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Welcome to the lecture, titled identification of second order plus dead time model with 

pole multiplicity. Earlier, we have derived a set of analytical expressions for identifying 

parameters of the second order plus dead time transfer function models, but we have 

certain limitations as we have discussed earlier, when there will be pole multiplicity, one 

has to take care of the analytical expressions. In this lecture, we shall discuss how the 

same set of analytical expressions can be used to identify transfer function models with 

pole multiplicity.  
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We shall say how we can identify a model transfer function of the form G(s) is equal to 

K e to the power minus theta s upon T 1 s plus 1 square. This type of model is known as 

models with pole multiplicity. 



Now, before going to that, I would like to repeat certain things, we have already 

discussed in our last lectures. The set of analytical expressions, we have derived for 

identifying the second order plus dead time transfer function models. Now, the relay 

feedback system is arranged in this passion, when the relay test is conducted at the time 

the reference input is set to zero. And we have also assumed earlier the transfer function 

model that are identified to be of the form G(s) is equal to k times plus minus T 0 s plus 

1 e to the power minus theta s upon T 1 s plus minus 1 times T 2 s plus 1. Now, the G(s) 

is the dynamics of the actual system which model transfer function model is to be 

identified. 
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Now, what we have done earlier to identify to design a set of to derive a set of analytical 

expressions. We have to express the transfer function model in state space form, where 

we got the state equation of the form X dot t is equal to A X t plus B u t minus theta. So, 

we assume that the delay is there in the input. Therefore, this G s in equation number 1 

can also be written in the form of Y s upon U s e to the power minus theta s is equal to K 

then plus minus T 0 s plus 1 upon T 1 s plus minus 1 times T 2 s plus 1. So, this is how 

we have formed or got the state equation given in equation number 2. 

Similarly, the output equation is expressed as Y t is equal to C X t. Now the A B C 

constants of the state and output equations are given as, A in diagonal form as lambda 1 

0 0 lambda 2 and B as 1 1 and c as k lambda 1 lambda 2 lambda 1 plus lambda 2 upon 



lambda 3 times lambda 1 minus lambda 2 and minus k lambda 1 lambda 2 times lambda 

2 plus lambda 3 upon lambda 3 lambda 1 minus lambda 2. Where, lambda 1 is equal to 

minus plus 1 upon T 1 and lambda 2 is equal to minus 1 upon T 2 minus 1 upon t 2 and 

that of the lambda 3 is given as lambda 3 is equal to plus minus 1 upon T 0. 

Now, it is evident from equation from the constant c that when lambda 1 is equal to 

lambda 2. We cannot get the state space presentation correctly or indirectly speaking; 

now this state space equation can be used when lambda 1 is not equal to lambda 2. With 

that condition, we started our analysis and we found a set of analytical expressions using 

the output wave form.  
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What is that output form we got? This is the type of limit cycle output we got, when the 

relay test was conducted. So, the relay test resulted in some typical output wave form of 

this form, where as the input to the system relay output is given in the rectangular signal 

form. Now, this output signal has got some critical points like the zero crossings zero 

crossings and peak amplitude and the negative peak amplitude or the (( )) amplitude. So, 

that way we identify these four points and derive analytical expressions for these four 

points resulting in four general expressions. Those are given by equation number 17, 

equation number 18 and equation number 31 and equation number 28. 
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Perhaps, I have missed the expression for A p. So, A p also will get in the form of k a 

then h 1 plus h 2 and so on. Basically what we have done so far that, using the output 

wave form, some critical points of the output way form we have been we have been able 

to derive four analytical expressions corresponding to the peak amplitude A p is the peak 

amplitude. Similarly, the negative peak A v and the first zero crossing occurring at time 

T 0 t 0. Assume that y t 0 equal to 0 and y t 2 is equal to 0. So, these four outputs or four 

points of the output signal results in four analytical expressions. 

Now, those analytical expressions can be used to estimate the parameters of the second 

order plus dead time transfer function models like, the steady state gain T 0, T 1, T 2 and 

theta provided lambda 1 is not equal to lambda 2. This point is to be taken care of. Now 

lambda 1 is equal to lambda 2, at that time the dynamic model will have pole 

multiplicity. I mean to say this expression analytical expressions are valid provided, 

lambda 1 is not equal to lambda 2. So, this is correct through provided lambda 1 is not 

equal to lambda 2.  

