
Optimization Techniques for Digital VLSI Design
Dr. Chandan Karfa
Dr. Santosh Biswas

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture - 02
High-level Synthesis (HLS) flow with an example

Hello everyone. So, today we are going to discuss on high level synthesis right. So, I

mean as you saw in the last lecture is that we talked about this VLSI design flow, and

you just saw the all the sub steps of VLSI design flow how we can take an high level

behaviour and we can map that to I mean you know integrated circuits right. So, that is

what we have seen.

(Refer Slide Time: 00:50)

So, in today’s class we just recap that whatever we have discussed in the last class and

then we just go through high level synthesis by primary with an example just to try to

understand how what are the objective of each sub steps in today’s class right.

(Refer Slide Time: 00:58)

So, for if as you see in the last class is VLSI design flow is consists of several sub steps

like high level synthesis, logic synthesis, physical synthesis then fabrication and

packaging and testing right. So, and you can think about as actual things start from that

English language, system specification then we generate that CC plus plus code from

that manually primarily manually that part is not automatic.

And then we do high level synthesis to generate a register transfer level designs from a

CC plus plus code, and then we do logic synthesis to get generate gate level designs, and

then physical synthesis to generate transistor level design or the physical layout, and then

you do the fabrication and packaging get the integrated circuits right and what is the

objective of these cycles is, we try to design as abstract level as possible right.

So, that we can design in quick time and we rely on the tools cad tool computer a design

tools or EDA tools elect electronic design automation tools, to generate the next detailed

level and that is the world objective so that, we can generate a big circuit in quick time.

So, that is the overall objective of visual VLSI design flow, we try to design as abstract

level as possible as quickly as possible and try to automate that steps, we use this

synthesis tools to generate the next level of designs right. So, that is the overall objective.

(Refer Slide Time: 02:20)

And this particular concept is nicely captured in this y diagram, which consists of three

access right this structural accesses, behavioural accesses and physical accesses and.

(Refer Slide Time: 02:39)

So, if we just think about if you just go from the centre to as for, there it is more abstract

designed it; so, if you just think about this. So, in the code level in the structure you have

only transistors right. And behavioural level you have the functions that represent the

transistor functions right and the physically do have the layout transistor layout.

(Refer Slide Time: 02:52)

So, if you go one level off so, we will have gate level designs right. So, you have get flip

flops in the structural level and the graph will get level circuits can be represented as in

Boolean equations right and physically we have the cells, the standard cells of the cell

libraries.

(Refer Slide Time: 03:07)

And if you go one level off in the structure level we have the registers, multiplexer,

ALUs and physically registers transfer level designs or the ATL designs physically either

you go for ASIC or FPGA right and if you go the more abstract level.

(Refer Slide Time: 03:19)

So, in structural you have processor memory bus may be a level, we algorithm flowchart

in a CC plus plus code like this and physically you have this PCB or MCM.

So, this is how the whole VLSI flow stand stands and we try to start designing from the

directly from the algorithmic level and that is the overall objective.

(Refer Slide Time: 03:42)

And what is the importance of these design automation steps? The first thing is that is the

shorter cycle. As I mentioned if you start designing suppose you take an example of say

sorting algorithm right and you just try to implement a bubble sort. So, you write that

bubble sort in c it is just hardly 4 or 5 levels of code right, but if you not think about how

you want to design the bubble sort in RTL level, now you have to consider all these

registers, multiplexers, adder, subtractor, comparator, clocks reset everything. So, the the

bubble sort algorithm in RTL may be 100 lines of code right and if I think about and

bubble sort in gate level, I asked you to design a bubble sort using gate level designs.

Now, you have all this and gate or gate you have to realize they added using and get on

gates or you have reused directly flip flops registers and all those things right.

Now, your design may be 400, 500 lines of code right and now if you think about I asked

you to design a bubble sort in transistor level, which is may be 1000 lines or 2000 lines

of code. So, that actually give you the idea right if you just write a bubble sort you will

hardly 5 minutes, you can write a bubble sort algorithm and you can use a high level

synthesis tool or the synthesis tool and this will generate a gate level design or RTL level

designs or say transistor level design directly from using these tools.

So, that is basically give you the sorter design cycle. So, that is the one of the important

aspect of this. So, the next is the design space exploration. Again if I imply abstruse

implement a bubble sort, I mean more options in the hardware right. So, for example, if

he try to execute the whole thing in 4 clock, you might need to adder or if I want to

execute the whole things in say 6 clock, you might need only 1 adder or 2 adder right.

So, then you are using relays resource or there is a trade off between time versus the

resource. And there are a lot of possibilities right in some cases you it is to design

everything in say 4 clocks instead of 6 clocks or in some time you need to execute

everything in say in 4 clocks instead of 6 clocks.

So, based on your design parameters, you have a lot of options like that. So, basically

you should already explore this design space the possibilities to get the best result out of

it. So, that is also possible through design automation because it is automated technic

you do not have to design everything from stech right and also the next possibility is a

fewer errors in the design, because now you just think of have to write a gate level

design consists of 4000 5000 lines of code and you have to handle all clocks all resets

everything.

So, there is a high chance that you make some mistakes someone. So, you are very

careful I mean of not making many mistake in the design, but if you just think about a

bubble sort is hardly 4 5 lines of code. So, you can easily write that easy layer and there

is chances operator this minimum or less compared to if you just design that in our

tailored you gate level.

So, if you use design automation the chances of errors is less and also there is another

important aspect in specification driven optimization in the higher abstraction level. So,

what is that? So, is basically it is if I ask you to RTL design. So, writing 4 variations of a

say bubble sort is it will time consuming, but if I ask you. So, you design one bubbles are

just to give minimum in it is a fastest RTL, which compute the whole thing a minimum

possible minimum possible time right or I ask you to design another bubble sort is you

useless least number of the list number of resources.

So, we have your abstraction goal or the design optimization goal maybe different; and

based on your goal that RTL or the gate level design that you are going to get will be

different right. So, again you can have a high level code you can always try to do these

things using synthesis tool right, because you have high level it is take very less time to

design an algorithm. So, again if you just use this automation tool design automation

tool. So, the specification driven optimization easier right. So, that is another advantage.

