagram  or  reduce  binary  decision  diagram,  but  interestingly  the  function  does  not

change, means for whatever sets of 0s and 1s for the inputs, which will give 1, the same

case will happen in binary decision tree, as well as for the binary decision diagram, that

is for any input. You take any input, your combination, you take both, the trees will give

both the decision trees BDD or binary decision tree will give the same answer, that is

you  are  not  modifying  the  function  only, we  are  redundant  the,  redundant  the

redundancies.

So, this is one very good idea, I mean fundamental of BDD is that it compresses, but still

without  any loss or that  is  without any compromise. It goes for an optimisation and

surprisingly the reduction for most of the cases is  99 plus may be in a BDD binary

decision tree. You have say 10 million or 1000 nodes, if you go for a binary decision

diagram for most of the cases, it may come to around 10 or 20 nodes. Reduction is 99

plus, but some plus only for very few cases like a multiplier algorithm etcetera, there is

no big reduction.

But those type of functions are very-very less in most of the general purpose circuits or

main general purpose system, the reduction is drastic, that is why I always say that BDD

is one of the best data structures  I have ever seen, which has revolutionised the whole

CAD industry, because all the algorithms now, written I mean, CAD is in terms of BDD

after  that, we  had  several  advances  like  add  decision  diagram  high  level  decision



diagram, but the basic fundamental is this, remove the, all the redundancies and try to

compress as much as possible.

So,  basically  three  simple  rules  will  revolutionised, one is  called  the  removing  R 1,

which is called the removing of the duplicate leaf nodes, that is very simple. All, all 0s

and 1s, you remove, put only 0 and only 1 and redirected the paths accordingly. R 2 is

actually called removal of duplicate, non terminal internal nodes that is basically, away

from, not from the leaf above, above the leaf, if there is some redundancies removed.

How you do it, it? Any two distinct nodes m and n say, are the roots of structurally

identical sub BDD’s; that means, say this is 1 root and this is 1 root.

So, the BDD here and this say BDD here are identical, then basically say, may be there is

some coming and from there is some other path, it is coming the BDD here and the BDD

here are similar, then what you can do? Similarly, you can delete this n and redirect this

R 2 m that is, what is the elimination of redundancy from the (Refer Time: 20:00) that is

same. BDD is actually obtained from binary decision tree, redundancy, reducing and or

eliminating redundancies. These node you do R 2 is that, if you find out some internal

nodes or internal sub part of the tree is looking similar, remove one sub part and try to

merge the edges such that only one sub common, sub part is written and the other is

removed.

And basically finally,  R 3 is removing of removal of redundant test. Basically, if both

outgoing edges of node n point to the same node n, then remove, n is very simple like

this is 1 node called node, called n and they both to point n that is, this one both 0 and 1.

If the value of variable n is both 0 and 1 reading to the node called m then you can

eliminate n; that means, n whether 0 or 1 is reading to the same child , then basically n is,

n is not frequent in case of binary decision tree. What we will do? You will write n 0

sorry, for n equal to 0, maybe it is going to, this is some value and, basically may be 0 0

and n equal to 1, also may be going to same value.

So, in binary decision tree, what you write you have to do in this way, n equal to 0 2 0 n

equal to 1 2 1 assuming that basically, it is some kind of a leaf node. So, it is, you write

in binary decision tree and, but in binary decision diagram it, if it says that it any node, if

it,  if  it  points  out  sorry.  Here, what  I was trying  to  say basically, in  case of  binary

decision tree, if n equal to 1, you get 0, n equal to 0 equal to 0 and if n equal to 1 equal to



also 0, then we write it in this way, but actually this is very-very much redundant. So, the

rule tells that not only about the leaf node, at any point of time, if you find out that both 0

and 1 is leading to same node, because in case of binary decision diagram will have a

single node, you have to just eliminate n and this.

So, it will be called. So, in binary tree, we do not think of any redundancy. We just keep

on putting both the conditions left child right, child left, child right, child and it blow up,

but here we apply the three rules leaf nodes. We all eliminate, keep only two redirect

internally, we search that if there is two common sub BDD' s then retain one of them.

Other one you eliminate, redirect the edges accordingly and third is basically, if you find

any node, where both the edges outgoing left child and right child is going to the same,

other successor node then removing the parent node and redirect accordingly.

So,  Brunt had, there are lot of mathematical proves behind is; so,  I am not going. So,

they  have  proved  that  by  using  this  three  rules, did  you  get  the  minimal  structure

basically, we will give the reduced BDD sorry, reduced binary decision diagram and you

cannot have any further reduction beyond that.

That means, that is the most compact representation of the function, you cannot have any

more reduction by applying this three rules or this three rules are enough to, if you take a

binary tree and if  you apply this rules, ultimately you are going to find out the best

solution for, from which you cannot further reduce. Therefore, it is actually called the,

basically called the reduced binary decision diagram.



(Refer Slide Time: 22:55)

We will start taking an example. So, I am not going to both. Hence, and forth basically,

this is, this tree, I means, I will just remove all this figure for you, anyway all the written

nodes, for this course will also be uploaded in the websites. So, this is the binary tree.

