
Advanced Control Systems 
Prof. Somanath Majhi 

Department of Electronics and Electrical Engineering 
Indian Institute of Technology, Guwahati 

 
Module No. #03 

Time Domain Based Identification 
Lecture No. #20 

Reviews of DF Based Identification 
  

Welcome to the lecture titled reviews of DF based identification. We shall revisit DF 

based identification techniques, and see what difficulties we have or what benefits we 

have from the DF based identification techniques.  
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Now, consider the closed loop system subjected to a gain controller, the gain of the 

controller is 8.5, and the process is the first order plus dead time process with transfer 

function e to the power minus 2 s e to the power minus 2 s upon 10 s plus 1. When this 

first order plus dead time process is subjected to a gain controller with gain of 8.5, what 

type of output is expected from that system closed loop system, the output becomes 

oscillatory. When the gain is lower, then the output become stable, and when the gain is 

increased further, then we expect unstable or unbounded output from the first order plus 



dead time system. But at exactly the gain of 8.5, with a gain of 8.5 we do get sustained 

oscillatory output of this form. 

So, we do get a limit cycle output limit cycle output of this form. Now, also the plot is 

showing the input signal of the system. So, this is the input and this is the output, we 

have from this. Now, the reference is one. So, when you take the average value of the 

input signal, the average will be one. So, average value of input Avg or input, if the input 

signal to the process is denoted by u and the output by y, then y average will be 1 and u 

average will be 1; thus giving us the steady state gain of the process as 1. So, I will not 

discuss about the steady state gain; rather, the point of considering this case or case study 

is that, the when the controller gain is 8.5, we do get a limit cycle output.  
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Then, when the Nyquist diagram of the loop gain or loop transfer function is taken, what 

is the loop transfer function now? The loop gain is now 8.5 times G(s); that means 8.5 e 

to the power minus 2 s upon 10 s plus 1. So, when the Nyquist plot of the loop gain is 

considered, then the Nyquist diagram assumes this form. From here, what information 

we do get? We do have the negative real axis crossing at a frequency of omega u or 

omega c r, critical frequency or ultimate frequency of 0.842 radian per second. So, the 

Nyquist diagram shows that, the operating point has been push to minus 1 plus j 0; with 

the help of the gain controller, which is having a gain of 8.5. Now, when that value is 

changed, then you will have different type of Nyquist diagram. 



From this, the objective of showing this Nyquist diagram is that, we do get sustained 

oscillatory output of this form; when the loop gain is loop gain is equal to minus 1. Why 

that is so? because the operating point is now the one shown by this rectangle. So, this is 

our operating point this is our operating point. So, with other values of 8.5, the operating 

point will change; they will go to either stable operation or unstable operation or stable 

operating region given by this or unstable operating region given by this. You please see 

that part of the Nyquist diagram is not shown, you can make out easily. So, what we 

have found? When the loop gain is equal to minus 1, that time we do get sustained 

oscillatory output from the closed loop system. 
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Now, how to identify the parametric model of a transfer function model for the process 

dynamics or plant dynamics? Initially, we assume a transfer function model for the 

dynamics of the process. Let that transfer function model be defined by G(s) is equal to 

K e to the power minus theta s upon T1 s plus 1 and we know that, the controller gain 

Gc(s) is equal to 8.5. Now, when the controller is put, then we have found sustained 

oscillatory output with the oscillating frequency of omega c r is equal to 0.844 radian per 

second. Now, as I have told the Nyquist diagram gives us the information that, the loop 

gain is equal to minus 1 or the at the operating point, when the gain is equal to 8.5.  



(Refer Slide Time: 06:51) 

                    

The controller gain is 8.5. The operating point is push to a point of minus 1 plus j 0 and 

the loop gain is equal to minus 1. What is that loop gain now? Loop gain is nothing but, 

the controller gain times the process dynamics. 
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So, that way we have got the expression 8.5 times K e to the power minus theta s upon 

T1 s plus 1, as the loop gain and the loop gain has to be minus 1, to obtain sustained 

oscillatory output. So, using this expression when the magnitudes of these expressions 

are equated; magnitudes means, when the magnitudes of both sides of these expressions 



this this equation are equated; we do get an expression of the form in frequency domain, 

mod of Gc j omega c r G j omega c r is equal to 1. This is what; you are getting from 

equating magnitudes of the loop gain.  