Similarly, the expression A v is also correct or applicable for the case that lambda 1 is 

not equal to lambda 2. Now, when lambda 1 equal to lambda 2, what happens to the state 

space equation? Can we obtain the state space representation in the same form will little 

changes that we shall discuss in this lecture. 
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I will begin with the relay control system, where the relay system relay will be subjected 

or the relay will be experiencing a dynamic system with pole multiplicity. Let us assume 

that, G s is equal to K e to the power minus theta s upon T 1 s plus 1 times T 1 s plus 1. 

So, I can write G s as K e to the power minus theta s upon T 1 s plus 1 square. This is 

what we mean by pole multiplicity, we can have more number of poles also. Let us begin 

with the simplest case, where the system dynamics is assume to have got two identical 

poles located at the same place of the s plain. 

Now in this case also, we can find the dynamic equations for identification of transfer 

function model parameters. In this identification this transfer function has got, how many 

unknowns now? We have got four unknowns, the steady state gain k, the time delay 

theta, the time constant t 1, and the time constant t 1. As evident from this one, in place 

of four unknowns actually how many unknowns? We have k, theta, and t 1. There are 

basically three unknowns associated with this second order plus dead time transfer 

function model with pole multiplicity. So, we need to derive three analytical expressions 

those that can be used to identify the model parameters. Now, why to repeat all those 

things and find three analytical expressions? If it is possible to use the previous earlier 

derived general expressions, then our life will be easy why to go for further analysis of 

this typical model. 



Then effort will be made now to show that, the transfer the state space representation of 

this second order plus dead time model with pole multiplicity can be given by equation 

number 2. I mean, can we get the same sort of state space representation in a further 

model with pole multiplicity that, we will verify now.  
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I will begin with the second order plus dead time transfer function model with pole 

multiplicity. Where there will be two poles located at the same locations. Now, let G s be 

given by the steady state gain k e to the power minus theta s upon T 1 s plus 1 square. 

Now, I can write this G s in the form of Y s upon since G s is equal to Y s upon U s. it is 

not difficulty to write, Y s upon U s times e to the power minus theta s as K T 1 s plus 1 

square. Because our input to the plant is assume to be delete inputs, when the plant is 

subjected to relay test. Therefore, please allow me to write, Y s upon U s e to the power 

minus theta s as K upon T 1 s plus 1 square. 

Now, this can be further be simplified in the form of, K T 1 square s plus 1 upon T 1 

square. Which again, let lambda is equal to 1 upon T 1 implies Y s upon U s e to the 

power minus theta s is equal to K lambda square upon S minus lambda square. So, this 

again can be expressed as, Y s upon U s e to the power minus theta s is equal to K 

lambda lambda minus alpha upon s minus lambda s minus lambda minus alpha. So, what 

I have done here, I have introduced a small number, where the small number lambda 

tends to 0. When lambda tends to 0, I have basically got the same expression. 



So, Y s upon U s times e to the power minus theta s becomes K lambda square upon s 

minus lambda square, when alpha tends to 0. Always it is possible to write this 

expression in this form provided alpha tends to 0. Why I have done so, we will see the 

effort is to bring this state space representation of this dynamics in the standard form. 

That we have obtained earlier for the second or general second order plus dead time 

model case. Then it is possible to further express this expression in the form of, k lambda 

lambda minus alpha by alpha times alpha by s minus lambda times s minus lambda plus 

lambda. Then next what I will do, I will write this in the partial fraction expansion form.  
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Now this same expression now, Y s upon U s e to the power minus theta s, which is 

given as k lambda lambda minus alpha upon alpha alpha upon s minus lambda s minus 

lambda plus alpha. When expressed in the partial fraction expansion form gives us, k 

lambda lambda minus alpha upon alpha 1 upon s minus lambda minus 1 upon s minus 

lambda plus alpha. Please keep in mind that, alpha tends to zero. Only then we are 

getting the same expressions that, we that are analysis begin with. Then this expression 

further can be written in the form of, k lambda lambda minus alpha by alpha times 1 

minus 1 with 1 upon s minus lambda 0 0 1 upon s minus lambda plus alpha times 1 1. 

