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 Welcome  to  the  module  number  5,  that  is  on  the  verification  in  the  course  of

optimisation techniques digital VLSI design. So, what we are expecting in this module.

So, till its a module number 4 what we have basically seen. So, we have basically seen

that,  we  start  with  the  specification  and  then  we  go  for  some  kind  of  high  level

specification, formalising in terms of some RTL languages or some hardware definition

languages. So, that you can have a specification represented in such a form that it can be

implemented in hardware.

Then we go for high level synthesis, then we go for I mean two level or multi level

Boolean optimisation, that is to that is gate level synthesis and then we have placement

routing and finally, in between we have to also have to plan our test because all the

devices to be fabricated are not free of faults as we know already discussed in module

number 4 in entirety, that what are the issues of related to test.  So, we do lot of test

planning also in the flow.

Now, finally what? So, finally, you have a chip which is fabricated tested and sent to the

market.  Then  what  is  the  role  verification  is  playing.  So,  you might  have  seen  that

basically  at  every stage VLSI design basically  is a translation.  First  we have formed

specification, which is written by some human in a as a human being may be in a non

technical language,  then you convert it  into some kind of more formal representation

then you have define them in terms of hardware specification languages then you have

register transfer level modelling, then you have gate level modelling finally, you lay it

out and place and route. But it is actually the same representation of basically what you

have thought that, what as I have given at the deign intent that is basically implemented

in terms of a layout or in terms of transistors.



Basically  so,  it  has gone through different  phases.  Now formal  verification  basically

checks mainly that, whether whatever I have intent in my specification is at a very brave

very abstract level is very is exactly equivalent to what is being implemented at transistor

level.  That  means,  if  I  wanted  to  design  an  adder  find  that  the  transistor  level

implementation should do at add addition or it should implement an adder now how can I

do? It very simple is that I apply all possible input cases and see whether at every point

at  every  stage  of  translation  or  changing  of  one  way  of  representation  to  another,

maintains equivalence that is they have to give same outputs for every given input. But

now; obviously, they already many many times you are discussing in the course that if

your circuit has say at least reasonably complex or at least having more than a 10 inputs

everything will blow up, if you are trying to give all possible input cases. And that is

actually in feasible way of verifying or even testing anything.

So,  in  case  of  verification  what  we  do  and  we  always  use  the  term  called  formal

verification. So, what do you mean by formal verification? There are some other ways

also when we call which we call simulating simulation way of verification, but in this

course we are restricting to formal verification.

So, what do you mean by formal verification? In this case we are not going to apply test

patterns or input or what do I say that patterns or test cases to validate the equivalents

rather what we will do? We do it in a formal manner or in the mathematical manner. We

will have a model for the system which will be a formal model and then we will try to

express our design intake or what we wanted to design in terms of some properties. And

then we will do something called model checking in other ways, which will try to verify

formally whether the model adheres to this specifications which are in terms of some

kind of formula logical  formulas.  If  it  is  verified then it  is  mathematically  true,  that

basically your system or your system that is the that is modelled is actually behaving

properly with respect to the formulas you want to verify and if there is some problems it

will actually give a counter example that is very very important.  That if some of the

states sequence of the model is not validating or is not satisfying that prop that properties

it will give a counter example, which we allow you to find out the what are the bugs and

you can recover. So, what will that is the basic idea of formal verification?

So, what we will cover in this module? So, first one will be a very basic because you

have to understand because as I told you in this course we have first giving you the



basics of cad for VLSI and then we are building up on it. So, first we will be looking at

LTL and  CTL based  verification  that  is  the  core  idea  that  for  any  kind  of  formal

verification you should first understand what is LTL and CTL model checking. So, which

will  be covering in this  lecture then basically we will  going into as the course is on

optimisation.

(Refer Slide Time: 04:51)

Then, we will try to see what are the problems with LTL and CTL verification based

verification, if you are handling a larger system. Then we will talk about how to verify

large scale systems what you have to do, basically that that is one of the code gist idea in

which case we will try to see basically how large scale systems can be modelled checked

or formally verified in view of that, we will see very important things like something

called binary decision diagrams.

Binary  decision  diagram is  a  way of  handling large  systems by which models  large

systems by eliminating out your so called the redundancies. So, we will see about binary

decision diagram based verification which is also called symbolic model checking. Then

binary decision diagram is an abstract is an is actually still it actually minimises the state

phase representation by eliminating redundant variable. But in fact, but still it is a bit

level, then we will basically see there is something called ADD based verification that is

arithmetic addition diagram or high level addition diagram based verification.



That means what? We will not go the bit level we will rather go into higher level of

abstraction  and try to  verify the systems.  Like  we have already seen in  case of  test

basically when if you are going for the gate level the complexity is high, but when you

are going at the RTL level of testing the complexity gates lower down by high level

abstract abstraction.

Similar things will also see in the case of verification. Finally, basically as I told you

symbolic model checking is nothing, but is a part of when you are talking about large

scale verification,  symbolic model checking is the way to use to model checking for

when  you  are  using  binary  decision  diagram.  And  finally,  what  we  will  see  is  a

something called a bounded model checking, is a bounded model checking is something

like we want do not want to check the whole systems in the entirety. May be one set of

one path in the state based model can have two million states in that path, but may be

you do not want to model set that law, we want to just find out if any bugs exist or

whether your property is verifiable with first three steps. So, we can put a bound till what

depth or up to what path length we have to search.

So, this steps are basically for your basically trying to use this model checking for large

systems, which is the main motto of this course ok. So, let us add this is a preliminary

lecture, which we can also find in lot of textbooks or formal verification or many cad for

VLSI course covers this lecture, but it will be quite elaborate in that cases, but in our

lecture today we will try to give you everything in a nutshell so, that you get a get as a

prerequisite.



(Refer Slide Time: 07:10)

So, what is the difference between verification and test, I have already been telling you,

but you can look at the slide what it says? Verification verifies correctness of the design.

It checks if the design meets the specification or the intent, but test basically means it is

basically a device has been fabricated which is already formally verified to be working

proper, then only your weight  age fabricating  whether  is  the fabrication  process  any

defect has gone.

So, verification means, it is prefabrication testing means its post fabrication. Basically

mostly verification are done formally and in test and testing basically is slightly different,

we have the device is there you put some test patterns and you verify and you determine

whether there is any defect or not. But there are actually testing is a two stage process are

the already we have seen, one is test pattern generation or test value that given a circuit

what  are  the inputs you have to  give then at  what  timing you have to give,  all  this

planning’s we have seen in the last module is called the test planning.

So, that will give you the test patterns and once it is fabricated you have to apply those

test patterns. So, they are two cases basically one is determining the test patterns and one

is final application ok. So, testing is a club, but practically speaking code uncode testing

is the patterns are there the device is there we physically apply it. But again verification

is generally  done once prior to manufacturing.  That is verification means a design is



there you have implemented based on terms of this  design before implementation  in

terms of hardware you verify whether its formally adheres to your designing thing.

So, they generally done once, but testing actually as I two steps are there, one is test

pattern generation that is again done once because you have determined what are the test

patterns to be generated which will be finally, applied, but while applying the test pattern

it has to be done for every device. So, basically in a naturally if I have to say what is the

device verification and test so, verification actually tries to find out whatever you have

designed is formally correct or it is adhering to the design intake.

And test basically is something like its a procedure in which case the device already has

been fabricated because it was already prove to be working prove to be formally verified,

then the device has been fabricated based on that guarantee, then whether any defect has

come in the fabricant stage. That is not at all by any error of the designer something has

gone in. So, you want to find out whether that any defect is there or not. So, we apply

test pattern and to and we have to do it for all the devices. So, therefore, basically it is

called a there is a test so, that is the slight difference between verification and test.