Now, I actually, I eliminate all this leaf nodes and I keep only two of them. So, if you

look at it, I will get something like this, because I have only two nodes for 0 and 1. So,

all  the  remove  duplicate  nodes  have  been  removed  and  I get  a  path  like  this  tree

structure, like this. Only one edge we will study. So, it will be easier for you.

Let us try to concentrate on this path. So, c d all 0 leaves to 0 c equal to 0 d equal to 1

leaves to 0. So, basically we will see how it, it, it is getting reflected ok. The left part c 0

d 0 0 c 0 d 1 also 0 that is this part. So, we will see, how it is getting reflected in the

binary decision diagram. So, if you look at it this part let us zoom. So, if you can see c

equal to 0 d equal to 0 is 0 c equal to 0 d equal to 1 is also 0. So, in the binary tree, we

basically had something like, this would not have been, there would have another node,

which is 0. Basically, this is the dotted line. So, basically, we will say that c equal to 0 d

equal to 0 is 0 c equal to 0 d equal to 1 is also equal to 0.

So, unnecessary, we had one replication. So, now, we have in this case of binary decision

diagram by applying the rule 1. We will actually make both the, both the edges, point

was single node, because we have only 1 0 and only 1 1. So, now, you can easily look at

this tree and all the, you just, draw this, eliminate basically, eliminate all the root nodes. I



have only 2 nodes and redirect the edges. I have shown, for one example this tree will be

obtained. So, straightway first reduction is coming down from 2 to the power n to 2.

Basically, the leaf node, there was 2 to the power n child, in this case it was 1 2 3 4 that

is basically, it was 4 16 from 16 to 2. So, the root nodes, number of root nodes of a

binary decision diagram will always the constant, that is equal to 2 or less. Sometimes, it

can be also be less that, we are going to see, because if the function always gives 0 or

always gives 1, there will be a single node, but it can never be higher than 2, that is what

is the beauty.

Now, interesting parts, we are going to do that is R 1. Now, as I told you, we will try to

find out common sub graphs in this. So, if you look at the, let us try to look at this sub

graph. So, what the sub graph is saying? Let me try to zoom this sub graph. So, if you

look at this sub graph, it says that c equal to 0 d equal to 0 sorry, c equal to 0 d equal to 0

is 0 c equal to 0 d equal to 0 is this 1 c equal to 1 d equal to 0 is 0 c equal to 1 d equal to

1 is 1.

So, this is 1 graph. Let us now look at this sub graph. So, another sub graph basically, if

you consider, let me eliminate this and take the other sub graph. So, just let me take this

sub graph ok, and you see again c equal to 0 d equal to 0 is 0 c equal to 0 d equal to 1 is

this c equal to 1 d equal to 0 is 0 and this. So, if you look at these two sub graph exactly

look. Similar, c 0, this edge. This edge, this d node and this d node is similar.

Similarly, this d node and this d node is similar, because 0 means 0 here also 0 means 0

here, also 1 means 1. So, these are the 2, there will be more I am just taking, because I

think this part also will anyway. So, sub graphs, which are common, this 1 2 sub graphs

or  sub BDD,  which  are  common in, which  are  redundant, because  they  are  exactly

common. So, basically one of them can be easily eliminated. This part can be eliminated

of course, the leaf node, you have to keep basically.

So, these part I think can be very easily dropped out, because they are very-very similar,

we just keep one of them and readjust accordingly; that means, if you are eliminate this,

this b only has to be design it over your job is basically, done. Why are you want to keep

redundant ? Similarly, if you look at this part CDD, this part, this part of the tree, if you

take anyway, let me eliminate the other part. So, you can see, in these two part. Let me

study ok. So, if you see c, if you look at sorry, not this. This one, on this part, if you see.



So, this is c equal to 0 d equal to 0. So, c d same path c equal to 1 then d. So, no, no, no

this is not common basically.

Because in this  case, this  two nodes are also not common, because in this  case both

(Refer Time: 27:32) to one here, the d is different. So, this two are not sub common, but

basically  you have to  find out  all  such kind of  common sub graphs in  the  tree  and

eliminating them. So, basically these two are not common, but the because, this d and

this d nodes are not equivalent.  So, therefore, this two are not common, but this sub

graph and this sub graphs are sub BDDs are common.

(Refer Slide Time: 27:53)

So, basically what is being showed in this, a pair of duplicate sub BDD’s enclosed by the

polygons, this one and I will just sub, I will just zoom it for you, big view. Now, this

part and this part are basically common similar. So, what we do? We eliminate it. So, if

we  eliminate, what  is  going  to  happen? There will  be  only  1  such  sub  graph  and

basically, this b will start pointing to c, if you look at it. So, this is what has happened.

So, this is your basically, the graph.

So, this is your graph sorry. So, basically this is your graph c equal to 0 d equal to 0 and

1 similar, c equal to 1 d equal to 0 0 and 1, if you look at it, this is, this graph. So, this is

the path and in this case c d c equal to 1 d equal to 0 is 0 d equal to 1 is equal to 1. So,

basically  this  is  the path, I was talking about and this  path.  So,  this  path is  what is

remaining and as  I told you, you have to also add just, because if  one of them gets



eliminated, the left child of b will also have to start pointing to this edge. So, basically

this is gone, d will, this part of d will also start pointing, we will see.