So, basically what I have been doing? I am trying to find the same dynamic model using 

the state space equation constants. 



What is the state space equation constant? If you look minute carefully minutely observe 

this one, what I have tried to do? I am trying to get the same transfer function model 

using the equation C S I minus A inverse B. We know that for linear time in variant 

system, we have the transfer function model to state space conversion and state space 

model to transfer function model conversion with the help of the standard equation given 

by, C times s I minus A inverse B. Where, C A and B are the constants of the state 

equation. In that case, often comparison we get that the same transfer function model can 

be obtained using the constant C A and B. Where, C is equal to now K lambda lambda 

minus alpha upon alpha times 1 minus 1. It is of dimension one in to two. 

Now similarly, A is now obtained has A is now obtained has lambda 0 and 0 lambda 

minus alpha. And B is obviously are 1 1. Thus, we have got a state space representation 

of the dynamic second order plus dead time model with pole multiplicity, but there are 

two poles given by a state equation. 
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where the state equation is now, X dot t is equal to A X t plus B u t and y u sorry u t 

minus theta y t is equal to C X t. Where, A is found to be lambda 0 0 lambda minus 

alpha, B is 1 1, where at C is given as k lambda lambda minus alpha upon alpha times 1 

minus 1. Allow me to write the c in some other form now. Other means, I will simplify 

the C now. C can also be extended to the form of, K lambda lambda minus alpha by 

alpha minus K lambda lambda minus alpha by alpha. 



Again this can be written as, K lambda lambda minus alpha by lambda minus lambda 

minus alpha in the denominator minus K lambda lambda minus alpha by lambda minus 

lambda minus alpha. So, why we are doing? We are trying to get the state equation 

represented in the original form. What is that original form? We have got the system 

state equation represented by this form. Where, X dot t equal to A X t plus B U t minus 

theta Y t equal to C X t have got A, B, C given in this form. Now basically, I have been 

able to obtain this standard form using analysis.  
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When that is possible that is possible provided I assume that, when lambda 1 equal to 

lambda and lambda 2 becomes lambda minus alpha. Then whatever A, B, C we have got, 

then A becomes lambda 1 0 0 lambda 2; B equal to 1 1 and obviously, C will be now in 

the standard form of k lambda 1 lambda 2 lambda 1 plus lambda 3 by lambda 3 lambda 1 

minus lambda 2 minus k lambda 1 lambda 2 lambda 2 plus lambda 3 by lambda 3 

lambda 1 minus lambda 2. This is the standard form. 

So, we can obtain the same A, B, C or we can express this A in the standard form with 

the assumption of, lambda 1 equal to lambda and lambda 2 is equal to lambda minus 

alpha, and B no changes. Already we have got the B in the specified form. Now what 

about the C? C is available in this form and arranging it a little bit, where I am 

substituting lambda by lambda 1 and lambda minus alpha by minus lambda 2. 



Therefore, I get a term as lambda 1 minus lambda 2 in the denominator, but we have got 

additional terms are also. In the general expression for the C therefore, with the 

assumption further assumption of when lambda 3 tends to a large number infinity. In that 

case, then what C becomes c becomes? When lambda 3 tends to infinity, then I will get 

this in the form of, k lambda 1 lambda 2 upon lambda 1 minus lambda 2 times 1 upon 

lambda 1 upon lambda 3 plus 1. And the second term will be similarly, K minus K 

lambda 1 lambda 2 and lambda 1 minus lambda 2 in the denominator with lambda 2 by 

lambda 3 plus 1. And as we have assumed that lambda 3 tends to 0. 