So, as I told you I mean verification can be of many types like what is something called

Simulation based verification.

(Refer Slide Time: 09:43)
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Which we do not do at  all  means I should not say, but many case is applicable,  but

generally we are not able to give all kinds of all possible test patterns to verify or all

possible test cases I should say, I should not call the test patterns basically in terms of

verification, we should basically call it input cases like in the or 101 CS 101 type of

courses like C language courses what will happen, basically you write a C code then

your invigilator or your teaching assistants come and he or she runs your C code with

some test cases.

So, that is some kind of a verification, but in that case the it is only bounded will be

verified by the input cases he or she is tried, but it cannot be mathematically proved that

is  the  what  you  are  doing  in  your  labs  101  labs  basically  that  is  something  called

simulation based verification, but it is not possible because it to make it an exhaustive

and exhaustive kind of verification is totally out of question. So, it is exponential in the

number of test nobody mean tries and also it and.

So, even if you are using a simulation based verification, the size input size is less and

also we do not know what is the quality of inputs of the test cases so, there lot of issue.

But wherever we are doing a formal verification the idea is that, you are modelling it and

you are modelling what are you expecting in terms of formulas and then you are going to

model check formally and if you are model checking tells that the formula is valid on

this model then you know that the model does not have any bugs with respect to the

formulas. So, in that case it is its a guarantee, that your system is going to obey the

design intent which was represented in terms of formula.



(Refer Slide Time: 11:16)

So,  that  is  why  something  called  non  exhaustive  simulation.  So,  non  exhaustive

simulation  means  generally  some  people  call  non  exhaustive  simulation  based

verification, which is mainly used in many of the industries, but in which case they are

group  of  design  engineers  to  design  in  and  there  is  a  group  of  test  engineers  or

verification engineers, instead of doing it formally basically they design a lot of good test

cases and then you find out whether there any bugs there or not.

But in that case test generation is also a lot of lot of humour intervention is required and

lot of experience is required as sometimes we may not cover all possible error cases or

bugs so, lot of issues.
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So, in this course and mostly basically people are more formally orient or more oriented

towards developing something called formal verification.  I think already all we know

about pentium bug, there was some and there was some bug in a Apollo space ship, in

which case it happened that people have all of them had basically done something called

a  non  formal  verification  that  is  simulation  based  verification  or  non  exhaustive

simulation based verification. They were also very intelligent people because designers

of pentium designers of Apollo space ship.

So, they are all very very intelligent people, but still they had the stout on some parts on

the writing good quality test cases. They might have missed 1 or 2 test cases, which led

to the bugs when it the system was diploid in the market or in the system and one led to

catastrophic end of the space ship and in case pentium bug the issue was more of finance,

because all the chips which had bugs were brought in from the market and they have to

be given new chips and all the market reputation came down.

Testing and verification here is a difference again I want to highlight it. When this when

they are saying the design is verified to be correct, then basically it assumes that design

has the mathematically checked and the testing is not going to again look at technique

bug which is coming because of the design engineer. It is looking only for the defects

which  has  been introduced  by manufacturing  process.  So,  if  you if  you design as  a

problem testing can never find it out. So, therefore, Pentium and the Apollo incident I



have told you, they were mainly because of non exhaustive simulation problem based

verification problem.

(Refer Slide Time: 13:09)

So,  what  people  are  saying basically  there  is  something  called  a  formal  verification

method. So, in this case there is a finite state machine model or any model you can use

you can use FSM model book automata then also we will see BDT based model as so,

many different models can be there.

But is a formal model of your system this has to be done manually and there are lot of

issues you can ask me that who does this model, how do they know modelling is proper

or not then there is something called specification in which case you write your design

intent in terms of some kind of specification formula. Then there is a verification tool

which  mathematically  checks  whether  this  model  obeys  the  specification  or  not  in

everything you will get other will get error trace.

Now, I answer your question that, if I make some model mistake in the modelling. Then,

but specification is generally very simple as we will quickly see that it is very it is very

difficult to met errors there because specification is simple to write your design intent

like for example, I say if I request a job to the printer, in sometime I should get a reply.

So,  this  specification  will  be  very  simple  request  imply  in  future  grant.  So,  this

specification writing such smaller compared to the modelling, but modelling a printer



you can  understand is  a  complex task.  So,  either  I  if.  So,  if  we so,  to  get  a  signal

generally this has to be correct as well as the modelling has to be correct.

Modelling means basically this a implementation is a printer physical implementation

this has to be translated into a model,  whether basically the idea is that people have

thought of some kind of model and then they have designed the printer, but generally it

may not happen all the time. So, generally people have designed it in a different adhoc

manner, I mean I am just coat uncoat saying do not exactly go by the words, but if you

say that very specific way of designing system is that you should first have a model, then

you have to implement it and then only you can go for the implementation, but generally

it does not happen in the practical scenario like that, people generally manufacture or

design some systems and generally people go for formal modelling when they have to go

for a mode checking.

So, now the idea is that even if there is a error in the model, if I may have done some

modelling error the system may be proper, but the modelling error may be there, but still

you are not going to get an signal you are going to get an error trace. Then you have to

find out whether what is the problem there. So, you and find out that this part has a

implementation problem then you will quickly say that see your printer implementation

this is a implementation problem, then if it the implementation problem very good they

will repair it or debug it for the future use, but sometimes they may also say no see our

implementation was proper, only the way you have modelling modelled has a problem,

you have not captured in a proper modelling you could not capture the modelling in a

proper manner.

This is very similar to your course or automata theory sometimes your teacher gives you

that there is a string, write a d fa for that. So, main types you make a error in representing

in a proper model of a DFA, but then basically in this case what happen then you say this

is a bug. So, basically this bug may be as there in the model or the system implemented

system, but anyway you will find out what the error is. It is very very rare that even if

you there is a you make an error over there still you are going to get an signal its a rare

case very very rare case.

So, generally either the system has a bug you will find out or the whether the system

does not have a bug, but this finite state machine model representation something might



have come in then you can do. Third picture even if you write a specification wrong then

also  you  may  still  get  a  bug,  then  you  can  find  out  that  everything  is  fine  this

specification was not mentioned properly. So in fact, everywhere going wrong is a very

very straight probability. So, therefore, we have a very nice way is expected that you get

a fine good modelling permanent model of the system, you write a specification then you

automatically give it to the model checker no human intervention, then you find out fine

otherwise you are going to get an error trace. So, error trace will tell you where there is a

problem. So, in that case you find out what is the problem in the system, that is designed

and then you try to rectify we will take lot of practical examples today to see it.

(Refer Slide Time: 16:55)

Now, before as we have saying that we will go for formal verification. So, we are just

going to quickly cover  some logics,  which you have already done in  your theatrical

foundation of computer science. So, what is a propositional logic? So, so if you look at

it. So, propositional logic means I have statements like high qualified in gate exam 2010

I prepared well, I got a non scholarship seat in Guwahati. So, if you are making some by

heart  assertions,  this  is  true  this  is  bad  this  is  good  something  like  it  comes  under

propositional  logic  what  is  predicate  logic?  Predicate  logic  means  you  have

quantification like W X, X gets a fail grade some variable you have R X, X is working

hard.



Now, there is something called for all and they are exist. So, if I write for all for all X,

for all X, R x imply U x what does it mean; that means, for all who work hard imply that

x is yeah. So, so in fact, basically I should not call it a fail grade it is a reverse way of

writing it, I should write it as will x gets good grade ok. So, so basically W X means X

grade X gets a good grade. So, in basically it means there is nothing wrong in saying W

X, X gets fail  grade these are predicate  logic,  but  if  I  am writing this  is  sometimes

making this means thing non behavioural basically means not practical. So, what did I

say for all x R x imply u x means for all those who is working hard will get a fail grade.