(Refer Slide Time: 29:02)

So, basically this what has happened, this is your common, sorry. So, basically this is the

graph, which is one part. We have retained the other part, we have deleted and this, this

part of the b that is dotted line, which as pointing to the sub graphs, that is eliminated

will now start pointing over here.

Similarly, you have to, if you search the whole graph, there are lot of such redundant

trees and you will find out something from intermediate binary decision tree, which has

no redundant sub parts. So, I am not going for all the steps very-very easily. You can try

to look out, in this graph, find out the redundant one and is eliminated, basically you can

find out. May be there is some kind of duplicate c’s over here. So, anyway that you can

study and find out.
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Now, basically what now, another rules you have to write like for example, very simple,

you can see that these nodes are basically, not required, very trivial. You can see, because

both the left edge and right edge are going to same thing; that means, it is a do not care

basically, in terms of digital, they are do not cares basically b equal to 0, c equal to b

equal to 0 b equal to 1 basically, we are going to same c. In fact, I do not require this at

all I can directly bring my a dotted line here.

Similarly, this d is also not required, you can actually directly bring this down over here,

this can be eliminated. Similarly, this d and this whole stuff is not required, you can

directly bring your, bring down this one over here, because, this nodes are not required,

because whenever you have some all both 0s and 1 leading to this. So, they will be it be

same thing. So, basically we will have something like this, this part will be eliminated,

this part is also not required, you will bring it to here.  This whole part is not required

directly, you can bring it up to here.
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So, it will actually  somehow lead to some graph like this, which is the most reduced

form, you cannot for that given function, you cannot have any further reduction then this.

So, how many from, 16. There is 2 to the power 4 2 to the power 4 plus 2 to the power 3.

Basically, 8 plus 16, at some basic around 30 nodes. We have brought it down to 1 2 3 4

5 6. So, from 6 from the order of 30, so, one fifth reduction.

Basically, this  is, this  ratio  will  actually  again  blow  up  means, this  size  will  start

exponentially rising and this rise is basically linear, if you are going for a (Refer Time:

31:16) functions like, if you have some functions like 100 variable. So, this will be in the

order of 2 to the power 100, but this 1 will not increase in that order for general most of

the functions. It will be around some 300, 400 or may be 1000 or 10000 nodes. So,

basically the size of the BDD on the number of inputs do not blow up exponentially first.

Most of the functions or most of the cases, but the denominator, which is the binary tree

or exponential function actually blows up therefore, the ratio of compaction is very-very

high, when you are using a binary decision diagram as the example shows and the most

beauty of it is that, this function and the original BDD functions are not changed. So,

whenever like 1 1 example, we had 7, seen that if a equal to b 0 b equal to 0 c equal to 0

d equal to 0, you are, what you getting the value of 0.

In this case if a equal to 0 c equal to 0 is 0; that means, d equal d equal to 0 and b equal

to  0  are  redundant  variables;  that  means,  they  are  basically  do  not  cares.  So,  very



quickly, you are going to get the solution and that also without any error like we already

see that a equal to b equal to c equal to d equal to all 0, the answer was a 0. So, just have

to traverse, the BDD a equal to 0 b is redundant. So, you will not find b over here, c is 0,

d is not required, you find the answer 0.

So, it is correct basically, BDD’s are also one thing, if there some redundant variables in

paths, they will all be eliminated, but b is not redundant in this path. So, it is there, but if

some of the variables are totally redundant, they are not required in the function, which

can be minimised, which we do in terms of, Karnaugh map etcetera. BDD will totally

eliminate those variables from the, you will not find immediately and from, from the

path, this path example I have shown, shown you that a equal to 0 b equal to 0 c 0 d 0

like this one, like this example.

(Refer Slide Time: 32:59)

Now, this path like a a b c d this path actually, in this path, a and b and d are redundant.

So, you can directly have this. So, what is saying is that whatever output the binary tree

will give you, binary decision tree will give the same input, will be given by the binary

decision diagram. So, they are basically equivalent, but this is very compress version of

the binary decision tree and the compression happens, because we are eliminating out all

the redundant node.

First, you are  eliminating  all  the  leaf  redundancies, then  you are  eliminating  all  the

intermediate redundancies, then you are finding out some nodes, where basically both 0s



and 1s are leading to the same child and we are trying to eliminate out those nodes and

redirecting the transitions accordingly. So, we are getting a very-very compile structure,

that is what is the beauty of binary decision diagram. So, what it means that, if you have

a very big circuit in terms of 100s of inputs, the binary decision diagram will be much-

much  smaller  than  the  binary  tree  and  this  binary  diagram  will  be  binary  decision

diagram will be used to represent.

Basically, your state machines and all the model checking, we have done in the state

machine labelling, will all be done in terms of binary decision diagrams only. So, the

modelling  structure  will  drastically  change  from  explicit  states  to  BDD  based

representation and the model checking of state labelling etcetera, will be done, not only

on the state explicit, state machine. It will be done symbolically on the BDD. So, that

will actually improve the scalability or the complexity are drastic fashion. So, what is the

step 1 on one side? We have a state machine, which is then, we have some temporal

formulas like CTL LTL would be a model checking on the graph, that is actually a very

complex problem.