Now, when the phase angles of the both sides of again the loop gain is considered, then 

we do get an expression of the form; angle of Gc j omega c r G j omega c r is equal to 

minus omega c r theta minus tan inverse omega c r T1 is equal to minus pi. So, where 

from you are getting all these things? Basically, first you try to find the loop gain in 

frequency domain. How that will look like? 8.5 times K e to the power minus j omega j 

omega c r theta divided by j omega c r T1 plus 1 is equal to minus 1. Now, you take the 

magnitude of this expression; magnitudes means, magnitudes of both sides of this 

expression.  

When you equate that, you get this; which can be further simplified and obtained in the 

form of omega c r T1 square plus 1 is equal to 8.5 square giving ultimately, T1 is equal 

to 10. Thus, one parameter of this transfer function model T1 can be estimated using the 

loop gain. Similarly, when the phase angles of both sides of this loop gain or the 

condition that gives results in limit cycle output are considered; phase angles of both 

sides are equated then, we get this analytical expression. Simplification of this 

expression results in the explicit expression theta is equal to pi minus tan inverse 8.44 

divided by .844 equal to 2.  

Why I am horridly explaining this one? Already we have discussed this example in one 

of our lecture earlier. Thus, we have been able to identify the parametric model or of the 

transfer function model of the process dynamics as G(s) is equal to e to the power minus 

2 s upon 10 s plus 1 or the theta has been estimated as 2; T has been estimated as 10. So, 

we have been able to estimate accurately the parameters of the transfer function model; 

because the Nyquist diagram has been considered appropriately. How that is so? That 

will be evident after sometime, when I consider the same example on the different 

situations and when the describing function is used.  
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Now, So in this case, in place of a controller with a gain or a gain controller in place of a 

gain controller, we have used a relay. Earlier, we were using some gain controller. Why 

we are using a relay now? The main reason for that is, it is very difficult to obtain limit 

cycle output with a gain controller; because you need to go on increasing or decreasing 

the gain of the gain controller heuristically. So, you start with some nonzero value 1. So, 

you go on increasing the gain value 1, 2, 3, 4, then you slowly increase; when you come 

to 8 8, 8.1, 8.2, at 8.5 you will get sustained oscillatory output. 

But you will take much time; you will spend much time to obtain this correct value of the 

gain. If you by mistake, exit that value by a small magnitude also 8.501 now; in place of 

8.5, if the magnitude become 8.501 or 5 5, then the output will be unstable or 

unbounded. So, there is risk involved with the gain controller. How to find correct 

magnitude or value for the gain controller? To avoid that, a relay is used in the closed 

loop, which guarantees you sustained oscillatory output or limit cycle output irrespective 

of any value of relay setting other than the setting of 0. 
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So, when the relay setting is not equal to 0, then this process definitely results in 

sustained oscillatory output. So, it is very easy. I do not mind. What value or what what 

parameter of relay is to be there. So, that is why, the gain controllers are normally 

avoided or the limit cycle using gain controller concept is normally avoided.  

(Refer Slide Time: 13:29) 

                    

Now, with the use of a relay ofcourse, I have been able to get this sustained oscillatory 

output shown by the pink color and the yellow one shows us, the output from the relay or 

process input process input during the auto tuning test now or identification test. 
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Now, what type of output you do get? When a symmetrical relay with parameter h is 

equal to 1 is used, a sustained symmetrical process output is guaranteed; in the absence 

of ofcourse, static load disturbances. Then, when the measurement of peak amplitude and 

the ultimate frequencies are taken, we do obtained for this particular case; a peak 

amplitude of A is equal to 0.181 and ultimate frequency of magnitude 7.332 seconds, 

which giving us the critical frequency as 2 pi upon Pu is equal to 0.857 radian per 

second. So, this is how, we do obtain the peak amplitude and ultimate frequency or 

critical frequency from the measurements. 
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 Now, let me go to the Nyquist diagram diagram of the closed loop process now. The 

loop gain is the gain of the controller. In place of a controller, I have used a relay. 

Therefore, the gain of the relay is approximated as 4 h by pi A. keep in mind. The gain of 

the device relay is now 4 h by pi A. We have already derived; how we obtained the gain 

of the relay using describing function? So, when this value of the gain is used along with 

that of the dynamics of the process, which is in this case e to the power minus 2 s e to the 

power minus 2 s upon 10 s plus 1.  

I do get a Nyquist plot or diagram of this form. Now, there is one interesting observation. 