There  is  no  problem in  this  mathematical  represent  of  predicate  logic,  but  is  not  a

practical way of handling in our real life; that means, this is not a correct when you apply

to a real life, because who also are generally will get good grades. So, basically I can

write, but mathematically speaking there is no problem. So, predicate logic means that

there should there can be a for all and there can be an existential quantifiers. So, it is say

that for all R x, there is means for all X R x that is all who is working hard imply u x;

that means, we will get a good grade means a fail grade means its a non something very

un match other. So, that way you can write, but idea is that propositional logic means

there is  no quantification it  is  a direct  hit  like I  get good marks  you get bad marks

something like that and predicate logic means you can have quantification.

(Refer Slide Time: 18:58)



Now, there  is  something  called  temporal  logic,  which  is  very very important  to  this

context because we want to find these are all static. Because I prepare whale or those

things like I get good marks whoever reads will get a good mark they are all statically

true or statically valid or invalid whatever you want to say, but temporal logic means it is

not statically true or false in a model, it will if there is number of states in a system in

ones it may be true other state it may be false. So, that is actually called temporal logic

that is what use temporal.

(Refer Slide Time: 19:27)

Some examples I am always happy; that means, there is something which is valid in all

states, I will be eventually happy; that means, there is some future state, I will be happy I

will be happy unreliable something good I am happy. So, I am happy basically you can

say I means basically some kind of a propositional logic, but in a temporal logic is a

super set you can think because I mean if you say that something is true in all the states.

So, that is nothing but your propositional logic.

But temporal logic means it can change over state, but even if it does not change over

state it is direct. So, temporal logic you can you can think as a bigger set, but not going

into all this subsets superset relations now, but temporal logic you have to understand

something which can change over type that is the idea and in the worst case something

may not be changing over time it can be valid in all this states or invalid in all  this

state’s, but will also come on the temporal logic.



So, it is saying I am always happy eventually happy until. So, there is something which

will be true in some states and true in false in some state. So, that is actually called the

temporal property and most of our formulas will be writing today will be on the temporal

logic.

(Refer Slide Time: 20:24)

There are two type of very important temporal logic, one is called branching and linear

time. So, linear time basically you can think thinks of time as a set of paths, where a path

is a sequence of time instances. So, this is linear time that is linear time temporal logic

we have might have heard the name always many times. So, basically it is depending on

some kind of paths and branching time logic basically represents a tree and there can be

different path branching out of it.

So, we will mainly we will try to cover this, but I mean I do not want to go into all these

details  that  which  is  a  super  set,  which  is  a  subset,  basically  there  is  some there  is

something called LTL and there is some called CTL, which will try to see mainly will try

to see CTL properties today and basically which will give because, but you cannot say

that one is these super set of other because some there is something which cannot be

written in CTL and there can be something which cannot be written in LTL, and all this

things are there. But this for that you have to need to know all details about CTL and

LTL model  checking.  So,  you  can  take  any  standard  textbook  or  cad  for  VLSI  or

verification you will be finding it. But what I am trying to give this course basically is an



optimisation part of verification. So, CTL will also require optimisation LTL also will

require verification.

(Refer Slide Time: 21:34)

So, in our case basically we will be mainly looking at your CTL based model checking

and.  So,  that  I  mean  basically  there  all  other  techniques  of  optimisation  we will  be

talking about for CTL will also be applicable for LTL or any other model checking you

apply.

So, unnecessarily means in this course, if you are going to teach you about LTL, CTL

then which is a super set of other and what is possibly in what and what is not possible in

this thing, it will actually divert it and it is mainly available in any kind of cad for VLSI

course. There is something called CTL star which basically takes care of both LTL and

CTL model checking this is super set and it can handle both.

So, I mean those things you can find out in the textbook any kind of a textbook, but ok.

So,  anyway,  but  there  is  some  formal  definitions  I  have  avenue  proposition  logic,

predicate logic, temporal logic, what is branching time, what is linear time and what is

branching time all those definitions basically just I have given you. But mainly will be

diving into deep depth in c for CTL model checking and try to find out that what are the

issues there in terms of complexity so that we can handle it in future because our course

is mainly focusing complexity issues.



So, there are some temporal operators like there exist an X phi X; that means, there is

something which hold in the next state. F phi; that means, this formula phi is a temporal

formula which eventually in future. Global means globally every state it should hold and

phi ample side; that  means,  there phi will  be phi hold until  zhi holds I  will  take all

examples and elaborate it carefully and in details, but some temporal operators are next

state future globally and until.

(Refer Slide Time: 23:02)

So, we will take some start taking examples next state fine. So, in this case you can say

that in next state phi is 2.

So, you can write in state X a this property is true the temporal property is true that in

next state phi is true. So, in this state I can write this one is true. So, this is the S j

satisfies at the S satisfies this formula because in next state from S j this one x means

next state in future.
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So, here I am writing in future phi is true; that means, this is be holding in this state as

well as holding in this state because there exist some state in future where phi is true. So,

I can write in state S 0, this formula is true this is true, this is true, this is true, here also I

can write this is true because presence state is also future, that one thing you have to

write then state S k also I can write in future phi is true because present is also a kind of

future globally.

(Refer Slide Time: 23:48)



So, in this globally means some states from some state were globally in all other states

from the path starting from that node, because then legally we are going for branching

time logic. So, like for example, these state satisfies this all this formulas, because in all

the states downwards trace phi is true. So, I can write from all the state globally phi is

true because in all states phi is true of course, these S 0 does not is not satisfying this

formula.

Because in this state S 0 itself phi is not true. So, globally means from the staring state as

well  all  states  is  actually  having  the  whatever  formula  should  hold  all  this  thing

important one is this one.

(Refer Slide Time: 24:23)

That is basically zhi until phi that until operator that is very important. So, what it says?

Zhi sorry zhi should hold until phi holds; that means, phi will keep on holding at a state

from where zhi is going to hold; that means, what it says zhi until phi. So, until phi

whenever phi is there; that means, something you are very safe, but whenever phi goes

off zhi should take it true, that is zhi until phi. So, until phi everywhere will phi is there

no problem wherever phi stops zhi should take over.

So, actually this state’s satisfies it,  but of course, you can say that this state satisfies

because from here zhi phi phi phi and from where phi dives down this one takes over.

For in this case you can say that is not true because in this not satisfied in S naught,



because here phi is not true still zhi is not taking over. So, therefore, in this state this state

is not satisfiable; that means, you can think something like this is a safety property kind.

So, from wherever the safety property or some good property starts holding, then phi

need not be there, but still then he has to or this guy has to be the backup kind of a thing.

So, just to remember this, but zhi until phi is something represent this the mathematical

formula, which says that there exist a k, some k is there where basically zhi is holding.

And before that for all j, j less than equal to k for all j less than equal to k your phi should

hold. So, basically in S j it will be true because there exist a k where zhi is true and any

other case like this, this and this which is less than equal to this basically k your zhi is

holding, but S 0 will not satisfy this ok. So, you can say S j S j i plus 1 all satisfy this

temporal property.

(Refer Slide Time: 26:05)

Now, we will take slightly more combinations like in this case it is saying P imply in

future Q; that means, what? One many important thing I should tell you might have done

this in logic, but you still should remember.

So, one does A imply B means if A is true B has to be true or there is something called

that is obvious, but there is something called vacuous truth here. So, if some place A is

false in that case B becomes vacuous truth that has to be remembered. So, a imply b

means basically not A or B. So, if some place basically A is false, but B is true in that we

called a vacuous truthbasically. Means if  it  implies that if  A is true,  then this  should



happen if some a itself is false they assume it to be vacuously true, but j otherwise if A is

true then b has to be true otherwise the property is not holding. So, that is one thing you

have to keep in mind. So, what do we say? It is saying P implies in future Q. So, here P is

true which will imply that in future Q is going to be true. So, it is true and this state, but

if I it was something tell me that whether S 0 what is what is the keys? But in S 0 you

can say that P itself is not true, but in future Q is true so; that means, it is vacuously true

in this state.