If the, the number of state variables are large, other side is that we will not even go for

the  state  modelling, we  will  directly  represent  the  state  variables  or  the  finite  state

machine in terms of BDDs and as I, as already shown in this case, it will be extremely

compact  representation  of  the  whole  state  enumeration, then  you can  have  very  big

circuits or very big systems represented symbolically in terms of BDD and you did not

explicitly represented then in terms of the state based modelling, then what you do then,

all the model checking algorithms like labelling etcetera, will not be done on the explicit

state. State based machine, but it will be done on the BDDs resulting in more efficiency

in those algorithm and very quickly, you are going to get out the solution.

So,  using  of  BDDs will  help  for  to  verify  very large  systems by representing  them

symbolically, the term symbolically is used, where you are using verification, everything

or  representation  in  terms  of  decision  diagram, binary  decision  diagrams. Now, one

important thing, we are going to study that is construction of BDDs. So, now, what we

have seen in the last example that we have a binary tree and then you are making into a

BDD. So, very you should you come to your mind that if you have the binary decision

diagram or binary decision tree then we are using lot of elimination etcetera, to do it, but



the binary decision tree itself is not available for a very large circuit, then how can you

make the binary decision diagram?.

Because you have a very big structure, you are reducing and you are making a binary

decision diagram, but if the, how to make that big tree itself, that is the very big question,

the idea is that nobody actually does in that fashion. These was shown to explain you the

difference between a BDD and a binary decision tree. Basically, people try to bill binary

decision diagram from the scratch, that is they will have some small, small tree. They

will  merge  them and  try  to  make  up  a  bigger  binary  decision  tree, because  that  is

impossible that you have a binary decision diagram very big one and you start reducing

and making at it that is not possible. Binary decision diagrams are basically built up from

atomic gates and they will make the larger binary decision diagrams that we are going to

show.

Basically, when brand etcetera, tried to compress at that time, there was no decision

diagram. They were looking at binary decision tree and they were trying to find out that,

there can be a data structure, which will compress it in this manner. So, therefore, this

was  a  thought  process  and  to  illustrate  the  beauty  of  binary  decision  diagram,  but

practically, when you are going to construct, nobody can construct  it  in  the fashion,

which you have seen that you take a binary decision tree and then you reduce and make

it, because binary tree itself is not available.

So, what actually we do? We actually construct reduced BDD with the something called

a Shannon’s expression. So, as I have told you the binary decision tree is a very small

structure time taking to make a BDD is prohibitive. So, to obtain BDD, we need not start

with binary decision tree. The need not is a good word, we cannot start with a binary

decision tree. R BDD’s can be directly generated without a binary decision tree basically,

for that we require something called Shannon’s expression, in which case, whenever you

have a function called f of x we will have two paths; one x is equal to 0, then x equal to

1, then this will be 1 BDD, then again we we will keep on doing it.

We will get the finally, binary decision diagram and at every stage of the construction,

you have to keep on reducing, you cannot have the whole exponential growth and reduce

that  is  not possible, you take a function, make a binary decision diagram or make a

binary  decision  tree, rather  eliminate  of  redundancies, make  it  the  binary  decision



diagram and then go for the next level of combinations, which is actually, that is going

the binary decision diagrams on the leaf levels.

(Refer Slide Time: 37:56)

For example, what  we do, if  we have  a  function  called  f  of  x? Generally, Shannon

expression means, we have one path in which f of x equal x dot x equal to 1; that means,

if you have a function which, which we first take out, 1 variable put the replace that

variable by 1 and make a sub function inside, then another part is x equal to 0 and the

other part is replaced by value of x equal to 0. We gave, get another function and we

keep on doing it basically, easy to, this is actually mathematical representation, very easy

to explain by an example like, in this function a b plus b c plus a b. So, what we do first ,

we say that a equal to 1, if a equal to 1 mean you replace the value of a equal to 1 and a

equal to 1.

So, you are going to get 1 dot c b dot c 1 dot b that is actually f of a replaced with one

that is nothing, but equal to b plus c plus b c. Now, second will be I will replace a with

0s, if you replace all a with 0s. So, this term will go, this term will go only b c will be

there. So, this is nothing, but equal to f, this 1. So, finally, we can write this 1 as f of

function, a is basically nothing, but a correct into b plus c plus b c and it a bar that is a

dot is equal to b c. So, now, again you have to do it in terms of b, do it in terms of c

basically; that means, the first node is a.



So, a a 0 will be equal to d c and a equal to 1 is nothing, but equal to the bigger one that

is equal to b plus c plus b c and you have to keep on doing it and at the stage, you have to

keep on reducing, that is what is the idea of a, binary decision diagram. Construction is

the Shannon expression, because even for a very big circuit, whatever you have at least

the  function, function  is  nothing,  but  your  design  intent, that  is  a  very  compact

representation.

Whenever we want to convert this functions, to some kind of models were, we can do

model checking on algorithmic verification, then we require a graphical or we require a

data  structure, which  can  represent  it  from all  the  paths  traversals  etcetera, because

function is nothing, but some a b plus b c plus c a some variable combinations. We

cannot do much with it, but to go for logical reasoning all this things, we should have

represent it in terms of decision tree.