Therefore, this will be 0. And similarly, this will be 0. We are multiplying this factor by 

one, only resulting in the expression for the C as K lambda 1 lambda 2 upon lambda 1 

minus lambda 2 minus K lambda 1 lambda 2 upon lambda 1 minus lambda 2. So, finally 

the reason for doing all these analysis is that, with proper assumptions simple 

assumptions or introduction of the terms that, when lambda 1 equal to lambda, when 

lambda 2 equal to lambda minus alpha with the constraint that alpha tends to 0 alpha 

tends to 0. At that time it is possible to find the transfer function model, as a transfer 

function model with pole multiplicity. We are dealing with a second order plus dead time 

delayed transfer function model and where we have got a two dimensional A B and C.  
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Ultimately this same set up, I mean this general expression can also be obtained in the 

form of this, G s can be expressed in the form of a transfer function model will pole 



multiplicity K e to the power minus theta s upon T 1 s plus 1 square. When lambda 1 is 

equal to... already we have got lambda 1 lambda 2 and lambda 3 keep in mind. When 

lambda 1 equal to lambda lambda 2 is equal to lambda minus alpha, where again alpha 

tends to 0. Please keep in mind alpha tends to 0 then only you will get the dynamic 

model in the form of model with pole multiplicity.  

Again to obtain this second order plus dead time transfer function model, we have to 

assume model with no zero particularly, we have to assume that lambda 3 tends to a 

large number. If you allow me to make this assumption, then all the analytical 

expressions we have derived so far can be extended to identify the transfer function 

model parameters of these models with pole multiplicity. Because one has to properly 

substitute the lambda values the lambda 1, lambda 2, and lambda 3 then the same set of 

analytical expressions as I have said or shown earlier. 
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What are those analytical expressions? What we have obtained these is the analytical 

expression. Now, these analytical expressions are not valid or cannot be used when 

lambda 1 is equal to lambda 2. To avoid that, what has to be done in place of for the case 

of system or system dynamics with pole multiplicity? What the lambda values are to be 

taken? Now, lambda 1 can be assume that lambda lambda 2 will be lambda minus alpha. 

With alpha tends to 0 and lambda 3 can be a large number to identify the transfer 

function model with no zeros.  



When you have a 0 in the transfer function model, then this constant is not required. 

lambda 3 can be as it is. There is no constant on lambda 3 as far as using the analytical 

expressions are concerned. Therefore, I can allow I can make use of equation number 17, 

equation number 18, which are obtained from the condition that the output at the first 

zero crossing is equal to 0, that results in equation number 17. 

Similarly, the output at the second zero crossing is equal to 0 results, in equation number 

18. These analytical expressions can be used for our case or the case with a plant with 

poled multiplicity provided, the lambdas are chosen in this form. Otherwise one cannot 

use, because you have seen the limitation the limitation is evident when you simply look 

at the C constant or the C. where it is you were not allowed to use lambda 1 is equal to 

lambda 2. It cannot be, when lambda 1 is equal to lambda 2. I cannot use C and 

subsequently, I cannot use the analytical expressions. So, to use the analytical 

expressions, please assume lambda 1 to be equal to lambda lambda 2 to be equal to 

lambda minus alpha where, alpha tends to 0. 

With this assumption, it is possible to use the four analytical expressions we have 

derived for identifying the general transfer function model. Whatever I have thought so 

far, let me repeat. So, the set of analytical expressions, that we have derived so far can be 

or can be used for identifying a transfer function model of the form G s is equal to K e to 

the power minus theta s upon T 1 s plus 1 square provided... again let me repeat provided 

lambda 1 is equal to lambda lambda 2 is equal to lambda minus alpha with the condition 

alpha tends to 0 is used in the set of analytical expressions. How to find explicit 

expressions for this case? To identify this sort of transfer function model using the same 

general analytical expressions that we shall see subsequently. 

Let us go to one case, how can we use the same analytical expressions we have used 

found earlier for identification of the second order plus dead time transfer function model 

with pole multiplicity? Now, we have found an expression for the negative peak output. 

When this plant is subjected to relay control, as A v is equal to minus plus k times h 1 

plus h 2 times R 3 power minus lambda 2 upon lambda 1 minus lambda 2 R 4 times R 4 

power lambda 1 upon lambda 1 minus lambda 2 minus h 1. 

 



Where, lambda 3 and lambda 4 are given by equations 31 and 32. So, this is what already 

we have derived earlier in our earlier lectures. 
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Now, how can we use those conditions to find simpler expressions for A v, when effort 

is made to identify second order plus dead time transfer function models with pole 

multiplicity. Now, I will go in that direction. Now, this R 3 and R 4 can be simplified 

further, when lambda 1 and lambda 2 are substituted by lambda 1 becomes lambda 

lambda 2 becomes lambda minus alpha with the condition alpha tends to 0. When this is 

used, then R 3 and R 4 can be obtained further in simpler form. 