So, that you have just keep a thing in mind that what is mean by vacuous truth. Here it is

say next one is saying P imply and Q until R. So, let us see in the state S 0. So, in this

state S 0. So, let me just zoom this up for you. So, in this case what we say. So, P and Q

until R. So, Q until R means it should be QQQ. So, from this is QQ sorry. So, that is

QQQ and Q after that R should start holding and, but in all the states P should be true.

So, if you look at it is holding here you can see all the states P is holding and the other

part that is end part of it, that is QQ and whenever Q stop R should start holding. So, this

state sequence actually satisfy at this property.

(Refer Slide Time: 28:07)

Now, this is something called CTL computational three logic as I told you apart LTL is

also another way of serving the same purpose, but again the power of LTL and CTL

model check is slightly different, but in this course we are not trying to go into all those

expects, basically we are trying to see CTL and what are the complexity involved here



so, that we can try to resolve those complexity issues and go for optimising verification

tools for large scale circuits. So, what is syntax of CTL? So, CTL formula that is your

formulas  which you have to write  to design to express your design intent.  So,  there

should be lot of atomic propositions. So, what are atomic propositions? I send a request it

is raining,  he is a good boy something like that. Then there is some path quantifiers

because as I have told you CTL means, there are lot of paths from the route node there

can be lot of path branching time. So, you can say that A means over all path and E

means there exists a path. So, there can be two ways of representing this all paths or

there exists a path because a branching time logic. Then propositional logic operators

like and or not will; obviously, be there and temporal operators we have next state future

globally until. So, basically these are the syntax of CTL.

(Refer Slide Time: 29:19)

Then,  there  are  some  CTL formulas  like  for  example,  true  false  and  or  not  imply

everything will be there like in this case it say there exists a path where globally in all

path globally. So, we can have path quantification over here because from a tree we will

have lot of nodes. So, from the root we will have lot of path. So, you have to select any

or two of them right.
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.

For  some examples  are  given over  here.  So,  it  is  saying AF AG f  1  means  always

globally that is in all path globally f one holds.

EG means; that means, there is a lot of paths from all in all paths globally f 1 f 1 should

be holding EFG 1; that means, there exist at least one path from here from and in that

paths specifically everywhere f 1 holds. Af 1, Af f 1 what does it mean? That means,

there exists a path sorry Af means for all paths in future f 1 holds; that means, for all any

path you take at least one path will be there vary in future sorry all paths these all paths.

So, in all paths actually in a future node that is all the path basically f 1 will hold. There

exists EFf 1 means among all the paths there is at least one path were in future f 1 is

going to hold they are some CTL formulas ok. There are some something called these are

called well formed CTL formulas.
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There are something called non well formed CTL formulas because there are lot of I

mean you have you have to actually adhere to this paradigm to write this formulas. But

what is  in this  part  and what is not available  from CTL formula please refer to any

standard textbooks or model checking, we all be finding out the idea. Then basically as I

told you there is a model on which will be verifying this formula. So, basically there is a

Kripke structure we name it like an automata, we called the Kripke structure, which is a

temporal structure, where you have the set of states there should be a transition relations,

along with that there is something called a labelling function that is very very important.

Like just like any finite state machine, you will have state and transitions, but along with

that  there  ios  something  called  a  labelling  transition.  That  each  of  the  state  some

propositional that is your basically your what do I say this basically atomic propositions,

like its raining its good eating on such thing heating etcetera has to be labelled; that

means, it is true all this atomic formulas are true in that state.



(Refer Slide Time: 31:29)

So, basically we always try to write is an automatic atomic form because other after that

you can use the logical operations or operators. Like for example, I write its raining and

the breeze is there. So, I will write p comma q means p means it is raining and q means

weather  is  good.  So,  I  can  write  p  comma  q,  because  we  do  not  want  to  write  a

ampersand etcetera inside the stage. So, labelling over the stage; that means, in a state

whatever propositional or atomic formulas are true you can directly label it. So, it is a

Kripke structure is similar to a state transition diagram. So, state all state must have an

outgoing edge; each edge is labelled with one of the elements of the power set of the

atomic propositions. That means, there will be edges, but here what will be power set;

that means, any one of any super subset of this atomic propositions, which will be true in

this state has to be labelled example.
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So, if you can look at  its a Kripke structure and p q and r are some kind of atomic

propositions. So, in state s naught these are these two are true in S 1 p and q are true r S 2

r, r is true and so forth. So, that is what is written over here that is the labelling function.

So, s is the set of state s 0, s 1, S 2 and s 3, transitions are written over here and L of s 0 p

q are; that means, in s 0 these are the three propositions which are true that is p q r are

true in this case, S 2 only r is true; that means, in this state p and q are false.
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Now, illustration of basic CTL temporal operators, we will start with this. Because and I

want to say that in as you can say this is some kind of a model m in I will say what are 2

m.

So, in this case you see this is state s, s naught and whichever atomic property is are true

are labelled over here. So, p is true here q, q and q is true over here. So, we can write in

m s naught it satisfies p; that means, it s naught p is true that is the way of writing to the

properties like m s this is the property and we say that in m s naught is true that is how

we write M S 1 naught p is this is one S 1 naught p is true, because p is true over here

and here only q is true.

So, we can write at M s 1, p is basically naught p is true. So, this valid in state S 1

because we are not having a p over here; had it had p been there, you would have also

written p in this state. So, that is how we do it very simple very simple. If you look at it it

is something saying that p p q and they are so, in this s naught S 1 you can say both p and

q are true and this property p and q holds state as 1. Similarly S 2 you can write p or q q

because q is true over here p is false. So, this an r. So, in S 2 will satisfy this formula

CTL formula because as I told you p or q is also one CTL formula.
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Now, slightly we doing the temporal business exactly into picture. So, you can see all

path next step q. From here you can see that there are three paths 1, 2 and 3 at all this

state all this three path from s naught, next step x means next step q is true. So, q is true



over here, q is true over here q is true over here done. So, s naught will satisfy this CTL

property, next one there exist path. So, EX p; that means, there exists at least one path

like from here to here, where from here the next state is S 1 when basically p is true, but

you can see in this path and this path next state p does not hold, but still the formula is

satisfiable because it is not a it is e. In this there exists at least a path here where in the

next step p is going to be true. So, this formula is satisfied in state s naught

(Refer Slide Time: 34:50)

Next one what it is saying it is saying that s naught globally, q; that means, from s naught

if I take any paths a in all the states p has to be sorry q has to be true. So, you should take

a state from here you go over a you keep on looping. So, q is true over here q is true over

here its fine. So, I take another path from here I will go to q, q is true and from again q I

can loop over here. If I take another path this way, this way, this way everywhere q is

true. So, therefore, state from state s naught all paths globally from here whatever paths

you  take  and  in  all  the  states  in  that  path  q  holds,  basically  this  the  mathematical

definition, you can read this part of the mathematical definition you can read it, but I am

just giving you the dreadful meaning ok.
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So, in this case they are having a formula called EG phi. So, what it says? That means,

again zoom it. So, EG phi means there exists at least a path, where globally phi globally

some phi statement is true. So, if I can say that I am if I make it as a p. So, let me make it

instead of phi general p.