So, if you make a binary decision tree with very large, but with Shannon’s expression,

we can construct BDD from the basic root level itself. So, that we can get a compress

structure and at the every stage. So, basically, how we start about it. So, basically, may

be, we have a function first.
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We start with preliminary function, may be we have some variable called x. So, first we

will have the leaf, two leaf node, whenever we try to build a BDD, we start from the leaf.

So, there will be only two leafs as we know 0 and 1, then maybe there is 1 variable for



all variables, you have. We have to make a structure like this x 0 is 0 x 1 is 1 that is the

variable itself. I assume that, that is only by input. So, if you have input x 1 x 2 x 3 x 4 x

5.

So, you will have this for the root, this will have it only ones and how many variables

you have, you will all have trees of this nature that is x is 0 means 0 x is 1 is 1 that is

representation of x. Now, we will merge them and try to make larger BDDs. So, those

things actually I will, I will, we cannot cover in one class, but we will cover in next class.

We will  see  how to  make such bigger  BDD from smaller  BDDs,  but  what  I, what

Shannon expression does it takes?.

First, the leaf nodes then all the variables, it is enumerating, because it is very easy to

understand that if  I want to enumerate x, a single variable in BDD. So, x 0 is 0 x 1 is

equal to 1 that is the value of x itself. So, all this leaf label stuff, they will make 2 leaf

level and all the variables, they will make then, they will try to merge them and make a

bigger model, but at every state, they will reduce.

(Refer Slide Time: 41:27)

So, that is actually BDD construction which we will see in details later. So, basically if

you say, they represent in some manner. So, if you have a bigger function. So, we will

have f of a over here and then we will have this sub function of Shannon that is f, a in

that function all a ‘s will be replaced with 0 and what are the value, you will have and

this part actually will have all the a’s, which are replaced by 1 and this 1, you actually,



you will have to merge them to make up a larger binary decision diagram. We will take

all examples, do not worry about it, just, just the theory. I am telling you at present.
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So, basically we will start from something like this. This is the function a c plus b c plus

a b. So, what you are going to have, we are taking a as the leaf node, because they

assuming that  level  of a is  first  then the next  level  of  node will  be b then the next

ordering will be c and so forth. So, a equal to 0 means, we have already seen the value of

b c. So, let me zoom here, we are having something like a equal b, this was the function a

b plus b c plus a b and then a b. This is the BDD Shannon intermediate representation.

So, b c and then b c plus c plus b c, because if I make a equal to 1, you are going to get

the value over here. Next, what they are going to do. Now, same thing, they are going to

replace with b sorry. So, this will be 0 and this will be 1. So, if b equal to 1 , you are

going to get the value of c over here and if b equal to 0. You are going to directly get the

value of 0 over this dotted line here. This is dotted line similarly, you replace represent

for again for this and for this. So, if b equal to 1 over here then actually, it will be 1 then

this one will be equal to b equal to 1.

There is 1 plus c plus b. So, if you look at it, it is nothing, but equal to 1. So, I have to

put a 1 over here and if you make b equal to 0. So, in this case, you can find out that the

answer is equal to nothing, but the node c right. This is, b plus c plus b c, if  I make c



equal to 0 sorry, b equal to 0, then this is gone. This is gone, only c will remain. So, this

is the next intermediate structure, sorry.

So,  same thing is  written  over  here  and then  you have to.  So,  only one more  node

remains that c equal to 0, what happens c equal to 1, what happens. So, basically now, it

c equal to 0 means, you are going over here, c equal to 1 means you are going over here

and this procedure basically repeats. So, this is one way of forming the BDD’s, at the

stage you have to eliminate the redundancies.

We will take explicit examples to illustrate all this things, but  I think, we have got the

idea that how we can go about in forming the BDDs by Shannon’s expression. We have a

function, we  have  to  select  the  order  that  a  or  b  or  c  or  d  and  keep  on  explicitly

enumerating a equal to 0. This b equal to 0 then again you have to keep on doing it, till

you get the fundamentals like, sorry.

(Refer Slide Time: 44:18)

Like this was the leaf node and that is the root node and similarly, you will keep on

expression and finally, you are going to get the binary decision diagram something like

this.
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So, what I told if you make a tree like this as I was discussing like, again in this case, it is

b equal to 0 means, it will finally, a 0. So, b equal to 0 means it will be finally, a 0, then if

b equal to 1 here means, you have to go for c and then only you can decide if b equal to

1. So, if b equal to 1 means c. So, basically if you look at it b equal to 1 means it is c. So,

then again c will decide and this is the leaf structure of c as I have told you c 0 0 c 1 1.

So, all the, if you have some leaf structures, all variables in the l leaf variables.

So,  it  will  be represent  by 0 and 1 that  is  nothing,  but  this, this, this  structure, this

structure. So, similarly I mean for all others, it can be expressed like a equal to 1 means

as I told you b c. So, now, again this will be now, becoming b. So, if b equal to 1. It was

nothing, but equal to 1. So, if you see a equal to 1 b equal to 1, you can directly go over

1, that is it was b equal to 1 means c plus 1 plus c plus 1 plus c plus c. So, this is nothing,

but equal to 1. So, in this case c is basically becomes a redundant variable.