So, this is why we mean most all the Indian industry or these semi conductor is rely on

this all synthesis tools, I mean provided by all these cad companies right. So, that is the

overall objective

So, in today we what we are going to talk about is high levels synthesis is the first step.

So, from that CC plus plus a high level behaviour from CC plus plus we are going to

generate the RTL and how.

(Refer Slide Time: 08:11)

So, what we are going to do today instead of discussing all the sub steps algorithm

behind that and what is the logic going on behind and complexities of this algorithm, we

are not going to detail of that thing right that. If you just ask I mean as a layman if I ask

you to write and ask you how you can convert a bubble sort algorithm to a RTL design,

how you can do that?

What will be our steps or not is the common way to do that things right what are the

steps we should follow? That we are going to discuss today and in next class we are

going to discuss more on how we can automate those process, what are the algorithm

going behind that right. So, that we are going to discuss in the two models class, but

today we primarily discuss on it how manually or what were the steps that we should

follow to convert a serial C code to a RTL design right.

So, as I mentioned high level synthesis is basically, I mean converting a high level

behaviour which want to be written in CC plus plus to an RTL design. So, that I see you

can see in the left hand side this code is I has a while loop and we have certain kind of

operations in that and we are doing in a loop, and then we produce some output x y u and

something like this right. So, this is something a behaviour and is kind of c. In the right

hand side after high level synthesis we will get a register transfer level design which

consists of a data path and a controller.

So, data path will execute these operations in the hardware right. So, data paths will is

there to execute this operations and controller is there to control the execution operations

in that data path. So, finally, our going to generate this kind of circuit from this, and we

are going to discuss now how we can do this step by step right.

(Refer Slide Time: 09:51)

So, high level synthesis consists of several sub steps pre processing, scheduling,

allocation binding and data path and controller designing right. So, we are going to

discuss all those things now right. So, what is pre processing? So, in pre processing what

we does? We try to represent that C code in some intermediate from CDFG we calculate

the data dependence inside that, we do some analysis, we apply certain compiler

optimization on that to generate some optimized version of the intermediate code

through which we can do then what we do?.

So, that is what is so, in this diagram. So, its starts from a high level C code, we do pre

processing you get a control CDFG control and data flow graph and then what we do we

do the scheduling.

(Refer Slide Time: 10:25)

So, in scheduling is what is that? So, we have multiple operations there right. So, we

cannot exhibit everything in one clock. So, we have to assign time step to the operation,

what we have to decide which operation is going to execute in which time step that is

something scheduling right. So, that is what we are going to do next and then we try to

map those variable to the registers in the hardware and we try to map the adder from

function units, adder multiplier to the function units of this into the of the hardware so

that is called allocation and binding.

So, after allocation and binding we will we will get to know what are the variable will

map to which registers, which of the operator is going to map to which function units

right. And what we have done that we try to generate the data path. The data path is

what? We have as I mentioned the data path consists of the function units, we have

registers and the interconnection component like multiplexer, de multiplexer and the

interconnection between them.

So, we try to generate such kind of data path out of this information. So, which is only

execute this operations right. And then next once we decide about this we have to control

the operations data flow in the data in the controller in the in the data path right, and that

will be the control by the controller. We will discuss more on those in in subsequent in

this class and finally, we are going to generate this, which is consists of a data path and a

controller and this controller every signal generates some control signal to the data path

to execute certain operations and after the operation, you generate some data path gives

some status signal to the controller based on that it generally decide the next state ok.

So, this is the overall flow. So, we will we will discuss those sub steps with an example.

(Refer Slide Time: 12:19)

So, what we are going to take is that second order Differential equations equation solver,

which is very common in is very there is widely use an example for any cad courses. We

will take this example and we try to see how we can generate an equivalent hardware out

of this behaviour right. If you look into this behaviour it has some 5 inputs x, d x, u a and

y, y should be here and I mean I mean. So, y is also here and we have output is y and in

there is a while loop; in the while loop we are going to execute when we do certain

operations until x less than y and then finally, we here we are going to generate output

right. So, this is the overall algorithm and we are going to discuss here how we can

generate a hardware that is going to execute this behaviour right.

So, now will instead of going into detail of this step that we just learnt, what we are

going to discuss what is the immediate step that we should do right. So, it will have look

into this behaviour, first thing will you will come to your mind is that, there is a while

loop right and there are big operations right. We cannot execute all these things in a

single clock then what will happen? So, if you want to execute the whole operations in a

single clock, the problem will happen is that you have to execute these three multiple it

in a same cycle, then these two subtraction there are 5 operation in a changed. So, your

design will not have a good speed, your clock that we are going to achieve through this

design will maybe hardly some pillars or something right. And also that there is a loop

around this, again then this loop I do not know how many times it will execute it depends

on this x and y value. So, again I do not know how many times I have to do this whole

thing. So, how do you decide that I have how many clock I have to do these things? So,

this is all these things are not possible to do and decide from this behaviour.

So, what we have to do first thing? We have to extract the what are the inputs of this

behaviour. So, that we already know these are the and you have to read. So, you have a

hardware, we have to we need to know we have to read these values right through some

port hardware port. So, basically in hardware there is the input are coming through some

port so; that means, we have to realize these inputs or the read this inputs through some

port. So, that is what is this these operations right that we have to read suppose and we

the number of port in the in the hardware is limited.

(Refer Slide Time: 14:44)

So, you have to decide how many port we are going to use for this design and say for

these 5 reads, I have decided to reuse 3 ports say. So, then I am actually reading d x

through port 1, x through port 2, a through port 3, y through port 1 and say y through

port 2. So, that is what I have decided that I am going to read this 5 inputs through these

three ports using through this logic right ok. And also next is we as I mentioned this

operations big operations cannot be executed in one clock, then your clock speed will be

very less. We have to break this operation in small small operation for example, I can

execute this is a sub operation; this is how a sub operation then will do this right.