This point in rate particularly, this point corresponds to the point minus 1 plus j 0 or the 

negative real axis with real value of minus 1; whereas, the Nyquist diagram of the loop 

gain is crossing the negative relay negative real axis at some other point. The operating 

point has got shifted now. Unlike the earlier Nyquist diagram, where the operating point 

was at minus 1. This is not so and the operating point has shifted to some value of minus 

0.813.  

So, when the equivalent gain of relay is considered for identification of plant model 

parameters or transfer function model parameters, when you write the condition for limit 

cycle as, the loop gain equal to minus 1. That is not true. When the loop gain is equal to 

minus 1, this is considered; then, we may get inaccurate estimation for the time constant 

and time delay associated with the transfer function model. So, when this loop gain 

would have been given as in place of minus 1 as minus 0.8 1 3.  

That must result in correct estimation or the estimation errors associated with the 

estimation of plant model parameters will be significantly low. So, this loop gain concept 

is very important; outright, we write that a limit cycle is possible or is obtained, when the 

loop gain is 1. And with this loop gain is minus 1 and with that assumption, we do 

carryout our analysis and find explicit expressions for the parameters of transfer function 

model. So, let me see really, we are getting erroneous results are not; when the shifted 

point of the Nyquist diagram is used in place of the correct point. So, what is done 

basically? 
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Now, the relay is having a gain of K h upon pi A, and the process has got the dynamics 

K e to the… 4 h by pi A; K e to the power minus theta s upon T s plus 1.Yes, T s plus 1. 

I am using the symbol T for the time constant. So, this is equated to minus 1, when this is 

written in the frequency domain, we get 4 h upon pi A into K e to the power minus j 

omega theta divided by j omega T plus 1 is equal to minus 1. Now, the magnitude of the 

left hand side becomes 4 h upon pi A times K divided by omega T square plus 1 root is 

equal to 1. 

So, equating the magnitudes of both sides, equating the magnitudes of both sides we do 

get this expression; which can ultimately be simplified in the form of omega T square 

plus 1 is equal to… I can write outright 4 K h divided by pi A square. Further, giving us 

T is equal to 4 K h by pi A square minus 1 root upon omega. Similarly, equating the 

phase angles of both sides of this expression will give us, minus omega theta minus tan 

inverse omega T is equal to minus pi implies theta is equal to… directly I will bring this 

pi minus tan inverse omega T upon omega. 

So, these are the two explicit expressions, we do obtain from the analysis of the loop 

gain. But this loop gain this this this inequality is necessary for generating limit cycle 

output. Now, when I substitute the measurements of A omega; here, omega c r is used; 

please keep in mind; in place of omega, please write omega c r. c r So, omega c r will 



come in place of omega c r. So, simply substitute omega by omega c r, anywhere you 

have omega.  
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Then, you get the expression, T is this one; already I have derived and theta is equal to 

this one. When I substitute the major values of A as and omega c r, then I estimate the 

model parameters as T is equal to 8.1249 and theta is equal to 1.9999. But the process 

has got T of 10 and theta of 2. Therefore, the model parameter is underestimated; which 

parameter? The model parameter time constant is underestimated by 18.75 percentage 

and theta is underestimated by 0.035 percentage. So, this is the estimation errors, we 

have. When you use the condition that, loop gain is equal to minus 1 to generate limit 

cycle oscillation.  
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Now, I will do. So, when when that that condition is not used; rather, when I will use the 

condition that, actually your loop gain 4 h by pi A times K e to the power minus theta s 

upon T s plus 1 is equal to minus 0.8; as you had seen 0.813. Because actually, the 

system is operating at the point minus 0.813, then certainly the loop equation will result 

in correct estimation for the parameters of the transfer function model. So, when this this 

expression is analyzed now, in place of 4 h upon pi A into K e to the power minus theta s 

upon T s plus 1 is equal to minus 1; in place of minus 1, when I use the real operating 

point, which is at minus 0.8 1 3. Then the parameters of the transfer function models are 

estimated now, as you see the presence of 0.813. So now, the formula will get modified.  

So, I will have here 0.813 divided and similarly, this expression I have no effect. Then, 

the T is the time constant is estimated as T is equal to 10.029 and theta is equal to 1.968. 

Therefore, the estimation error has come down to a value of .3 percent for the time 

constant and 1.6 percent for the time delay. Unlike the earlier case which had got the 

estimation error of around 18.75 percent; now, that has come down to .3 percent. 