So, that is why you are writing from a, from b, you can directly have a. So, in this way

you are going to get it, but now at, at, at every stage basically, it will add some redundant

node, everybody have to finally, you go for at each state. You have to actually go for

redundancy elimination, because in  this  case, you can see there  are  some redundant

nodes in the left. So, use the rule  R 1 R 2 and R 3. So, you are going to get this final

minimised version.



So, this one way of generating the BDD’s using a Shannon's expression that you take a

node, then you decide the ordering. So, ordering is a, then b, and then c, then you take a

equal to 1 have this sub graph here, have the sub function of a equal to 1 here and b in

the left side sorry, a equal to 0, this is the sub function a equal to 1. This is now, you

again do it for b, then do it for c and keep on doing it till you get the leaf nodes and every

time, you have to see for this redundancy elimination and finally, you are going to get the

BDD based function ].

So, in this case, you need not actually have to go for something called previously. We

were discussing that, you are actually taking a binary decision tree and you are going to

make a BDD. So, that is not a way of explicit way of doing it. So, this is a  Shannon

expression  or  way  of  making  a  binary  decision  diagram  or  reduce  binary  decision

diagram from the function itself, but sometimes, what it may happen is that you can have

the circuit itself by looking at the circuit. You have to make a binary decision diagram

that is another way of doing it, for that you have to know the operations of BDD.

 So, operations of BDD is a slightly detail topic, which we will cover in the next lecture,

but I think till now, you have got the idea that binary decision diagrams are very compact

representation,  but  you  do  not  require  a  binary  tree, to  do  it  you, if  you  have  the

expression, you can use Shannon’s method of doing it an intermediate steps, you have to

somehow eliminate the redundancy. Another more interesting way of doing it is a given

the circuit itself, how can we do it that also you are going to see in the next lecture, but

before that one very important part is actually ordering.

So, what was the ordering that, that what I have said is that first, you are taking a then

you are taking b and then you are taking c you can also also have taken the other way

round that in this function, I could have started with b equal to 0 and b equal to 1 and

then again I could have drawn the whole tree. I could have also started the, to do, it is the

size of the BDD same surprisingly no answer is for different variable orderings, the size

L drastically differs. So, that is one bad thing.
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I  should  say  about  BDD, because  if  you  doing  arbitrary  variable  ordering  the

compression may not be very high. If you doing a very good variable ordering then the

compression will be very-very good. So, therefore, binary decision diagrams are very

sign of binary decision diagram is very much dependent on the ordering. Now, of course,

if you want have some kind of finding out, whether two Boolean functions are equivalent

or some properties, equivalent checking etcetera.

This same ordering we have to follow, because if you have a function, if your another

function is, if you find, want to find out, whether this two functions are equivalent or not,

then the 2 BDD’s will be identical, that is proved, because the number of variables will

be minimum in both the cases, subject to ordering; that means, 1 1 for 1, you cannot take

the ordering like a b c and the other, you cannot take the ordering as b c a that is not

possible, if you take the same ordering and if 2  Boolean functions are equivalent the

same BDD’s will appear and for that given ordering.

There cannot be any more reduce size decision diagram, if you are applying the rule R 1

R 2 and R 3. So, that is why BDD’s are also sometimes called reduced ordered, binary

decision  diagram, because  ordering  is  very-very  important  anyway. It is  reduced,

because if you apply  R 1  R 2 and  R 3, you cannot have further reduction, but on the

sometime, you appreciate the fact that it is very much dependent on the ordering that,

what is the first level, second level, third level, fourth level.



What was the variable orderings, you were using for the Shannon based expression or in

any way, you are generating the BDDs in case of binary tree, whatever be the size you

take the tree will all be exponential, because everything is means, explicitly mentioned in

the leaf node and the sub leaf nodes. So, whether you take b c a or a b c, there will be no

change in the structure of the circuit always, everybody will have 2 node, each child will

have two nodes and similarly, it will go for.

But in binary decision diagram rather order binary decision diagram, the order actually

have a great impact. So, it says that R R BDD represents of Boolean function, similar to

truth table binary decision have a the number of nodes, do not grow exponentially with

the function ROBDD is very suitable  for function that  is very good, but ordering of

variables in the context of important is very-very important, because number of nodes of

a given  Boolean functions depends on the ordering that is, if you are bringing a good

ordering, the number of nodes in the BDD is less.

If you take a bad ordering, it will be very high, how to then find out good binary order.

There are lot of heuristics and methods available, which we can guess that which is the

best or very good binary audition, good binary ordering, they all variable ordering, but if

you ask me that to find out the best binary means Booleans means variable ordering then

that problem is also very-very difficult problem. Nobody tries to solve that in a very true

manner, because  there  will  be  1 or  2  or  some,  ordering  for  which  will  we give  the

optimal answer or the best answer.

Most reduced  version, you are  going to  get,  but  to  find  out  that  ordering  is  a  very

difficult problem to solve and more time taking. So, that will again, you lose out all the

interest of having using BDD’s in the complexity, but the good thing is that for generally,

for a given variable  ordering of a good type will, which, which can be found out in

reasonably very less amount of time, you are going to get a very-very good compression.