So, similarly this is sub operation, then this is another operation then we do the whole

thing right then we make it. So, this is already computed and now I am going to do this

subtraction operation right. So, this is how I am going to split this big expression into

small small part and that is called three address code right. So, what I did? The same

example is here.

So, I break these operations, I mean the whole be a while loop operations are here I break

them into three address code. So, what I did? I did this three into x I store into t 1 I do

you into d x I sorry this u into d x I stored in t 1 I i take this three into x I store in t 2 and

then I do this 3 into y here and I store into t 3 right. So, this is what I am doing here and

then what I am doing. So, now, this is t 1, this is t 1, this is t 2, I am now I have to do this

multiplication. So, I am doing this here right this t 1 into t 2 t 5. So, that is effectively

this. So, this is become this t 5 is this and then this is basically t 3, I have to know

multiplication d x that is what I am doing here t 3 into d x. So, this is become t 6. So, this

is what I am doing here. So, I am breaking this big expression into three address

operation.

So, similarly we just see even if I break this operation I am going to get this 11

operations out of this while loop right. I have to also execute this x less than x. So, that is

also there. So, this is what I have done to break this big operations into small small three

address code. So, that I can execute these operations in some functionality in the harder

and we can achieve greater clock speed right. So, this is what is that call breaking these

operations into big operations into smaller operations. Then we have to extract as I

mentioned this is while loop and there is a basic block inside this, I mean we have to I do

not know how many times this loop will be executed this body will be executed. So, I am

going to represent the whole behaviour in terms of basic blocks ok.

So, I have one basic blocks here, which will do this reading operations I have one basic

block here that will do this the loop body. So, basic block is were there is no branching

statement they are all are sequential operations. And I have also have a basic block here

just to output the value of y right. So, I have three basic block and that is what I have

shown here that is the input basic block, I am moving all this reading operations, this is

the basic block I am doing this body loop body and this is that output port this is b 2 right

and this is that while loop and this is called control and data flow graph.

So, we extract and control and data flow graph from this behaviour right, which consists

of set of basic blocks and their control flow. So, this is what I have done. So, we have

done two things we break the big expression in the three address code, we extract a

control or data flow graph out of it right and what next. So, this is so far we have done in

the pre processing steps.

Now, you have to understand that. So, as I mention here this t 1 is you can done here and

then this t 2, and this t 5 operation depends on t 1 and t 2 right. So, I cannot execute these

operations unless and under this and this is over right unless I did these are executed, I

cannot do this. So that means, there is a dependence if between these operation d 5 V 1

and V 2 right. So, these can only be executed once this V 1 and V 2 is over right.

So, that is called data dependency. So, once we are done with this control flow graph

extraction and this splitting their operation in the three address code, we have to extract

we have to we have to find out the data dependency and that among the operations of the

behaviour right. So, we will if you just try to find the data dependency for this block let

us try to do that. So, this is the same block I copied here and if I just take this right.

(Refer Slide Time: 19:39)

So, this is the data dimension from u d x, these are the input variable and this is that

operation, which is a multiplayer. So, I do multiplication the our variable is t 1 and the

operation in V 1 right. So, this is that data difference the if we try to represent this whole

express this text or the body of this of this basic block using graph right by each input is

some variables and the circular nodes are the operator and we try to find out the

dependency between this right. So, that is what I just saw.

Similarly if I just do this for this t 2. So, t 2 is 3 and x and multiplication is happening

and the output is 3 t 2 and the operation is V 2 right. So, this is I just do it for this and

then since this is depends on this. So, if I just do this t 5. So, t 5 is now depend on this t 1

and t 2. So, t 2 is this I just right here.

So, now this since t 1 this operation V 5 depends on our t 1 and t 2 this will come next

right. So, this is how the data dependency is expressed right.

(Refer Slide Time: 21:00)

So, this way I can if I just draw the for each operations I can construct a graph like this.

So, this is called data dependency graph. So, we have to extract this data dependency

from this basic block behaviour and what is signifies? It signifies the data dependency

among the operations. So, what it signifies? I cannot execute V 8 unless V 7 or V 6 both

are executed similarly I cannot execute V 5 unless V 1 and V 2 is executed and similarly

for other operation right. So, I cannot do this unless this V 4 is executed. So, this is how

it actually give you the idea how the data dependency works and which operation will

execute first and then which operation next right.

So, this is what is pre processing. In pre processing we do some more some more things

which I will not covered here, is basically the compiler optimizations. So, once you write

a code like this there might be this many are maybe on optimized code right we might

have to might have better version of this code, which we have not written. So, then we

can apply some certain compiler optimization technique like say loop transformations

say constant propagation, dead code elimination, common sub expression elements and

those kind of operations on this behaviour to generate some C code which is kind of a

more optimized version of that.

So, that I am not going to discuss today, because our intention today is just to see how

from a C code and our till can be generated those are kind of advance topic which will be

covered in a very specific lecture. So, so far we have done that. So, we have extracted

this data dependency graph, we can represent the whole behaviour as a CDFG each

expression are converted into c 3 address code. So, this is this far we have done right. So,

now, what is the next step? So, this part we understand.

So, now, we have a intermediate representations, which is a basically CDFG for each

operation is a three address operations and we also have the data dependence in

correspondence. So, what is the next step? The next step is to decide where I am going

which clock I am going to execute which operation right. So, that is our next step. So,

what is that? For example, as I mentioned here. So, this whole loop body I mean cannot

be executed in a single clock because of a lot of multiplications and other operations are

there, we try to do it in multiple clocks right.

So, now that you have to decide. And here we remember we usually do this scheduling

of this each basic block separately. So, we try to when we are going decide the number of

time step for this B 1 I am not going to consider this I one or when I am going to decide

the time number of time still required for B 2, I am not going to consider B 1. So, these

are kind of we can say individual block, which you can we can decide the running run

time or the number of times to be required to execute independently. But there are certain

advanced techniques are there path ways scheduler which actually take both path, but

those are advanced technique we can we are not going to discuss on those in this in this

course detail ok.