So, how our R 3 becomes? Now, R 3 is equal to... let me use the values here again we 

have seen that lambda 3 is there. I have to impose a condition on that also; I know that 

lambda 3 tends to infinity. when that is now, R 3 will be obtained in the form of R 3 will 

be equal to 1 minus e to the power lambda tau upon 1 minus e to the power lambda tau p. 

Similarly, R 4 becomes 1 minus e to the power lambda minus alpha tau upon 1 minus e 

to the power lambda minus alpha tau. Put please keep in mind, how I am getting this R 3 

expression for R 3 and R 4? I am obtaining from here only, with the substitution of 

lambda 1 is equal to lambda lambda 2 is equal to lambda minus alpha and lambda 3 

tends to infinity. 
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When lambda 3 tends to infinity, how do you get R 3 and R 4? obviously, simply in the 

form of as I have done earlier lambda 1 by lambda 3 plus 1 times, whatever you get now 

since lambda 3 tends to 0 this becomes zero and you are simply getting a term or an 

expression of the form 1 minus e to the power lambda 1 tau upon 1 minus e to the power 

lambda 1 tau p. Similarly, R 4 becomes 1 minus e to the power lambda 2 tau upon 1 

minus e to the power lambda 2 tau p. 

Now, when I substitute lambda 1 by lambda lambda 2 by lambda minus alpha, I get R 3 

h 1 minus e to the power lambda tau upon 1 minus e to the power lambda tau p and, R 4 

as 1 minus e to the power lambda minus alpha tau upon 1 minus e to the power lambda 

minus alpha tau p. I have to take the ratio of the two allow me to take the ratio of the 

two. When I found find a ratio of R 4 upon R 3. How it looks like, now R 4 upon R 3 

will give us 1 minus e to the power lambda minus alpha tau upon 1 minus e to the power 

lambda minus alpha tau p into. So, R by R 3 therefore, 1 minus e to the power lambda 

tau p will go to the numerator and we will have 1 minus e to the power lambda tau in the 

denominator. 

Now, I can write this in the form of 1 minus e to the power lambda tau times e to the 

power minus alpha tau. Similarly, the denominator term will be 1 minus e to the power 

lambda tau p times e to the power minus alpha tau p and rest of the things will remain as 

it is, 1 minus e to the power lambda tau p upon 1 minus e to the power lambda tau. 



Again since alpha is a small number, the exponential term keep in mind e to the power 

minus alpha tau can be approximated as one minus alpha tau since alpha tends to 0. So, 

using that, I can write that numerator as 1 minus e to the power lambda tau plus or let me 

rewrite this in detail so, that we will not skip any in between expressions.  
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Finally, R 4 by R 3 can be written as 1 minus e to the power lambda tau 1 minus alpha 

tau divided by 1 minus e to the power lambda tau p 1 minus alpha tau p in the 

denominator. And further will have the terms, 1 minus e to the lambda tau p upon 1 

minus e to the power lambda tau. So, upon expansion the numerator of this will give us 1 

minus e to the power lambda tau plus alpha tau e to the power lambda tau by 1 minus e 

to the power lambda tau p plus alpha tau p e to the power lambda tau p times 1 minus e 

to the power lambda tau p upon 1 minus e to the power lambda tau. 

Now, I will divide the numerator term this by this. That will give me an expression of the 

form 1 plus alpha tau e to the power lambda tau by 1 minus e to the power lambda tau. 

What I have done, I have divided this term by this similarly, dividing this term by this. I 

have to bring this to the down. So, that way that will enable me to write this as, one yes 1 

plus alpha tau p e to the power lambda tau p upon 1 minus e to the power lambda tau p. I 

have believed that, how I have got this expression. You have followed now, why I have 

divided this by this and similarly, this by this. 



That results in the expression R 4 by R 3 ratio in the form of, 1 plus alpha tau times e to 

the power lambda tau upon 1 minus e to the power lambda tau in the numerator and 1 

plus alpha tau p e to the power lambda tau p upon 1 minus e to the power lambda tau p in 

the denominator. So, we are getting this in some convenient form. Now, why we are 

doing so? What is the purpose of getting this R 4 upon R 3 ratio? As you see this peak 

amplitude or negative peak amplitude has got R 3 and R 4 expressed in this form. And 

when I substitute lambda 1 by lambda and lambda 2 by lambda minus alpha your R 3 

and R 4 will give will be available in the ratio form. That is why I am trying to find.  