Therefore, it is very important to consider this point that, when the describing function 

analysis is analysis is used for the relay, then you have to look at the operating point. In 

place of the operating point of minus 1 plus j 0, the operating point has shifted 

somewhere else.  
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Unless that information is used correctly, this operating point has shifted from this one. 

This should have been the operating point ideally, as per the analytical expression; we 

have been using during our lectures. On DF based identification, the operating point is 

somewhere else, when you use the approximation of relay by describing function. So, 

this point is very important as I am telling, unless correct operating point is used or 

correct analytical expression like the loop gain outright; instead of writing loop gain is 

equal to minus 1, you should write loop gain is equal to minus 0.813. 

Please look at the point, the negative real axis crossing point. So, when this loop gain is 

equated to minus 0.813, you will be able to estimate accurate parameters for the models 

of the transfer function; for the models of the dynamics of the system. 
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Now, I will go to the on-line identification. Whatever we discussed so far were related to 

off-line identification. Is the on-line identification now is subjected to estimation error or 

not? That we shall see. So, in the on-line identification, the relay is connected in parallel 

with a controller. Now again, the relay is approximated by its describing function or the 

relay is approximated by an equivalent gain of the form 4 h upon pi A; where A is the 

peak amplitude of the fundamental component of the output signal. So, when a 

symmetrical relay test is conducted, a sustained symmetrical process output is obtained.  

From that, when the measurements are made, then we can get typical values for the same 

process. Now, I will when I take the process as G(s) is equal to e to the power minus 2 s 

upon 10 s plus 1. And use the same value of the relay setting, h equal to 1 and whatever 

the controller; when the controller is used as Gc(s) is equal to… some let us say some 

simple point 5 plus 0.5 upon s. Then, I do get sustained oscillatory output and 

measurement of the peak amplitude and the ultimate frequency ultimate period gives us 

the peak amplitude as A is equal to 0.203 and ultimate period as 7.750 giving us critical 

frequency as omega c r is equal to 0.81. How do obtain all these things? you know  
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Only thing, you need to do is when you are stimulating this on-line identification 

scheme, the controller again I am saying use the controller, a PI controller; GPI of 

magnitude .5 plus 0.5 by s. Let me repeat, because this is very important and relay 

setting is height equal to 1. Relay height or parameter is set to 1 and the process is the 

same process, we have been considering in our earlier example; e to the power minus 2 s 

upon 10 s plus 1. 
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Now, for this case already the stimulation diagram is given over here. What type of limit 

cycle output is obtained? We do get the sustained oscillatory output of this form. This is 

the output I get and when the peak is measured, it is found to be of the magnitude 0.203 

and the period; if you start from here to here, the period is approximately 7.75 seconds. It 

has been given earlier 7.75 seconds. So, I will do the analysis of this system now. How to 

estimate the model parameters? Now, for the on-line system, we do have the PI 

controller connected in in parallel with the relay.  
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Therefore, the loop gain will be now given by, 4 h upon pi A or let me write K u ultimate 

gain as the 4 h upon pi A. Then, also the PI controller is given by Gc(s) is given by, 

suppose K p plus K i. Let us use the same type of symbol K p plus K i upon s. Then the 

loop gain will be now K u plus K p plus K i upon s times K e to the power K e to the 

power minus theta s upon T s plus 1. So, K is 1. So, here I have not taken K; K is this 

one; K is equal to 1 here. It does not matter.  

So, I will give the general expression for the loop gain, when on-line identification is 

carried on. Now, I will I will write now in frequency domain, the loop gain as K u plus K 

p plus K i upon j omega c r K e to the power minus j omega c r theta divided by j omega 

c r T plus 1 is equal to minus 1. Now, equating the magnitudes of both sides of the above 

equation; what do we get? We get K u plus K p square plus K i upon omega c r square 

root times K upon omega c r T square plus 1 root is equal to 1.  
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Then, giving us K u plus K p square plus K i upon omega c r square is equal to times K 

is equal to omega c r T square plus 1 root. So, when I simplify this one, again I will get 

omega c r T square is equal to K square… sorry root will come. So, K square now K u 

plus K p square plus K i upon omega c r square minus 1. Giving ultimately an expression 

for the time constant of the transfer function model as T is equal to K square times K u 

plus K p square plus K i upon omega c r square minus 1 root divided by omega c r. So, 

this is the explicit expression for time constant of the process model parameter T, when 

an on-line identification scheme is used.  