So, what we are going to consider? We go to consider each basic block and try to find out

how many time number of clock we require to execute the operation inside this particular

basic block right. So, that is what is the next step.

(Refer Slide Time: 24:21)

Because that is what we have to we need to know how many time step is required to

execute certain the certain set of operations in hardware right.

So, now for this as I mentioned there are some dependency, I mean we cannot execute

these unless these are this executed. So, based on that we can decide key I am going to

use 4 clock time step. So, this is time step 1, this is time step 2, this is time step 3, and

this is time step 4 executive this operations let us have decided that and now we see

whether this data dependency is violated by this. So, here you can see that when I am

going to execute all the input all these 4 operations, the inputs are available. So, I can

exhibit them there is no data dependency on the other operations. So, this can be done in

flow there is no data dependency by lesson right.

Now, if you just think about these set of operations once I am going to execute this, this

is available, this is also available. So, there is no problem here similarly this depends on

input so, but. So, I can do it here itself and this also this t 4 is available and we y is

available. So, I can do this. So, there is no dependency violation similarly for this and

this. So, this is what say I have decided, that I use 4 cycles 4 clocks right are 4 times step

right 4 time step to execute this 11 operation.

So, in this behaviour as i. So, there are 11 operations I am going to use only 4 cycle to

execute all 4 origin operations right. So, this is what I have decided. So, this is what is

called scheduling assigning time step to the operation. So, I am assigning time step 1 to

these operations, I am assigning a time step 2 these operations, I am assigning time step

2 through these operations and time step 4 to this to this these two operations right.

So, this is what is called scheduling and this is our immediate next step. Because once

we have a behaviour its untimed there is no time assigned this there is no information

how many time how many clock cycles required to execute that, that we have to decide

first key how many how many clock cycle I am going to use here to execute that

particular set of operations. So, that is what is called scheduling right. So, this is done.

So, what is the next step? So, this is the schedule information and now we have to think

about of the hardware. So, we have done with that key how many clock cycle is required

or how many times step is required that is already done, and now we have to decide how

many registered we are going to use or say how many function unit, we are going to use

in the hardware right.

So, the obvious immediate solution is that I can store each variable in each register right

that is um that that we can do. Similarly I can use this separate from function unit for

each operator, that is the ores possible case rate, but the number of operator is huge and

they are not rediced right. So, a that is not the purpose of hardware. I did not hardware I

will try to use each operator each operator in I mean that will reduce them as much as

possible. So, our objective would be tried to use minimum number of register to store all

the variables of the behaviour, similarly try to use minimum number of functional units

to execute all the operations of the behaviour right.

So, each substrate has some sub a sub optimization world. For example, in pre

processing we try to generate some try to generate some data dependency over the length

of the dependency graph is less right. So, that is goal and because of for that we use

several compiler optimization technic to reduce that in scheduling what is the objective?

The objective is try to generate some try to try to schedule all the persons in minimum

number of time step. The objective is try to reduce the number of time step as much as

possible we might have some other goals that you are going to discuss later, but

primarily tried to you execute all the operations in as much as less as possible clock

possible right.

(Refer Slide Time: 28:29)

T and then we go to this register allocation binding and functional external binding, how

you try to use minimum number of register to store or the (Refer Time: 28:37) we try to

use minimum number of function you need to execute all the operations of the behaviour

right.

Now, the question is how we can do that manually right. So, intuitively how we can do

that. So, let us see this example. So, in this example we had we have seen this is we use

for time step to execute we use 4 time step to execute this behaviour 4 time step, and

now which I do the objective is here try to see are some register to store multiple

variables. So, how many variables are here? We have this all these input variables and we

have also this in temporary variable because we have introduced so many temporary

variables, this t 1, t 2, t 3 and this. So, you have total let us see. So, 15 15 variables are

there.

So, there are 15 variables in this behaviour in this particular code and then. So, what we

have just to recap this. So, what you have done? We just do the scheduling for this a

symbol of 1 right similarly we can do the scheduling for other block also right this basic

block of I and B 2, but since they are kind of a same. So, I am just going to discuss only

basic block one. So, other is just it is just the same thing we can do in the other block as

well right

So, now we have friction variables are objectivity use minimum number of register could

store these variables and the question is how. Now if we just look into this behaviour,

this schedule information the t 1 is generated here right at the end of time step 1 and it is

going to use here. After this it is not going to use in S 3 and s 4 right there is no use of t 1

in s 3 and s 4.

So, there is no need to store t 1 in for the time step t 3 and s 4 right. So, we can actually

use the register that is stored t 1 to store something else, because t 1 has only required in

the further time step to where it is going to use here other time it is not required right. So,

that is the overall idea. If some variable is not used in (Refer Time: 30:55) time so, you

can delete the value in the hardware, because if the register is not stored that value is not

available anywhere. So, if it is not required it is not required is it is not required to store

as well as. So, we can do that. So, that is the idea. So, we try to find out the life time of

each variable and that is represented in a graph called interval graph.

So, as I mentioned for t 1 it is just defined at the end of S 1 and it will be available from

S 2 right. So, the life time of t 1 is only in S 2 right it is only using time step 1 after that it

is never used. So, there is it is it is life it is basically it is not live variable right. So, it is I

can replace the value with something else. Similarly for t 2 also the lifetime is s two, but

t 3 t 3 is also defined here. So, it is for S 3 it is in time save S 3 this is t 3 and t 4 is

defined here. So, life time is here and for t 5 5 is defined here.

So, this is for S 3 right. So, t 3 5 is defined in S 3 and for t 7 and t 6 they are defined at

the end up stand of 3. So, they are available only lie here right. So, they are available t t

7, t 6 and t 7 here. And for other variables like this input variable, they are actually the

since this is a loop and they are going to redefine there or there actually has to lie for

whole time step because they are defining somewhere and they are going to reuse right.

So, their lifetime is for the whole 4 time step right. So, this way I find out the lifetime all

variables right.

Now, what we can do if. So, lifetime means where I have the use of the particular

variable, and I have to store that data for that time at least other places, I may or may not,

but that is there this must store that value right.