So, now, you see. So, it is true over state s naught, because there exists a path from here

loop where globally p is true. So, p is true over here p, but I cannot write there exist for

all path a g, I cannot dissatisfy, but I cannot write a g. So, I cannot write AG if I write AG

it will not be true. So, if I write AG what is going to happen. So, AG means for all paths

globally p is true, but there is one path over here or there is at least one path like one path

from here to here, p is not true there is a p not true. That is how AG phi p will not be

satisfy that s naught, but EG p will be satisfied.
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But I can write something like for all paths in future q is true, that is holding in state s

naught why because see in this case in future. So, in future q is there right. So, here state

will be there in future q is going to be true. There is a path over here in future q is going

to be true. There is a path here where in future q is going to be true.

So, future means what it may be for all path basically, at present basically I can also

slightly modify this then also it will be holding. So, if I make it as sorry right. So, you

can see here. So, it says that in all path in future, q is true. So, here p q is false, but if you

take a path here in future p is q is going to be true. In this path again q is going to be true

in future; again in this path another path you take q is going to be true in future. Even if

nothing is  true  over  here,  that  also  will  satisfy  this  because  in  this  case  p  not  true,

because I need q to be true in this path not true, but here actually q will become true.

Even I think it will stop even hold, if I even destroy this because there is the path here

where both p and q are true that is in future not globally is. In that from all paths here in

future q is going to hold and in fact, that is holding over state S 1 ok. So, this as very

simple  way  of  actually  representing  some  of  the  formulas  and  I  am  giving  some

diagrams  which  are  telling  you  where  it  holds  and  where  it  does  not  this  is  again

representation of p until q.
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So, in all paths from state s naught p until q. So, p hold p stops holding q starts, here p

holds here p holds, p stops q start taking over. So, in that path also so, here all the three

paths you take, p is holding, but whenever p stops holding u takes over. So, it is true over

here.
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In this case if you slightly modify diagram, so, in this case if you see p stops holding, but

q does not hold over here. So, in this path p until q is not satisfied; similarly p here p

does not hold here q does not starts it job. So, in this two paths basically this path and



this path p until q does not hold, but this formula if you see this thing e, there exist at

least one path where p until q should hold and actually its happening in this case p, p

whenever p stops q takes over. So, in this case it is an existential it is actually satisfied

over here.
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Now, what is a how a model checking is basically done? So, first is modelling. So, like

this things basically as I told you this structure you are looking at it the Kripke structure

this is the module. So, by understanding the system you have to make a model. So, as I

told  you  it  is  mainly  a  two  way approach,  sometimes  what  happens  sometimes  the

officially speaking or formally speaking every designer should first have a model and

then they can go for implementation, but in industry that does not happen always that

way.

So,  this  a  hybrid  kind  of  approach  you implement  something  you model  something

because finally, implementation is already deadlines are there. So, just as we are doing in

our btech life, same thing peoples also are doing in a industry in a slightly coat uncoat

similar level they also have deadlines to meet. So, when deadlines come they do not

know exactly go for real kind of modelling they exactly try to fix up something and

implement and bring it to the market. These are real fact, but I mean this also should be

taken with the coat uncoat pitch of pinch of salt, because this is you cannot say that it is

universally true, but for many many cases it actually happens that way. So, basically that



is what happens after the product has been made people or or in the final state of design

verification team, basically understands a design and they make a formal modelling out

of it that is the Kripke structure, then there is something was specification that is the

formula in all paths globally this should happen.

So, what should happen basically you have to write in terms of formula like for example,

if you say that you have designed a printer then you have to write for all paths globally,

whenever I request those in future grant should be accepted. So, that way you write your

design  intent  in  types  of  specification  and  then  there  is  something  called  a  model

checking algorithm, which will try to find out in which states the formula is valid and

which state is not valid. So in fact, no fi you are giving some kind of specification to be

checked,  there should not be any states in  the system where the fast  specification  is

invalid if this invalid that is actually a counter example and you have to verify what has

gone wrong. In this case what happened we were doing it manually ok. So, in this path it

is not satisfied in this path is not satisfied in this path is satisfied. So, we are saying that

E p is existential. So, it is true, but if it is a large system of course, you can never do it

manually. So, that is actually the idea of model checking which is automatically do this

labelling for you.
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So, now you are going to see model checking is basically something called CTL model

checking something called labelling algorithm, which we will now look at. So, basically



what it does it takes a CTL model M, and it takes a formula phi and output is the set of

states which satisfy phi. So, generally your formula to be satisfied in all the states and

whichever state is not satisfying, it will give a counter example that you can go for and

debug it. So, basically there are lot of CTL formulas can be there, but generally all paths

in future there exist a path until and there exists a path X.
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So, basically this is a adequate set of operators for CTL. Any other CTL formula can be

represented in terms of this. So, as I told you in the in this lecture we are trying to put

everything  together,  in  (Refer  Time:  41:40)  you  are  not  going  to  show  the  proves

etcetera, you can look at any standard textbooks or model checking which will tell. But

these are the three most fundamental property fundamental temporal operators for CTL,

you can  write  any CTL formula  using  this.  So,  in  this  lecture  we will  see  how the

modelling or model checking is done for on this basic adequate set of temporal operators.
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So,  atomic  propositions  already told  you p.  So,  if  some states  you have  to  find  out

whether the atomic propositions is valid or not it is just simply you check, whether on

this state whether the labelling is with p or not. Logical connectors are very easy to check

that is if you say when all the states p and q should be valid. So, you have to find out in

both the states the labelling of p and q should be there.
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Now, we are going to see when are going to real temporal business. That is there exists a

path where in next state p as true, how do you actually do it? Label any state X with p x



the algorithm is label any state. With EX p if at least one of its successors labelled with

p; that means, if there is a state x and may be assume that there is another state here may

many many paths may be there here at least, it is marked with p. Then you can easily

mark this as EX p and you have to keep on doing it there is until there is no other change.

That means, the model is there, you have to drowse through or you have to traverse the

entire graph and basically if you find out that any state where p is true with that state you

have to mark it as EX p. And you have to keep on doing until there is no more change or

in fact, you need to traverse the entire the graph then you have to do it.

Now, complexity comes in. So, if you can find out you already know automata theory,

that if the number of state variables is n the number of state states in the model can be 2

to the power n. So, if your system a 100 variables, these state model or the formal model

on which you will do this label or model checking will be 2 to the power 100 no way you

can achieve it.

So, what you are going to see today basically is that that modelling change modelling

change. Generally you are going to see, but along with it also we have to appreciate the

you will appreciate the fact that is a very large system you cannot have an explicit state

warning on which we have to do the verification. So, in the model itself is not there, I do

not know where you will do the verification.

So, all the future lectures will try to see how we can reduce the modelling or the model

itself  so,  that  you can do verification  on the reduced model.  So,  we will  see binary

decision diagrams, we will see arithmetic decision diagrams and so, forth right. So, that

that modelling is very simple so, I mean. So, if I mean if there is some state EX p is done

in this manner. So, graph is there some state p is there the beforehand state or the root

state, I mean the predecessors state you can mark it EX p.
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Now, so, this is an example. So, that is next state now another example we are looking at

EF p. So, the three ones we are taking. So, EX and then EF. So, although EF is not a part

of this, but still we are just giving a the example. So, sorry sorry basically it is e x I

should not have written it as this one I should have written it as EX p sorry.

We need not talk at all about EF p because it can be represented in using other properties.

So, how do you do it ah. So, in this case p is there. So, you browse this whole graph and

you can find out that the mothers I mean the predecessors state is s 7and s 1. So, very

easily you can write EX p here EX p here and your basically job is done. So, only these

two states basically you can see the next state the property p is true. So, that is actually a

model  checking.  So,  if  somebody says  that  EX p has  to  be the very very important

property and it should be done in all this change, then you will say that the only in S 1

and s 7 is valid, and in no other state is valid basically that is your counter example see

what has to be changed to make the design proper ok.
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So,  we  write  it  this  is  the  formal  way  of  writing  the  algorithm.  So,  SAT p  that  is

satisfiability of p ah; that means, in whichever state p is true that you have to mark. So,

sat of p means only in S 4 p is true that is equal to state set x, and what state has to be

labelled some transition s naught to S 1 and in S 1 basically x is true that is nothing, but

here this property is true. So, this one has to be labelled. So, basically if you look at it.