Let me write A v correct A v form with the substitution proper substitution then, what 

will be the expression for A v? Now, the same expression or equation number 30 can be 

written as A v is equal to minus plus K h 1 plus h 2 with R 3 minus lambda 2. 
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So, minus lambda minus alpha please keep in mind minus lambda minus alpha upon in 

the lambda 1 minus lambda 2 is nothing but alpha. What I am trying to do? I am 

substituting lambda 1 by lambda and lambda 2 by lambda minus alpha. that gives me R 3 

to the power minus lambda 2 upon lambda 1 minus lambda 2 as R 3 times minus lambda 

minus alpha by alpha. Similarly, the next term becomes R 4 alpha by sorry this will be 

lambda 1 is lambda so, lambda by alpha. Then we have got minus we have got minus h 

1. 



if you see if you further expand this one, how I get minus plus k h 1 plus h 2 times this is 

become this becomes R 3 times R 3 to the power minus lambda by alpha times R 4 to the 

power lambda by alpha s minus h 1. Further it can be written in the form of, minus plus k 

h 1 plus h 2 then R 3 times R 4 by R 3 to the power lambda by alpha minus h 1. That is 

why I have taken the ratio R 4 upon R 3. Now we have got A v expressed in the form of 

A v has become So, A v A v A v has become available in the form of minus plus k h 1 

plus h 2 times R 3 with R 4 by R 3 to the power lambda by alpha minus h 1. 
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This is what we have got an expression for A v, but we have got R 4 by R 3 R 4 by R 3 is 

equal to 1 plus alpha tau e to the power lambda tau upon 1 minus e to the power lambda 

tau by 1 plus alpha tau p e to the power lambda tau p upon 1 minus e to the power 

lambda tau p. How to find? Now R 4 upon R 3 to the power lambda by tau, because this 

will be whole to the power lambda by tau yes it is possible to find simpler expression for 

this R 4 upon sorry this will be R 3 R 4 upon R 3 to the power lambda by pi. 

It is not difficult to find, I will use some identity. How it can be used? We know that, e to 

the power some lambda rho can be return as e to the power alpha rho times yes e to the 

power alpha rho times lambda by alpha yes. So, I can write this as this one which is 

ultimately e to the power alpha rho to the power lambda by rho and when alpha tends to 

0. Alpha is a small number the exponential term, e to the power. e to the power alpha rho 

can be expanded in the form of 1 plus alpha rho, this is known to us. 



Using that, now I can write the upper expression as. Limit alpha tends to 0 e to the power 

lambda rho is equal to 1 plus alpha rho that is for this term 1 plus alpha rho to the power 

lambda by alpha. When alpha tends to 0 e to the power lambda rho is equal to 1 plus e to 

the power rho 1 plus alpha rho to the power lambda by alpha, keep in mind. So, this very 

much looks like this expression you minutely observe, we have already got the powers 

lambda by rho lambda sorry lambda by alpha here and here. 

Now, I have got 1 plus certain thing 1 plus certain thing therefore, it will enable me to 

write this R 4 upon R 3 to the power lambda by alpha or this term in some simpler form. 

So, that will enable me simply to write the expression now in the form of, sorry in the 

form of A v as minus plus k times h 1 plus h 2. 
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R 3 remains as it is, please see R 3 remains as it is. I am not changing R 3. And what is R 

3? R 3 we have written already, R 3 is given by R 3 is given by this 1 R 3 is given by this 

one. What changes we have made, I have got R 4 upon R 4 to the power lambda by alpha 

is substituted by this two terms. Now, where from you get these two terms using this 

identity using this easily it is possible to get this term, R 4 upon R 3 to the power lambda 

by alpha as the as this one. I believe that we have followed how I am using. Please keep 

in mind, always it is possible to find e to the power lambda rho with the limiting value of 

alpha tends to 0 as 1 plus alpha rho to the power lambda by alpha, when this is used. 