So, we try to use we try to use registers such a way that if there are two variables which

lifetime is non overlapping, I can store them in a single registers. For example, here t 1

lifetime here, t 3 lifetime is this they are non overlapping and t 6 right. So, there lifetime

here. So, they are this t 1, t 3 and t 6 they have a non overlapping lifetime I am going to

club them into a single registers and that is not violet any problem and they are not going

to problem in the hardware. Because they whenever the data is used that time that data is

stored in the particular register.

So, that is what is called registered sharing. So, I am going to share a single register to

store this three variable. Similarly I can do this for R 2, R 5 t sorry t 2 and t 5 and t 7 in a

register R 2. So, other than there is no other facility because they all are overlapping, on

a. So, there they need a dedicated register all this very well integrated register. So, that is

what I have done here. So, I need effectively 11 register here right.

So, I need 11 register here for 15 variables. So, I have some saving for instead (Refer

Time: 34:07) here. So, if you can think of this is small example, but if you have big

examples there are hundreds or thousands of variables, then maybe there is register

saying maybe much more. So, that is our next goal that I try to map those register

because finally, I have to execute everything in the hardware and there is no variable they

are only have the registers. So, you have to map those variables into these registers.

Now, if you think about the adding actual design those has to be map into memory ram

or ROM in the design. So, that is also another way of doing this. So, you have to has

think of the size of the added and then you have to decide which particular is going to

map into which ram or whether is it is going to map ram or not that is we also decide by

the use pattern. If it is only read only mere array then it can we have two ROM right that

if it is read and write both are happening then is going to map into ram.

So, that is also similar way, but I am as far as for the example concern I have only

registers, I mean I have only variables. So, I can map them to registers of the hardware.

So, this is also done. So, this is the step call register allocation and binding

(Refer Slide Time: 35:12)

So, the next step is similarly the function unit a functional unit allocation and binding

and here in hardware you have to remember that the unit that is going to do multiply that

is dedicated for multiplication operations right. Similarly the operation that is going to do

addition that is dedicated for addition maybe addition and subtraction can be done by the

same operator, but multiplier addition can be separate from same unit.

So, here I mean registered is a unique type of thing. So, all variables use map register,

but here multiplier you want to map to the function unit it is multiplier functional unit

and the addition is going to map into the unit function unit, which is type of adder right.

So, we have to do this mapping for each type of operator. So, what I have done here is an

example for our running example how to do it for multiplier right

So, again the concept is little bit same the way we do the register allocation binding. So,

so if two operations are running in the same time step right for example, these two

multiplication. So, I am going to do only for multiplier other operations are not there. So,

these two are in the same clock. So, same multiplier cannot be used for them, right I have

to use different multiplier for these two multiplier or I would say the three multiplier

here. So, these three cannot be done in us using same multiplier. So, I need at least three

multiplier to execute these three.

So, I am again I am going to represent their span or the used span for each variable in a

interval diagram in interval graph where I have this time step S 1, S 2, S 3 and S 4 I am

going to write a bar in particular time step where this particular way operations is

executed for example, V 1 executed here. So, I put a M 1 here I mean this bar here for V

1, V 2 is also executed in time step 1. So, I put V 2 for V 2 and then I put this for V 4 bar

in S 1. So, these are the things in running of a time step 1 time step 2I have two

multiplication operation V 5 and V 3 this is V 3 this is V 3 and this is V 5 and in time

step three I have one multiplication, which is V 6 right. So, this is V 6 and in time step

are there is no multiplication. So, this is the interval graph for the you are from the usage

of the multiplier this right.

Now, again the same concept if that usage is overlapping, I cannot use a single multiplier

to do that do this particular multiple operations in the same time. So, we need different

multiply, but if they are used in different time step I can use the same multiplier right for

example, here I can use the same multiplier to do this, this two even I can do this, but for

some reason I also decided this I am going to do V 1 and V 5 in multiplayer one right this

is for multiplier 1 I am going to do this V 1 and V 5 similarly I am going to do this V 2

and V 3 in multiplier 2; and for in multiplier 3 I am going to use this V 4 and V 6 right

again as I mentioned for this since there are three multiplier in parallel I need at least

three multiplied, but this mapping can be different I can I could have done V 1 and V 6

together.

Even in fact, in fact I can do V 1,V 3 and V 6 also in the same multiplier, but I just

decide one of them right. So, these are all possibilities, but you can choose one of them.

So, I have decided this. So, this is called from senate and of course, I m finding for

multiplier.

(Refer Slide Time: 38:51)

Similarly, I can do the same thing for adder, and I have assumed that addition and

subtraction is done by a single function unit called adder and you can see there are 4

adders here this is one, this is one, this is one substracter these are all adder or sub

stracter type. So, there are four, but they are all in different different clock step right in

time step. So, these are all in.

So, this is V 10, this is V 9 this is V 7 and this is V 8. So, I have done this in different

different clock step since they are known about let me again use a single adder or

substracterto execute all these 4 operations. So, I need only one substracter added to

execute this all 4 additional subtraction in the of the behaviour in the hardware. So, at the

end what I have received. So, I you I got three multiplayer one adder and similarly for

comparator I need one because I have one comparator operator and basically operation it

is comparator.

(Refer Slide Time: 39:43)

So, I got one comparator. So, I need three multiplier 1 adder three multiplayer one adder

and one comparator total 5 to execute all this 11 operation. So, that is 11 operations are

there and I have 5 functional unit. So, that is what we got from this sharing information.

So, this is what we have done.

So, far, you understand the concept right. So, we first decide the time step I am going to

do a which operation. based on that scheduling information or that assigning time step

operation information we decide how can share some register to store multiple variables

th V is (Refer Time: 40:28) sharing other some and then we again decide how to do

multiple operation using a same function unit and that is what is called function unit

allocation and binding and after that what we see is this

(Refer Slide Time: 40:41)

So, we have the register mapping information I have the considering information and in

S 1 I have I have done this for this 4 operation right. So, if you just see here I have done

this V 1, V 2, V 4 and V 10 in a S 2 I have done V 5, V 3 and V nine similarly in S 3 I

have done this three operation in s for this. So, I just call do it for two time step I i can do

for S 3 and s 4 as well right this is s S 3 and S 4 as well, but. So, I have 4 operations here

and in S 3 I have three operation S 3 S 2 I have three operation in S 3 also I have three

operation in s 4 I have one operation right.