So, x is somewhere where p is true,  and you have to make set y, which is which is

nothing, but all states s naught such that there is a transition from s 0 to S 1 any S 1

basically p is true that is saying something like s naught to S 1 in S 1 we already know p

is true and by this sat formula, then this one you have to labelled it with that e x simple

way of doing this a algorithm way of writing it.
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Now, in all paths in future. So, we are going to take AF now. So, how to do it? In this

case it say in all paths in future p has to be true. So, and we always again I want to

highlight this fact that present is future. So, if I say that here p is true, you can write that

this state satisfies AF p; that means, present is future. So, in future it may be true, but if

in the present state itself p is true; that means, it is valid. So, basically what do we write

the algorithm is, if any state s is labelled with p labelled it with AF p as I told you present

is future. And repeat label any state AF with p if all it successors states are labelled with

AF p until no change, I will show with an example. The formula is p if p holds in the

state itself is true you just label it or A X AF p that is all states next all paths in future p.

So, that is the way of labelling let us not go too much in the formalism you can easily

understand after I show you the example.
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So, wherever p is true you make AF p true AF p true AF p true.

(Refer Slide Time: 47:11)

Then then basically you put it this way, that is now you see here all the states from here it

is labelled with AF p, AF p, AF p assuming this an assumed to be a situation with a leaf

nodes. So, only p is there. So, I am making with p AF p. Now you can see I can also

mark it AF p because all all the paths here AF p is true. So, in this case you will find out

that this one AF p is over hand and similar on this case, until there is no change or we

need a fixed point.
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Now, we will go for the temporal operator. So, by doing it actually tell the same thing. If

some  state  is  labelled  with  this  mark  with  AF  p,  label  any  state  with  AF  p  if  all

successors states are labelled with a p until there is no change. So, if there is p just do it

because present is future. So, even if there all paths any paths are there it can happen

also, but I can still mark it in all paths in future true, because present it has been true over

here. So, even if know where p is true in sequence I do not bother because present it has

been true. So, I will mark it as AF p and then finally, we can also make it because all the

senior I mean predecessor nodes are marked with AF p done. So, that way you can do the

modelling.

Secondly, this is e there exist p until q. So, how will you do it? If any state s is labelled

with q labelled it with, there exist p until q because here q is the safety it says that p

should hold until q starts holding.

So, if am I q starts holding, you definitely put it. Then similarly label any states with this

if it is equal to p and at least one of its successor is labelled with this until no change ok.
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Always better to show the figure. So, here q is equal to true. So, if q is equal to true; that

means, basically you can directly write E equal to there exists a path where p until q,

because here q has become true. So, you need not think about at least even p p over it,

because q is starting to be true in this case. Then what it says? There at least from this

place p is true first of all, and there exist at least one path because we are looking at the

existential quantification.
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So, at least one path where p until q is true. So, there also you can put it p until q and you

are labelling. You have to keep on doing it, I will have fixed point is this or more change

fixed point there is no change. So, basically that is nothing, but if you read it, it will be

this label. Any state with q, label it p until q that already you have done with first case,

label any state with p until q if it is labelled with p and at least one of its successors is

labelled with this. So, that is p is there and this stage is already labelled with e p until q.

So, we have done this right.
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This is the algorithm, I am not going to go for that, what I have told you is return in this

pseudo.

Now, one more we are going to see. So, we have seen how many so, we have seen

basically AF e u and EX ok.
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One more you are just  going to just  see this  one,  this  may not be AG, AG p is  not

actually a part of this basic set, but still just we are going to give you an example; that

means, the idea is that for any operator you take like e e e e p until q or a for every such

formula will way of labelling algorithm will be different.

But actually the why I discuss mainly for this three, because any property you write can

be represented in this terms you can you have to modify then in this terms then you can

write. But it does not mean that there is if there is some temporal operator like this one

AG p, which is other follow basic set cannot be model checked they can also be model

checked and there will be a different model labelling algorithm.

So, any temporal operator you take in CTL, there will be different model checking or

labelling algorithm, you can use them to do it. But in this case we have first limited to

the preliminary three basic three ones, because like AG p can also be return in terms of

this three basic operators. But still just to for the sake of completeness basically I am also

going to show you that even though this is not a part of the basic set still how to go for a

model checking for this.

In fact, we always write different types of CTL properties and it driven always try to

model there in terms of basic ones. No we do not do that we try to keep it in a natural

form like also we can use something which is non basic and we can have and we have

different model checking rules for them and we can do it, but as I tell told that this as



compress lecture. So, in this case we have tried to slightly deviate a bit and we have

mainly shown for the three basic operators, and as a slight I am also going to show that

even though is not a basic operator, but still how to go for a model checking for this and

the algorithm will be slightly different.

Design an AG p that is all path globally p; that means, everywhere p should be true how

to do that? So, first you label all states with AG p, you just forget with the p is there or

not you remove it. If any state is not labelled with p delete AG p, and keep on doing it

delete the label AG p from any state if all its successor are not labelled with AG p a and

there is no change. It is very simple like first you label all this steps with AG p and then

start  removing where we have made a mistake.  This slightly different way of model

checking  the  algorithm is  slightly  different  compared  to  the  other  three,  other  three

basically you were adding up the labels here we are deleting the label.
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So, for example, if you look at it. So, in this case here p and p will be true. So, directly

we will write here AG p and then you have to keep on deleting it. So, you will find out

that in this case if you look at it, I will do it, I will do it in all this state’s basically just I

am just giving the example, I will do it all the states AG p, but in this case you see in this

AG p. So, there from here all paths globally p has to be true now if you see look at it here

p is not true.



So obviously, I have to delete this. Similarly all paths will have AG p and everywhere it

will be deleted because there will be at least some states in future, where AG p is not

these not there or AG p is not true in that case. But if you look at this state specially sorry

there should be a loop over here therefore, got to draw. So, in this case if you look at it.

So, there is a self loop over here. So, in this case if p is to the successor is only p S 5 is

the successor of itself only state successor which is AG p is true. So, these state AG p

will be true over here; that means, in this state all paths globally p is true, because this is

a self loop over here. So in fact, what we have done all this states will first label with AG

p including this, and then we will find out that there is a path like for example. So, in this

case you will find out that this is a state successor with where AG p is true is not labelled

because p is not true over here I will delete it.

Similarly, all this state’s label will go, all is the remaining here will be there because its a

self-loop and AG p true over here done.

(Refer Slide Time: 53:40)

So,  now we are to  coming to  practical  examples.  So,  lot  of  stray examples  abstract

examples p q r state machines we have given, now basically we are coming to a practical

example about microwave oven control and see how basically CTL model checking is

applicable  over  here.  So,  it  says  specification  design  of  a  controller  door  of  the

microwave either open or close start the oven reset; that means, the door can be open and

closed, there will be heating and non heating and some reset and some designs will be



there.  Then (Refer Time: 54:08) microwave what we do we have to place something

close the door, put it will be heating up and then actually we will stop it open the door

and, but one thing has to be very much important we have to remember that. One very

important thing that when the door is open, you cannot have the heating on that is a

critical catastrophe will happen that micro radiations will come out, if the door is open

and your heating is on. So, that has to be there. So, this is basically your model.