The  best  compression  finding  is  a  very  difficult  problem,  but  like  from 98 percent

compression to 97 percent compression or 95 percent compression. I am very happy, I do

not want to go from 95 percent to 97 percent compression by spending hours and days to

find  out  that  best  ordering, that  nobody  does,  but  for  typically  some  most  of  the

orderings, you are going to have a very good compression, that is one good idea, good

thing and there are some other issues like there can be inconsistent paths.



If there is no ordering, ordered BDD is also called reduced order between; that means,

what do you mean by inconsistency here, because say that  I want to find out whether,

two binary decision diagrams or two functions are equivalent order, if this same binary

ordering is taken then basically, there will be two identical  O BDD ROBDD’s for this

functions, but if the orderings are different, then you will not be able to, able to do the

compression, because the orderings will look different. So, that is why, they are saying

that for most of the meaningful compression, we always have to order the variables for a

given example or a given context for every case, the ordering has to be maintained. So,

therefore, you always use this term called ROBDD.
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Now, this is mathematical. So, what do you mean by, variable ordering. So, basically let

be this n on 20, the order list of variables without duplications, because a b c d e f no

variable should be duplicated. So, these are all your input variables x 1 to x n and b let b

be are BDD of whose variables occurs, somewhere in the list. So, there is a BDD ok,

then there are lot of variables x 1, x 2, x 3 and all of them are happening in some, one

may be x 2.

This may be x 2, x 3, this may be x 5 or something like x 3; that means, in your binary

decision diagram. All the variables are appearing at some levels there; that means, none

of the variables are redundant in at least one path. They are there means, it is the binary

decision diagram, when you are drawing, it is not the case that the node x 3 say is no



were appearing in the tree, in one path. It may not be there, but in other part, it is there

then the BDD has a ordering x 1 to x n, if x 1 is the leaf node and then x 2 will be found

out in the second level, x 3 will be found out in the third level and so forth, but the idea is

that you may not find out x 2 in all the paths from x 1, in the second level, some path

may from x 1, may be directly going to 0 or 1.

In the other part, the second level x 2 will be there; that means, in at least some path the

x  2 will  be  there  in  the  second level  that  is  the  difference  between  binary  decision

diagram and binary tree. Binary decision tree means every path, you will have x 2 in the

second, x 3 in third level and so forth, but here in all the paths. You may not have the

respective node at that level, but in at least one path, it will be there and the ordering is

fixed; that means, the no path, you will have x 3 first and x 2 second.

That will not be the case, if x 1 x 2 x 3 x 4 is the ordering. So, in all paths or in some

path the ordering will be maintained like x 1 x 2 in that, but x 3 may not be there x 4 and

x 5. But it will never be the case that there will be a path where, x 1 then x 2 then x 5 and

x 3, that will not be there. So, this actually the variable ordering that is root node, that in

the second level at some path, there will be x 2 3 means at some path x 3 and so forth.
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Now, interesting I have taken this is the function x 1. So, this is your function x 1 plus x

2  dot, this  one is  the  function, I have  drawn a  O BDD  reduced  order  O BDD, the

ordering x 1 x 2 x 3 x 4 x 5 and x 6. So, x 1 is there, x 2 is the path of course, you see in



this path there is no x 3, x 4 and x 5, but there is a path in which case, the second level x

2 is there similarly, in this path. There is no x 2 over there x 3 is directly coming, but if

you look at it, there is one path where x two is there. So, there is be one every path, there

will be at least one path, where all the variables are there.

So, there no redundant variables. Secondly, in no path, you will able to find out that x 3

appears first and x 2 appears next, that is not going to be the case, if in some path x 2 is

appearing  after  x  1;  that  means,  in  that  path  x 2 cannot  be present.  So,  in  this  tree

basically, the ordering is x 1 x 2 and x 3 and x 4 x 5 and x 6. So, if you see x 1 x 3 x 4 x

5 x 6 and so, forth. So, as it is very much compress in some path, some of the nodes will

not be there that is; obviously, the requirement, when we are going from BDD to binary

decision tree to binary decision diagram; so, but in no path, we will find the orders plate.

So, in this case the ordering is this and this is if you draw the binary decision diagram,

which you can take as a home work, you will find out that this is the sign of the tree.

Now, another binary ordering, this is just the name, I mean, I can change I mean is, x 1.

This is, I mean, this is just for this example, it happens that x 1 x 2 x 3 x 4, this serial

ordering is going to give you the best one of the very good ordering.
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If you take a jumbled ordering like x 1, x 3, x 5, x 2, x 4. Some ordering you will found

out that the tree is almost exponential in size. So, do not go by the fact that, that is this

function is x 1 x 2. So,  I have taken the variable ordering in a serial fashion. So, I am



getting a very good structure and if  I taking a one bit flip like x 1, x 3, x 5, x 2. I am

going to get a jumble order. I mean very big size, it only happens for this example what I

try to show is that for the same function, if you take different combinations of ordering,

you are going to get very-very different size, tree structures.