Now, using the measured values of A p, we have sorry A as 0.203 and P u as 7.75 or 

omega c r is equal to 0.8107. Similarly, K u is equal to 4 h upon pi A giving us 6.272. 

When these values are substituted, then we do obtain the T and the T will be now T; 

when these values are substituted in the above expression, T is calculated as 8.125. It 

should have been 10. So, how much error is estimation or a error is associated due to the 

approximation of the relay, by some describing function. It is having almost 20 

percentage of error. It should have been 10. Now, we have got a value of 8.125. 
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Similarly, for the time delay equating the phase angles of both sides, equating the phase 

angles angles of both sides we get an expression of the form tan inverse minus K i 

divided by omega c r K u plus K p minus omega theta minus tan inverse omega T is 

equal to minus pi; implies omega theta is equal to pi plus tan inverse minus K i upon 

omega c r K u plus K p minus tan inverse omega T; implies theta is equal to pi plus tan 

inverse minus K i upon omega c r K u plus K p minus tan inverse omega T divided by 

omega c r. So, this is the explicit expression we have obtained for the time delay of the 

transfer function model, when an on-line identification scheme is considered. 

Now, when I again substitute the values, necessary values A is equal to 0.203 or 

indirectly when I put K u is equal to 6.272, omega c r is equal to .8107 in the expression, 

theta is calculated theta is calculated as, theta is equal to 1.977. How much it should have 

been ideally, it should have been 2. As you know, in the stimulation we have considered 

a transfer function model with the time constant, T is equal to 10 and the time delay of 

theta equal to 2. So, these are the ideal values; whereas, the estimated values for the time 

constant is 8.125 and that of the time delay is now 1.977. So, it is also the estimation 

error is also there, but the estimation error for the time delay is very less.  

How much it is? It is accurately, it is minus 0.06 percentage; that means, the value has 

been underestimated by minus 0.0; underestimated with an estimation error of minus 

0.06 percent. How do I find these percentage errors? Suppose it should have been 2, but 



it has been estimated as 1.977. So, the estimation error; let me use another slide. So, theta 

sorry we have some plot. So, theta is equal to this much. So, estimation error is estimated 

value So, estimated value exact value divided by exact value times 100. So, in this case if 

I use this, then in that case how much it would be 1.977 minus 2 divided by 2 into 100. 

That is how; I get an estimation error of minus 0.06 percentage.  
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And in the earlier case, estimation error associated with the time constant is, estimation 

error error is 8.125 minus 10 divided by 10 into 100. So, that is giving us a value of 

minus 20 percent approximately. So, what we have found from this analysis that, 

because of the use of the describing function for the relay, the time constant and the time 

delay estimations are subjected to erroneous values and those are sometimes found to be 

of very high value value. So, we have got estimation error up to 20 percentage, which are 

not tolerable or one should not allow so much of estimation error, while identifying 

process dynamics. Now, I will see the Nyquist diagram for the closed loop system under 

relay control. So, what is this? Where from we are getting this Nyquist diagram?  
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If you look at, we have got the relay which is given by its equivalent gain 4 h upon pi A. 

Then, we have got a controller connected in parallel with this one with the controller is .5 

as plus .5 upon .5. Therefore, we are using the same PI controller. So, it will be .5 plus 

0.5 upon s, a PI controller. Ofcourse, we are using e to the power minus 2 s upon 10 s 

plus 1 for our analysis. So, the loop gain loop gain will be how much it would be? 4 h 

upon pi A plus 0.5 plus 0.5 upon s times e to the power minus 2 s upon 10 s plus 1. 

Again, we have found 4 h upon pi A to be of the value 6.67 6.272 giving us an 

expression for the loop gain as 6.272 plus 0.5 plus 0.5 divided by s times e to the power 

minus 2 s upon 10 s plus 1.  
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So, when the Nyquist plot of this loop gain is obtained, then we do get a Nyquist diagram 

of this form. So, all these are for positive frequencies and the upper plot is for negative 

frequencies. You are acquainted with the Nyquist diagram, I do believe. Then, the 

Nyquist diagram shows us, that operating point has shifted substantially. The operating 

point should have been here, because we are using the analytical expression that, the 

loop gain is equal to minus 1. So, we take the operating point as minus 1 plus j 0. So, the 

operating point in the analysis is used as minus 1 plus j 0; whereas, in real life the 

operating point is somewhere else.  