(Refer Slide Time: 54:35)

So, again if you can see there are some variables and like start close heat and error. Start

means on close means door close, heat means microwave is on error is some variable.

So, 4 variable is 2 to the power 416 possible combinations are there. And if I make an

explicit  enumeration,  you can find  out  this  will  be a  huge state  space  that  is  where

actually the complexity is going to kill you. So, in all the optimisation lectures basically

we will see that how to handle these complexities by not explicitly representing as a

explicit state model state space model.

But  anyway in this  lecture  we are not  going for optimisation,  we are just  trying the

basics. So, we are so, into see how model checking is basically done on this, microwave

control. So, it is saying first it is not start, not close which door is open not heat oven is

off not error there is no error is off and the door is closed not closed means door is open

door  is  basically  open  then  if  you  can  look  at  it  here  you  can  find  out  something



interesting that it says door close means the close will be true door open means, the it

will be true now if you see what is the flow.

So, first you will close the door then you will start the oven. So, basically start was not

start it just becomes start right then it will be warming up; that means, heating is on then

basically cooking means when heating is on it will go over here same state and it will it

will be a looping because cooking is going on once it is done.

You can find out you can go over here heating will be off and then again you can open

the door or basically you can once the cooking is also going on, you can directly open

the door, which you always do in microwave oven sometimes we do , but immediately at

that point if you can see that it will become off door sorry if you open the door. It will be

off heating will be off and the door is going to be open; that means, this path basically if

you look at it cooking is going on if, I open the door it is going to be a automatic off that

is start no start open no heat.

So, that is a safe condition so, this part actually if you models the normal operation of a

heat your microwave. So, this part also you can see sometimes you can take this path or

sometimes  I  can  take  sometimes  you  always  do  it  heating  microwave  is  going  on,

quickly want to have something open the door bring it out. That means, then you are

going from here or you can take the normal procedure, you say stop heat will stop and

then you can open the door, that is switch off and then open sometimes you can directly

open. So, anyway, but the safety feature is already given.

Now, the other part is basically an error part. So, some error are bit will be given. So,

your door is not closed that is open. So, your door is open and you start the oven. So,

basically heating will not be there and it will that is your door is open you start switch on

the heater. So, it will say error, that be some beep will be given and then what you can do

is that, basically in this case you can close the door and then you can again and reset it.

So, you close the door then automatically will be reset and your and basically you can

start doing the normal heating point over here, there is one way of doing it. So, basically

start the oven, the door was open then basically you close the door then automatic reset

and your come to the normal track or again you can open and close the door nothing is

going to happen. So, this part actually this two part basically I am look at it here, open



this is something like its a wrong way of operating the oven, but still it works with a

beep.

So, for example, you might have kept the door open or slightly open your door node

starts switching on for heating. So, it will be a beep, then basically you close the door

and then basically automatic will reset and start your basically oven will start. So, you

can easily look at it and you can easily interpret what I mean to say right.

(Refer Slide Time: 58:05)

Now, two conditions to be checked. One is microwave should not heat up with its door

close very important. Secondly, once you start the oven eventually it should start heating

I will show both this specification, how they are to be model checked. So, what it is

saying?
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First one is saying your microwaves should not heat up when is door is open. So, open

means  that  is  not  close  and heat  this  should  not  happen  so;  that  means  what?  It  is

basically something like not of this condition is bad door is open heat is done. So, that is

bad. So, you should have a not of this and you should hold globally in all this state AG.

And the second property is saying that once you start the oven eventually it should start

heating; that means, if you start it in all paths in future it should start heating that is

something we all request for all machines. We switch it on always in future all the paths

heat should start or the machines, would given and it should happen in all paths globally.

(Refer Slide Time: 58:58)



Now, I will start doing the model checking. Again first one is very simple first one we

are saying that not close and heat that should not be true in a state. So, if you can look at

all the state in no state it will be true that is not close and heat this also not true over here

because not close is true, but not heat. So, this combination like not close and heat you

will find out that, it is not true in any of this states; that means, first we will model check

this is very simple you traverse all this states and just check if any combination is there

or not.

So, this combination is not there. So, this combination basically let me call it phi. So, it

will be phi phi label it phi phi. So in fact, not phi will be true in all the cases, so in fact, I

did not label it. So, in none of the states this phi is going to be represented it; that means,

in everywhere not phi is going to be true. So, let me call this whole thing not phi as some

phi not of not this one that is the full formula inside I am calling it as zhi this whole thing

I am calling as zhi.

So, this one will be true over sorry. So, it one will be true over all the states all the states,

because no where this combination is true this combination is true nowhere. Now all

paths globally, we have already seen the labelling so. In fact, as all the states basically

has the zhi true. So, AG zhi will be labelled in all the states and basically AG of zhi is

going to hold in all the states. So, you will say the states basically satisfies this formula

and so, this model is verified to be true for this. That means, there is no state that is that

is in this case if you if if the door is open, the micro wave is not going to be heated. So,

very good safety is done.
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Now, we are going to check for the more complex this thing, in which case we say that I

put a start it is very critical put a start and in future heat should be there. So, what I have

to do it in steps. So, what I have to start thing about in which states heat is true that is

heat I have to first check. So, if you look at it you can find that heat is true in state is 7

and S 4 only. So, S 1 means heat s S 1 and S 4 it is true. So, heat is true in this case. So, I

am writing it as heat. So, some heat is true over here that is S 1 right.

(Refer Slide Time: 61:13)



Now, all paths in future heat. So, basically so, these are these are the two states I am

marking S 1 sorry S 4 and S 6 which are true with heat. Then now in all paths in future in

which  most  state  is  there.  If  you  look  at  it  I  will  doing  the  same  model  checking

algorithm for all paths in future, that labelling algorithm you have to do if you do it you

will find out that S 6 will be coming all paths in future heat. So, this one heat so, in all

path. So, these are the two states were heat is there.

So, now I am saying all paths in future heat. So, if you look at basically S 4. So, S 4 right

just a minute ah. So, S 4 and S 6, S 1 is the initial conditions. So, these are two states

where heat heat is true now basically you see in which path all path in future right if you

look at it if you look at your state S 6. So, S 6 there is only one path from here in which

in this is heat if it is true if it is true over here. So, from S 6 there is all path is only one

path here where in future it is going to be true.

So, straightway S 6 will enter this group now, but you can easily appreciate that S 3 will

not go into the loop because S 3 has one more path which is looping over here where

heat is not going to be true. So, S 3 S 1 will not come into this group now so, S 4 S 6 and

S 6 now if you look at S 4. So, this S 6 has come over here S 7 also will satisfy because

as I told you all paths in future is present also. So, here automatically heat is true. So,

automatically S 7 will be there and here also it is true. So, by default as heating is true in

my parent state automatically this will be there. So, this is the only new state which is

coming in. So, all paths in future heat will be S 4, S 7 and S 6 these are the two states by

default  because they are home state for heat and this is one more state is coming in

because this is only one path from here where in future heat is going to be true. So,

finally, all paths heat means these are the three states you should mark this one, this one

and this one where this is going to be a true right. So, now, in this case. So, this one, this

one and this one are the three states where this going to be true.



(Refer Slide Time: 63:23)

Now, I have to now check for start where start is true. So, start is true basically if you

look at. So, I will make a cross. So, start is true over S 4, S 7, S 6, S 2 and S 5 these are

the states where basically start is going to be true now x imply b. So, now, the states

where is very important, but in this S 2 and S 4 this AF heat is going to be false. So, in

these are the two states where AF heat is false, S 2 and S 5 AF heat is false now as I told

you there is  something called  vacuous business.  So,  this  three states;  obviously, this

going to be true, because start that is start implies AF heat so, this one is true implies this

one is true implies this, this one is true implies this. So, of course, in this three states S 4,

S 6 and S 6 you will find that start implies AF true is holding. So, I making a chart now

in this S 2 and S 5 if you loop start is true, but AF it is false. So, A implies B, B is false.