So, and now I have this register nothing information, I have this function you will

nothing information and now I can actually represent this high level behaviour using

register transfer level behaviour what is that? So, for example, in time step 1 or S 1 I

have operation relative one equal to u d x, but u u is nothing, but hardware u is nothing,

but R 5 right. So, I can replace this u by R 5 similar t 1 is nothing, but in hardware is R 1.

So, I can replace this t 1 by R 1 right similarly this multiplied is nothing, but M 1

because V 1 is happening here. So, I can replace this multiplied by M 1 multiplied one

right and this similar d 6 is nothing, but R 7. So, I replace is d x by R 7.

So, now these operations t 1 equal to u star d x is nothing, but in hardware some register

transfer level operations between R 5 and R s7. So, I am reading R register 5, I am

reading register 7 and I am doing a multiplications and that result is stored in register R

one. So, this is what is an R register of transfer level design operations in the hardware.

Similarly I can do this V 2 I can replace this variable with their corresponding register

name and this operator is the corresponding multiplayer, I will get this operations

similarly for V 4 I will get this, for V 10 I am going to get this, for S 2 also this

operations I am going to get this, for S 3 also I am going to similar kind of thing and s 4

for also times s 4 also I get a operations like this.

So, then you can understand the basic clock, I have 11 operations first I partition them

into 4 times step and then I find the register information’s based on nothing information,

I found the function in your nothing in formations and then I can actually represent that

high level behaviour is using the register transfer level behaviour.

So, I have now I do not have I do not have any variable I do not have any operator, I

have only registers and the operations right. So, this is called a register transfer level

behaviour. So, now, I actually map those high level V b R at least one basic block into is

equivalent register transfer level behaviour right. So, this is clear right.

So, now what is the next step?.

(Refer Slide Time: 43:40)

The next step is very natural Is I have to generate the data path, because I just make here

these are the operations I am going to executed these are the operations I am going to

execute in the harder, but I have to make the connections right. Because here I just make

this essence, but in hardware what is going to happen? This has to be make the

connection proper connection here so, that this operation can happen right. So, if you just

think about I have this is say R 5, this is say R 7 and say this is the multiplier. So, I make

I have to make this connection to this is R 1 then only this will happen in the hardware

right. So, this is are this kind of connections I have to make and I have to make this

connection because I am using this multiplier, this may not be a direct connection I have

to make a ma add a max here right.

So, because multiple input might come here right because I am sharing similarly here

also this might go to multiple places. So, that is called the data path generations and the

objective is to minimize this interconnection cost. Use minimum number of multiplexer

demultiplexer just to make the connections right. So, that is the objective of this data

path generation and that is our next step data path synthesis. So, what I am going to do

here, I am going to do it for one to operations in the data path connections and then you

will understand the how the how the things works right.

So, as you have decide I have 11 registers. So, this is my final hardware is I am going to

generate. So, I have 11 registers here, I have 11 registers here, I have three multipliers I

have multiplier 1, multiplier 2, multiplier 3, I one adder, I have on comparative. So, this

is what is the components that is already decided here. Now adder net the connection for

this operations right. So, let me do it for these operations first right. So, I have a

connection to multiplier from R 5. So, from R 5 to multiply 1 I make this connection

right. So, this connection is made and then this is the right R I is operant for this

multiplier.

So, from R 7 I make this connection right and the result is stored into R 1. So, this is

going to R 1 we can see this is going to R 1. So, just to do these operations I make this

connection similarly if I just do it for R 2 for this V 2 operation V 2 and I have to make

the connection from R 10 to M 2, R 10 to M 2 and then R 6 to this multiplier to R 6 to

multiplier 2 I will make this connection and the result you are going to store in R two.

So, this is going to this is going to R 2 right.

So, this is done similarly I have to make the connection for this R 3. So, for V 5. So,

from R 5 to this R 5 to this R 7 to this and the result did not to R 3 you can understand

this going to R 3 similarly for this x R 6 for this adder this coming from R 6 and R 7 and

output is going to R 4 you can. So, this is going to R 4 right you understand this. So, for

the time step 1 I make the connection steps there is no problem right.

Now, if you just go into this time step 2 what will happen? Let us again we are going to

consider this.

(Refer Slide Time: 46:54)

So, now this is already done and for that this is the connection I register right now if you

just think about this operation. So, now, the input of multiplier 1 is coming from R 1

right, but earlier it is coming from R 5. So, now, I need a multiplexer just to decide

between R 5 and R 1 right. So, this is what I have done here.

So, in the previous diagram I have only direct connection from R 5 to this, but once I

consider this connection, now I have two more option or 5 or R 1. So, I have to use a

multiplexer and I need a control signal here just to decide between R 5 and R 1. So, 0

means R 5, 1 means this R 1 right. So, this is what I have to add this multiplexer;

similarly for the right and right hand R reaches this right operator I have earlier R 7 now

I have R 2.

So, I need again a multiplexer that will choose between R 7 and R 2. So, I need this

multiplexer and this contraceptive 0 means this R 7, 0 means this one is this right and the

store result is going to R 2, but in earliest times there R 2 data is coming for m M 2, now

it is coming from M 1. So, I need m for at the input of R 2, I need a multiplexer that will

dis choose between this R 2 sorry this M 1 and M 2 because I in first kind of this R 2

input is coming from M 2 multiplied 2 now it is coming from multiplier 1. So, I need a

multiplier 1 that is choose the input from either from multiplier 1 or multiplier 2 at the

input of R 2 ok. Similarly if I just consider this one I have to again the (Refer Time:

48:38) problem will come for M 2, I have to add this multiplexer here, but you can see

here there is interesting thing that V 2 stores R 10 right

Now, also it is coming from R 10. So, I do not need a multiply this you know both the

cycle this is data is coming directly I have I do not have to use a multiplier here. So, that

is kind of saving. Because if we just add a multiplexer is useless in first clock is going to

use select R 10 second clock also is going to select R 10, effectively that multiplexer is

easier done.