This is the operating point of the closed loop system. So, ideally it should have been 

here, but practically it has shifted to a value or a point with the coordinates almost given 

as minus 0.833 plus j 0; because it is small number. The complex value is very small. So, 

in place of minus 1, the operating point has gone to minus 0.833 and the frequency of 

oscillation is ofcourse, this we have got slightly a different value; because we may not 

had been able to locate exactly the 0 crossing point or negative real axis crossing point. It 

does not matter.  
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Now, when one uses the loop gain or when I write the loop gain equation for this as, this 

is equated to minus 0.833 8 3 3 and carry on with the analysis; that means, find explicit 

expressions for time delay and time constant associated with the transfer function model. 

Then, the the the parameters can be estimated accurately. Let us see, how we can find 

those T. So, what will be done now in this analysis now? 
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Simply, what you have to do? K u plus K p plus K i by j omega c r times K e to the 

power minus j omega c r T the c r theta upon j omega c r T plus 1 is equal to minus 



0.833. So, what changes will have in the expression for this one? Now, we will have the 

expression for time constant can be given now as, the time constant as root of K upon 

0.833 square times K u plus K p square plus K i upon omega c r square yes minus 1 

divided by omega c r. And similarly, there will be no changes to the expression for theta. 

Because the when you equate the phase angles of both sides, this 0.833 or 1 is not going 

to give any or contribute any phase angle. 

So, that way, the expression for theta will remain as it is; which can be now tan inverse 

minus K i upon omega K p plus K i minus tan inverse omega T plus pi divided by omega 

c r. So, please use omega c r in place of omega. So, this is how, now you get revised 

expressions for that time delay and time constant of the transfer function model. Now, 

what changes are there? Earlier, we had 1 here; 1 in place of .833. So, when you use 

0.833 and substitute now K, K u, K p, K I, omega c r; which are known to us now. Then, 

we do get estimated value for T. 
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T is estimated as 9.9937 in place of 10 and theta is estimated as the same value 1.9788, 

because there are no changes in place of 2. So, the estimation errors, now estimation 

percentage estimation errors in the time constant has gone gone down from down from 

approximately minus 20 percentage to minus 0.06 percentage. Similarly, the percentage 

estimation error in theta has gone off gone off from minus 0.6 percentage to minus 1 

percentage. So, the estimation error has increased in this case, the estimation error has 



increased not significantly marginally. But overall if you look at the estimation errors, 

final estimation errors basically, those are of small values. In this case, absolute value of 

estimation error is .06 percent almost negligible and in the second case, it is 1 percent 

which is tolerable. 

So, the estimation errors have been reduced significantly, when the describing for 

function based analysis uses we uses the correct operating point. So, these operating 

point to locate the correct operating point, you need to do you need to find the Nyquist 

diagram. Once you use Nyquist diagram, then only you can overcome the problems 

associated with the describing function approximation for the dynamics of a relay. So, 

the relay has been approximated by some equivalent gain and that that is an 

approximation only due to that the operating point in the Nyquist diagram gets shifted. 

So, if the shifted point is considered in the analysis, then accurate estimation for the 

model parameters can be obtained or achieved. 
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Now, in the summary, estimation of steady state gain by a separate relay test or by some 

other techniques. So, we have not discussed here; how the steady state gains are 

obtained? Rather, we have concentrated or discussion into basically the estimation in 

estimation of time constant and time delay, the two important parameters of the transfer 

function model. Now, equivalent gain of the relay; basically, the relay dynamics has 

been approximated by an equivalent gain given by 4 h upon pi A. So, this is an 



approximation and this approximation results in substantial estimation errors in model 

parameters, unless correct operating point is identified and used in the analytical 

expressions. Both the off-line and on-line identifications schemes are subjected to 

estimation errors, because the relay is approximated by some gain. 
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How to reduce estimation errors? Estimation errors can be reduced by many ways: One 

way of reducing the estimation errors is to use time domain based - time domain based 

analysis of the relay control systems, relay control systems. Another is to use state space 

based analysis of the waveforms of the sustained oscillatory output, oscillatory output. 

So, there are many techniques, those can be used to get estimated parameters with 

reduced estimation errors, and basically the time domain based estimation techniques 

result in less estimation errors. Thanks  