So, definitely in this state’s basically this formula this whole thing is not going to be true.

It is something like A imply B and B is false A is true. So, therefore, this whole formula

is not valid in state S 5 and S 2 and S 5. Importantly now let us think about S 1 and S 3

very interesting, here start is false here also start is false; that means, this one is going

this two sorry this two basically is making this formula two vacuously.
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Because in this state’s start is false. So, vacuously it is true.

So, A imply B. So, if A is false itself we do not we think that, the false system is true

vacuously. So, we will have something like this like.

(Refer Slide Time: 65:11)

So, this is what is the steps. So, by labelling, so, it will find out that S 4, S 7, S 6 S 3 and

S. So, these are the states where this is actually true now. So, what I have done? I have

done it manually that is the vacuously true over here not this that, but in fact, basically

you have to do it by model checking already. So, so already I have told you that for all



things like A imply B all other cases, there will be different ways of labelling and doing

the model checking.

So in fact, we have shown only for the basic ones, but for all there be a model checking

method algorithms will be there, what I have done manually the labelling will be done

using an automated algorithm. But still now we are somewhere, where it says that start

heat S 4 S 7 S 6, S 4 S 7 S 6 and S 3 and S 1. So, this is the set of states where this one is

true now it says that all paths globing.

So, of course, if you look at it if you look at the last statement, what is says that here let

us call it this whole thing let me call it as k. So, here this property is k is true over this k.

Now it is saying all paths globally this should hold. Now already we have seen how to do

that labelling. So, all the states will put all path globally and there will start eliminating

states from which some path will be there, where it formula is false. So, everywhere will

start putting AG k, AG k we will start writing AG k all this state’s we will write even

when this state also we will start writing right. Now sorry sorry ha it will be write, but

then we will  delete  it,  basically  because k or this  statement  is  not true over here of

course, AG k it will be there, but then we will remove it. So, that will go over this states

because there is there is some paths over here in which that it is not actually holding. So,

that  is  by model  checking algorithm AG k will  be eliminated  k is  nothing,  but  this

formula.

But now you see state S 1, S 1 there is at least a path now here where here in this case

AG phi is not labelled. So, immediately this one also will start going of similarly if you

look at it this one will be gone right. This state is gone no there will be another state here

where this formula is not holding. So, again this one will go off right then basically if

you look at it, now this state if you see there is one path over here where this k is not

there a k can be eliminated. So, this labelling will also get removed.

Now, by virtue this has been removed. So, this one will also get removed similarly when

this gets removed this one will get removed. So, slowly we will find out by steps that all

these paths are gone and finally, you will end up in nothing. So, initially we will have

this state’s, but this states will also have the label, then this one will get this labelling AG

label AG k, AG k will also be there they will be getting eliminated because k is false over

here than this one will lose its label because this is not there then as S 1 will lose the



label, then S t will also lose the label similarly when S 3 will lose the label S 4 will lose

the label, then S 7 then S 6 and finally, it will be a null set.
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So, null  set means none of this states will actually  satisfy this  formula. So, we have

generated a counter example that what is the case start and in future heat why it is what

is the problem. So, here it is very interesting. In this case this is this example actually has

given you to modular system, which have shown how to modulus system how to write

some temporal CTL formula that you want to verify, what it happens and then we have to

see how we do model checking and then we find out states where it is violating.

So, now it says that the something has been violated now we have to debug what is the

problem.  First  thing  is  that,  whether  this  modelling  is  wrong  that  is  one  question.

Secondly, whether this formula I have written is wrong. So, many things can go error of

course, the model checking algorithm is assumed to be proper and it is known to be

correct.  So, there is  no problem in the way we are doing the modelling,  it  is model

checking.

So, the labelling and this properties are already known prove to be correct. So, that is no

problem there.  So,  now, what  to do? So, first  I  will  check whether the modelling  is

proper or not, so in fact, the way we have discussed I you have to appreciate the fact

there is no problem in the modelling the model is correct.  Then what is the problem

another way is that since somebody can tell me, that way I have written this specification



may also have an error. So, this example slightly is a twisted example because I could

have also made model error and shown that how to correct it, but without doing that you

can also try in your home, but there have try to given a different flavour here. So, what I

have seen, I assuming that the property itself it in a slightly a problem.
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What it should write this one, all paths globally start implies all paths in future heat, but

not error that means.
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This is some path which was designed to have some error correction. So, if there is an

error, then I do not bother about it because it a error case the heating is never on. So, if

the error is on the heating is always off. So, that I always know. So, therefore, I have to

think I have to or in other case, I have to always think that in the error is there I do not

bother the property. The property says that in fact, start in future heat should be there, but

it will hold if an only. If the error is not blinking if the error is blinking then basically

you return will or micro will never start.

So, your correct property should be like something like start, and not error implies all

paths that all paths in future heat and not error; that means, non error environment it

should hold. Now basically I am not going to do the elaborately I discuss it, same thing

you have to do only along with heat, it is first we are generating we started with this start

so. In fact, now it is start and error.
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So, this states are S 4 and S 7 then all paths in future start and not error will be this state.
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Finally it will land up to this stable state S 4, S 6 and S 7.
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Then again you will have to go for all paths in heat similar way you have to find out the

labels, for all paths in all paths in future heat and not label.
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So, this is basically nothing, but your S 4, S 6 and S 7.
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So, this way you are doing similarly you have to repeat for this one you know, this this

state of states you know you check for implication.
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.

And then finally, you will have you verify the property, as I have done you will find out

that it will be satisfied in all the states, that I am just showing I have just shown in the

slides I am not elaborately discussing, this is just a repetition just you look at this slide I

am just holding this slide for slides will also be uploaded, but you can just see for the

time being, here the states you do a manual calculation and you will find out that, it is to

be in all the states.

So, therefore, in this case so, the stray example I had given, in which case I had made

slightly errorless your basically specification. So, this has give you flavour that either

there can be error in the specification either there can be error in the model, anyway it is

very rare that both of them or any one of them has some errors, but still you are model

checking means you are finding that all the properties are satisfiable.

Generally  what  happens,  there  is  some  errors  in  the  model  itself  because  is  very

complicated to build it specification are generally small way of representing what we

want. So, generally there is no bugs here, but anywhere if anywhere there is a bug you

will be give us error and then you have to find out which has to be rectified.

If the modelling has to be rectified, then there again can be two cases either the model a

is a while you are translating the system to model there may be an error. So, then you

have to modify the model itself or it may happen that, the system itself had some bugs



which is generally always want to catch, then you can go and tell guy see your this as a

problem this account example you change.

So  in  fact,  the  in  this  formal  model  checking  the  advantage  is  everything  is  done

mathematically. So, its are always exhaustive and guaranteed. So, generally if it says that

the model is satisfying the properties, then it is guaranteed that for all input cases and

those property models will be hit properly. So, that is the idea of formal verification over

simulation based verification etcetera. So, this brings us to the end of this introductory

lecture and what we have to take from here? From here you have to understand the

basics  of  CTL model  checking,  there  is  another  way  of  doing  it  called  LTL model

checking slight deviation that you can easily go home and read.

But what explicitly is issue the model. So, for a microwave there are 4 variables, you can

find  out  that  2  to  the  power  4 16 states.  For  a  very  large  system 100 and 1000 of

variables you cannot even make the model itself. If you are not able to make the model

itself forget just thing how can you verify. So, for to handle larger systems we will see

how to optimise it how you use binary decision diagrams to do, it then also we will see

high level abstraction and I will.  So, many other different ways like model checking

etcetera. So, this how will go in this module.

Thank you.