So, this factor simply can be obtained with the limiting value of limit alpha tends to 0 

this much becomes. This gives us, when I put alpha tends to 0, you see alpha alphas are 

there alpha is here alpha is here. Therefore, this becomes this becomes your simply 

nothing, but or e to the power this.  
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So, it will give us this ratio will be lambda tau e to the power e to the power lambda tau 

then again e to the power lambda tau upon 1 minus e to the power lambda tau. This is 

what you will get for the numerator part and for the denominator; it will be simply e to 

the power whole of this 1 e to the power lambda tau p e to the power lambda tau p upon 

1 minus e to the power lambda tau p. So, limit alpha tends to 0 are R 4 upon R 4 R 3 to 

the power lambda by alpha becomes e to the power lambda tau e to the power lambda tau 

by 1 minus e to the power lambda tau upon e to the power lambda tau p e to the power 

lambda tau p upon 1 minus e to the power lambda tau p, and that is what we have got this 

expressions. 

The final expression has been obtained from the analysis with the assumption that, 

lambda 1 is equal to lambda lambda 2 equal to lambda minus alpha with the condition 

alpha tends to 0 and lambda 3 is tends to infinity. When I use all these conditions, the 

general expressions result in simplified expressions which can further be used to identify 

the model parameters of a second order model with pole multiplicity. Which has got 

three unknowns given as k, theta, and T 1? 



This is how second order plus dead time transfer function models with pole multiplicity 

are obtained. Using the same set of analytical expressions with the conditions that, alpha 

lambda 1 is equal to lambda lambda 2 equal to lambda minus alpha with alpha tends to 0 

and lambda 3 tends to infinity. 
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Let me summarize my lecture, the general expressions we have found earlier for 

identifying the transfer function model parameters of the general second order plus dead 

time transfer functions transfer functions can be extended for models with pole 

multiplicity. So, the model can have n number of poles also, it does not matter the same 

set of analytical expressions can be used with proper limiting values only. Where, I can 

have n number of poles located at the same point in the s plain. 

Only thing I have to take care of the lambda. So, lambda 1 has to be lambda lambda 2 

has to be lambda minus alpha and. So, on and lambda 3 can be constant or may or may 

not be constant depending on the type of the model. Now, model parameters also can be 

estimated using the four measurements four measurements can be used and the four 

analytical expressions can be simplified to identify transfer function models with pole 

multiplicity. 
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In which case, proper limiting values for different variables are to be used only. The 

beauty of this is that, the same set of powerful analytical expressions four analytical 

expansions and four measurements can be made use to identify a number of plant 

parameters or process model parameters where ,the processes can have pole multiplicity.  
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Now, we will go and to the questions, so the points to ponder. Why second order plus 

dead time model with pole multiplicity? Is it absolutely necessary to find transfer 

function models with pole multiplicity? yes sometimes we have got the system 



characteristics available in the form of k e to the power minus theta s upon T 1 s plus 1 to 

the power n. Particularly for poles with critically damped system, for systems with 

critically for systems with critically damped characteristics, we have got pole 

multiplicity characteristics. 

We have here given by those systems and in those case, we need to divide or find 

analytical expressions to estimate the unknown parameters such as k, theta, T 1 and n. 

Therefore, the four analytical expressions can conveniently be used to identify the four 

unknown’s: k, theta, T 1 and n with proper limiting values for the lambdas, and alphas. 

Where from you get alpha? This alpha you get with the assumption that, lambda one 

equal to lambda, lambda 2 equal to lambda minus alpha. So, some assumption on alpha 

has to be met as well. 

Now, any limitation of the identification technique? Obviously, the technique is not free 

from limitations, one has to make proper use of small number theorem and large number 

theorems. So, large value theorems or small values theorems like one lambda 1 equal to 

lambda, lambda 2 equal to lambda minus alpha with alpha tends to 0. The please do not 

approximate this lambda 2 as lambda also. It is always lambda 2 equal to lambda minus 

alpha. Do not substitute alpha by 0, and get lambda minus 0 equal to lambda lambda 2 is 

equal to lambda. If you use this then you are not get going to get correct expression. 

So, care must be taken to find or to apply the limiting theorems, small number and large 

number theorems properly, and accurately to rewrite the general expressions in 

appropriate form that is all in this lecture. Thank you. 