So, I am not going to use it right, but for the right hand side earlier is living from R 6 not

going from R 8. So, I have this is R 6 and this is R 8. I need a multiplexer here and the

control signal 0 means this R 6, 1 means R 8. And for multiplier three there is no

multiplier 3 here and for adder now it is coming from R 8 and R 3. So, I have to make

add multiplexer similarly and the result in storing into R 8. So, there is a different way.

Now,. So, then this is no multiplexer is required because it is updating a new register

now. So, for these two time step, I make the connection. So, if I just add for S 3 and S 4

this way the final diagram will get this right.

(Refer Slide Time: 49:39)

So, I can see that the multiplex are the input of this multiplier 1 I have only two inputs

and this also two inputs, this needs two inputs, but for the adder when there are the 4

inputs possible input and there are two bits as control signal is required 0 0 0 1,1 0 1 1 0

0 means it select this, 0 1 means did you say the second one, 1 0 means second third one

and if it is 1 1 then it is the fourth one right and so on. Similarly here also I needed two

bits control signal to select between this, and I have added multiplexer only for two

register other is the multiplexer is not required because it is only one data is coming to

this.

So, this is the overall data path that is going to generated from this information’s right

from this information’s from this register transfer operations, this is the data path is

required right. So, this is the final data path that is generated out of this information right.

So, data path is ready; I have 11 registers three multiplier 1 adder one comparator I have

1 2 3 4 5 6 7 multiplexers and the inter connections. So, this is the data path that is

generated. So, we are almost at the end of this (Refer Time: 50:57) So, only left its

control signal and controller generation.

So, what is what is the need of controller and what is that that you should understand

right. As I mentioned here this multiplexer is not known it has to be controlled right, the

data flow from the input to the output to the multiplier has to be controlled by these

control signals and that has to be generated and for different control step or the time step

the operation that are going to execute in this in this I mean the selection that is going to

happen here is different right.

(Refer Slide Time: 51:27)

So, what a how many control signals are required here? I need control signal for FU for

this are all multiplied I do not need, but here I need 1 because it is going to do add or sub

right. So, 0 means add 1 means sub or other way this is 1 means add and 0 means

subscription. So, I need a control signal to tell this adder this function you need to do

perform and perform either addition or subtraction right. So, that will be decided by this.

So, I need one bit for the function unit for other I do not need and then I need the control

signal for FU marks in, the multiplexer that are the input of the f use function units right

how many bits are there? One bit for this, one bit for this, one bit for this, two bit for this,

two bit for this. So, 4 2 2 4 and 3 7.

So, I need 7 bits of control signal to control the data flow through this multiplexers right

and then how many register the next important thing is that in this register enable. So,.

So, this registers unless you control the right to this is going to write in every clock and

that will. So, that will the garbage data will be retain. So, we have to control the writing

on the registers and we need the right enable signal right.

So, once the right enable signals is there, then only that register be updated otherwise

you hold the old value and that is very important otherwise what will happen? Even if

you are not doing any operations if you do not control the control the writing on that

registers what is happen? It will just store some it will update is the some garbage value

and you have no clue what is happening there. So, that is very very important. So, you

need register enable signal right enable signal for our registers and I have 11 registers.

So, I need 11 bits for that and I have 2 marks here and 2 bits. So, I need to 2 bits register

marks in 2 bits right.

(Refer Slide Time: 05:11)

So, this is what the number of control signals required. So, total number of control signal

is required is 1 7 8 plus 11 plus 2 is total 21 bits say, 21 bits control signal is required and

that is order is this right and I use the colour coding to decide that. And now we have to

decide in time step 1 what will be the control signal right or the control assertion pattern

for time step 1. So, as I am doing addition in the time step 1 right I am doing a addition I

the function unit I decide 1 right and the next 7 bits represent the mux input right. As I

told you that 0 means it will select this 0 means it will this.

So, I am going to give 0 here, 0 here to perform these operations this and then I have to

give 0 here to select this and to perform this operation, these operation because I am now

in time step I want to do execute this operation not this operation right. So, based on that

I am giving this 0, here also I have to give 0 0 and 0 0 to select the first one that is that.

So, the control signal to the multiplexer is all zeros right and then I am writing for

register R 1 R 2 R 3 and R 4 in the time step 1. So, this right and enable signal will be 0.

So, these are the next signals at the right enables right. So, this all the 11 bits are right

enables right this is R 1 this is R 2 this is R 3 this is R 4. So, this is the right enable signal

for this R registers and all other register will not be updated. So, they will be 0 right and

then I need here multi signal for this right.

So, now here I am updating register 1 from multiplexer 1. So, this is 0 and I am updating

from multiplexer 2, I am sorry multiplex 2. So, this is one right. So, this is one right. So,

this is 0 1 for this. So, this is 0 because it is updating from multiplier 1 this is updating

from multiplied 2. So, this is 0 and this is 1 right. So, this is the control signal.

So, you understand this is the first clock controller will generate this signals to this data

path control right so that it is effectively execute this only these 4 operation are nothing

else right. So, that is what is going to happen. Similarly let us discuss that S 2. So, again

I am going to do addition. So, I need 1 here and the rest this 7 bits are for the

multiplexers and now I am going to choose the second input.

So, I need 1 here, I need 1 here and I need 1 here, I need 0 1 here because I am going to

select the second one 0 1here. So, the counter pattern is this 1 1 1 for this 3 3 multiplexer,

and this 0 1 here, 0 in here. So, this is the control signal for the multiplexers, I am

updating R 1 R 2 R eights. So, this is R 1 this is R 2 and this R 8 R eights are z0. So, this

is that right enable signal for the registers and I am updating here R 2 and R 1. So, I need

1 and 0. So, this is the control assertion pattern that has to be generated for the control

step 2.