So, this one is very compact and this one is very exponential, but this is the, in this case

this is the best ordering and this is the worst ordering, both are very-very difficult to find

any good typical ordering. You will find, you will be finding that  I am going to get a

reasonable  good compression. There is  a  standard  package  called  cut  package, with

actually  implements  the  whole  BDD algorithm.  In  fact,  internally, they  have  nice

heuristic to determine good variable orderings not the optimal one.

So, that is what I am saying that people do not try to find out the best ordering, finding

the best ordering will actually blow up the problem exponentially and it will again land

up to the issues of binary decision tree and all those things.  There are good heuristics,

which will find out somewhat very-very good variable ordering, where you will get very

high compression like 99 percent plus or even higher.

So, we all typically try to find out the good ordering and then we are going to use BDD

construction, whether by Shannon’s expression tomorrow. We will see some other ways

of construction and finally, we are going to lead a very-very compress data structure.
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So, what are the applications of BDDs is actually first is called expression equivalence

that is there are two functions given, if to find out, whether they are equivalent or not

how do you do it, we will basically have a typical way same variable ordering try to find

out the ROBDDs and if the both BDDs are equivalent same should not be, I call it exact,

exact image of it then you are going to say the functions are equal.

Why it will happen, because for a given variable ordering the ROBDD will always be

same, you cannot have any further reduction. So, if I have the function a and function b

and I take the same variable ordering of course, I will have the most short minimum size

tree  and of  course,  they  have  to  be  same then there  is  something  called  validity  of

Boolean expression. Validity means basically, a function, if is always true then I said that

the function is valid. So, in this case what is going to happen the BDD will have no 0

node sorry, no, yeah there will be no 0 node, in the leaf that node will be eliminated.

All the paths will direct you to 1; that means, for all input cases the answer is going to be

a 1. So, that is actually called the validity of Boolean expression, there is also very-very

important  in  some kind  of  verification  cases, because  you find  out  manipulating  by

function elimination labelling etcetera. The output of the function should always be one

that is all case, it is satisfied, there is something called satisfiability and at least in one

path. It is satisfied then, that case there should be a node in the leaf level mart one, if

there is node one in that; that means, there is some path, which are leading to one; that

means, at some places the expression is satisfied.

Very and the very important is finding out of the redundant variables, only the we have

seen in the test or a TPG cases that if there are redundant circuit variables then that fault

cannot be tested and your a TPG algorithm keeps on looping, trying to find out alternate

path to get that fault tested or that fault is non testable, because of redundancy and you

kill  lot  of time in a TPG. So,  if  you have a  Boolean function, you directly  want  to

implement the circuit on this, if is a very big circuit, you cannot use express, you cannot

use Karnaugh map etcetera.

So, there can be any chances of, redundancy happening, but if you can represent in terms

of BDD, if there are some redundant variables; that means, the variable happens nowhere

in the BDD, not even in a single path; that means, that function that variable is a do not

care  variable, just  remove  it  in  the, in  the  examples, basically  x  2  is  not  means  a



redundant variable, because in one path, it occurs, but for some functions or in most of

the functions, you will find out that there are some of the variables, which will appear

nowhere in any of the path; that means, those variables are redundant and you have to

eliminate them.

In that case there lot of advantages area reduction testability, becomes easy and so forth.

So, these are some of the very-very prominent and important use of ROBDD and the

advantages all comes, because of compression and because of ordering. Without ordering

only with compression, you cannot do much, because for the same function, if you have

different ordering, nothing can be compared and equivalence cannot be changed.

So, once it reduced order, once  it is reduced binary decision diagram with a variable

ordering given, then the utility actually becomes a great utility and this is actually one of

the heart of data structure of all the CAD algorithms. So, whenever you talk of circuits

functions state machines, we all represent them in terms of binary decision diagram and

again as I told you what we do basically, we take a typical ordering or the 2 or heuristic

exist, which  give  you  good  variable  ordering  and  you  get  a  typical, very  good

compression, because for most of this systems we develop the all combinations of inputs

are actually  not valid  or we do not require them and they are do not required to be

modelled itself, only a very-very few fraction are meaningful.

So, that  is  the key idea of going for verification of complex systems that  instead of

basically,  making  a  large  size  of  state  machine  explicitly, we  will  try  to  represent

everything in terms of binary decision diagrams. So, that all redundancies are eliminated

and  try  to  model  all  these,  means  model  checking, algorithms  labelling, searching

etcetera, in the BDD itself, which is actually called symbolic way of doing it.

Next class, what we will  try to do; we will  quickly try to see another way of doing

generating  the  BDDs giving a  circuit  itself, rather  than not  going for  the  Shannon’s

method like, we have a circuit, we have the variables then how can we quickly make a

binary decision diagram out of it? Which is, will be done possible through operations on

BDDs, then we will also try to see some interesting advanced structures, because anyway

in testing, we have already seen that whatever you do, if you remain at the byte level or

bit level then nothing can be done, when you have last system like, systems of systems.



So, in this case also we will try to move our self from this binary business to arithmetic

business, integer business high level abstraction. So, advanced version of BDD is like

arithmetic decision diagram, high level decision diagrams. Also we will try to see in the

next lecture, but one thing the philosophy everywhere is similar that, you have to remove

the redundancies.

Thank you.