So, similarly I can generate the control signal for S 3 and S 4 when you understand that

right. So, this is I am done now. So, what I am getting here. So, this is the final data path.

So, the final R T L. So, I am done with everything. So, I have generated describe the data

path this is my final data path, this is my final data path, I have the controller FSM which

is nothing, but this how I am going to get this. So, I have just talked about this 4 time

step and this is nothing, but B 1.

So, I just replace the B 1 here by these time steps and similarly I am going to schedule

this I 1 and for the example that took it you need two clocks time step. So, you need to

two steps similarly for B 2 I have only one operation. So, I am going to replace that by

that particular time step right. So, this is say S 5 and this is I 1 and I 0 ok. So,. So, this is

my controller efficient and in what it does? In controller every time step it generate the

controller assertion pattern right.

So, I will just talked about the controller assertion pattern of S 1 and S 2. So, therefore S

1 this is the control signal I just talked about for S 1 also have some assertion pattern, S 3

also have some assertion pattern, S 4 also some assertion pattern, here also some under

assertion pattern, here also and here also. The assertion such that is going to execute on is

that may read that because in this block I am doing this reading from portrait. So, that

will execute the read operations from ports here this is for the basic block B 1, the all the

operation that over discussed right.

So, finally, we got this whole RTL right, which is consist of this and this I mean this is

the part of only this we have some are certain other data path for this and certain data

path for this. So, this is the overall structure and what is the status? So, I am doing this

comparator this will go to directly if it in this controller. So, that I am going to decide

whether I have to from this state I have to go this or this right. So, this is decided by the

status signal.

So, this you understand this is the final RTL that you generate which is going to execute

that differential equation solver right that I have shown in the earlier the start of the

presentation. So, that is the C code and this is the equivalent RTL and what we have

discussed here is basically, how we can generate hardware out of this what is the

intuitive next step, next step, next step to generate and hardware out of it. I do not

discuss any automation or the algorithm so far, I just so this is the logical way to generate

and hardware or additional transfer level design out of a C code or a high level behaviour

right.

(Refer Slide Time: 58:38)

So, now when I do not talk about other aspect, I will just briefly give you some idea for

example, I decide about this scheduling rate and it has also 4 time step. But if I just think

about another version where I just do, because these operations here depends on input I

could have done it here also right. So, if I just do it this is another schedule right you

understand this set. So, now, this also depends on only input. So, I can put this to here.

So, I just put it here t 3.

So, I can do this 5 operations in time step 1, that still I need for proper number of time

step. But here I need 4 multiplayer at least 4 multiplayer right I need 4 multiplayer here I

need 3 as we already discussed. So, this is better that because I need only 3 multiplayer

the same time, I am going to executing this in 4 time step I need three multiplayer I need

(Refer Time: 59:23) I always take this it. So, there is a difference, the possible there other

possibilities are there I choose this for some reason.

Similarly, you can do one more things here. So, since this I need 4 times step after that

this part idle right I can move this to this time step and this to this time. So, then also this

is fine there is no problem right. So, this is that schedule. So, the advantage here is that

still I have 4 time step, I am executing the whole thing in 4 time step, but the advantage

is now see I have to maximum parallel multiplayer, there two multiple parallel two

multiplayer here.

So, I need maximum 2 multipliers, 3 multiple instead of three multiplier. So, this is better

instead of this. So, what I am trying to emphasis here is that, (Refer Time: 60:05)

scheduling there are multiple options and you never know which one is better. I just

show three possibilities one is generating for multiplier one is generating three

multiplier, one is generating two multiplier, but all are using 4 time step.

So, that is what I call the design phase expression and based on your objective or based

on your target, you might choose this one or you might choose this one or you might

choose the other one. So, that is something is the choice or the design of expression or

the design targets. So, scheduling technique is something is how to automate this whole

thing and check which is the best one right. So, that is what is called scheduling and we

are going to discuss all these techniques in the next class.

(Refer Slide Time: 60:45)

So, there are different kind of scheduling ASAP ALAP or resource constraint, time

constraint. So, we are going to discuss those algorithms and how you can automate that

process in next class.

So, that is what is that there. So, initially what I just so, I just give you some schedule

without thinking how we have done that, but now I have to automate that process rate

and during automation I can add, it can be unconstrained, it can be resource constant, it

can be times constant and it can have various kind of algorithm, some of them are

basically exact solution, some of them are heuristic, these are all heuristic this is exact.

So, we have different operation options right and we are going to discuss various

scheduling techniques in tomorrow’s class similarly we just going to this register

allocation and functional allocation binding we have various possibility.

(Refer Slide Time: 61:29)

I show you in that particular example here, that instead of this mapping I just show you

here that instead of this mapping I can a different mapping also right. I could have do this

and this in one multiplayer right. So, I can do V 1 V 5 and V 6 here also right.

So, we cannot have the other options which in is better I know I do not know right. So,

maybe if you do this the interconnection cost you less we I have I have to use less

number of multiplexers or if you do this may be the best options. So, there are multiple

options even using the same number of multiplayer. If I told you can use 4 multiplier still

you can do that; you can use 6 multiplier and you can do all the operations differently

that is also you can do that, but which one going to have the very less number of resource

and the interconnections. Interconnection also depend on this kind of mapping similarly

register transfer also there are this mapping also can be different.

So, you have instead of t 1 to t 3, 6 I could have stored t 1 t 5 and t 7 that also I could

have done instead of this I can store t 1, t 5 and t 7 that will I could have done. So, there

are other possibilities are there my point here is just to emphasis that point that the

choice is not unique you can have multiple choice and you never know and all are

interdependent that if you do one kind of scheduling the kind of register sharing we are

going to generate is different or if you do kind of register sharing or function units

sharing the kind of interconnections that going to be generated in different.

So, we are going to talk about those techniques I mean and how these things are

interrelated this more detail in tomorrow’s class. So, in tomorrow’s class we are going to

discuss more on this various scheduling techniques, how we can automate this f u

allocation and binding techniques when the steps, and how this data path is depend on all

these steps that we are going to discuss in the next class in more detail.

Thank you.

