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Power Quality Improvement in Diesel Generator Set Based Power Supply System
(Contd.)
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PMSG BASED DG SETS

A DSTATCOM is used for voltage control and power quality

improvement.

A diesel engine run at constant speed is used as prime

mover.
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PMSG based DG sets for 1P2W and 3P3W
Loads
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Welcome to the course on Power Quality. We are discussing Power Quality
Improvement in Permanent Magnet Synchronous Generator Based Diesel Generator
Sets.
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Control algorithms for PMSG based DG
sets

ILST Control Algorithm for 1P2W Loads

ADALINE Based Control Algorithm for 3P3W Loads

Hyperbolic Tangent Function based LMS Algorithm for
3P3W Loads with BESS

MPTEL 167
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ILST based Control Algorithm for 1P2W Loads

Fundamental Stgnal Extraction phase '
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Adaline Based Control Algorithm for 3P3W Loads
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Hyperbolic Tangent Function based LMS Algorithm for 3P3W Loads
with BESS/
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Simulated Performance of PMSG
based DG set under 1P2W Nonlinear

Loads A

PN

NPTEL

" The system is loaded with a single phase

rectifier load connected between phases b’ and

(PR

€.

Initially system is subjected to a load of 1 kW
and then it is subjected to load of 3.6 kW at t
=26s.
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[Fundamental (S0Hz) = 37 A

IFundamenta (01t = 1394 A
R THD=31.50%

THD= 2.67%

Mag (% of Fundamental)
&

(a) (b) (©)
s Harmonic spectra of (a) phase voltage (v,,), (b) source
¥ current (i;) and (c) load current (j,) for non-linear load
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And this is the typically harmonic spectrum of the load current the total harmonic
distortion of load current is 31.5 percent, where the generator voltage THD is 2.67

percent and the generator current THD is 4.48 percent like.
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Simulated Performance of PMSG based
DG set under 3P3W Linear Loads

7 Initially system is subjected to a inductive load
of 1.6 kW with lagging power factor of 0.8.

" Att=2.25s the set is subjected to load of 3.6
kW with lagging power factor 0.8.

— At t =245 s the system is subjected to
" unbalanced load by removing load from phase
{¥ vd
X a.
MPTEL 177

Now, coming to the performance of PMSG DG set with the 3 phase 3 wire lagging

power factor load.
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Simulated Performance of PMSG based
DG set under 3P3W Non-linear Loads

7 Initially system is subjected to a non-linear load
of 1 kW and then it is subjected to non-linear
load of 3.7 kW att =2.25 s.

Ea
{¥
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And the THD of load current is 24.33 % and the generator current THD is 4.78%
whereas the voltage THD is 2.91 %.
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Simulated Performance of PMSG based DG
set with BESS under 3P3W Linear Loads

Initially system is subjected to a load of 1.2 kW at 0.8

lagging power factor which is less than 80 % of generator

rating so battery is taking a charging current.

Att=225s aload of 3.6 kW is connected to the system.

This load is almost equal to the rating of generator so

whole of the load power is drawn from the source and the

battery current is almost zero.

—— " Att=24saload of 4.44 kW is connected to the system.
This load is more than rating of the generator so battery is

7~ Supplying the current to meet the excess load demand.

{78 At t = 2.55 s system is subjected to unbalanced load by

“"™ removing the load from phase ‘a’.
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Experimental Performance of PMSG
based DG set under 1P2W Linear Loads

e
7
% ® ® 3
N Performance of PMSG based DG set under linear load (1) V.o 20 1,(5) Vs 0d 1) ¥
NPTEL and iy () Vien 20 1, (&) Vigh 20 110 (D) Vi 20 11 () Vins 20 s, () Vs 20 (1) Vi ad 187
e

These are the typical experimental results, you can clearly see, that the load generator

currents are balanced sinusoidal where the load is unbalanced.
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Steady State Performance under 1P2W
Nonlinear Loads
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Dynamic Performance of PMSG based
DG set under 1P2W linear Loads
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And then during the dynamics, if non-linear load is increased, still you will find the

generator currents are not getting disturbed, they remain constant and DC link voltage is

also regulated.
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Experimental Performance of PMSG
based DG set under 3P3W Linear Loads
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And then with the lagging power factor load, it works very well for correction of

typically the power factor of the load and providing compensation.
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Experimental Performance under 3P3W
Non-Linear Loads
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This with the non-linear load, but generator current is balanced and sinusoidal. The

voltage THD is 3.6 % where the generator current THD 3.9 % where the load THD is
20.5 %
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Dynamic Performance under 3P3W
Linear Loads
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NPTEL Dynamic performance of PMSG based DG set under 3P3W linear loads (3) vias, Fsis 208 e 192
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And during dynamics when load is unbalanced, the generator currents are not disturbed

as they remain sinusoidal and balanced.
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Experimental Performance of PMSG
based DG set with BESS under 3P3W
Linear load Less 80% of generator rating
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NPTEL Peand Qe (6)Poc () Frcand e 193




(Refer Slide Time: 10:41)

Experimental Performance with BESS
and Load more than generator rating

@ © ®
Steady state performance of PMSG based DG set with BESS under 3P3W under balanced
Iinear load more than generator rating () Py and 0, (b) P; and Q; (c) Py and O (d) Pc and
Qc (&) Poc (f) Vocand Ipc
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Load between 80% to 100 % of Generator
Rating

@ ® ®
Steady state performance of PMSG based DG set with BESS under 3P3W balanced linear
load between 80% and 100% of generator rating (2) 7, and 0, (b) ; and Q; (c) Py and O;
(@) Pcand Qc () Poc (f) Voc and Ipe
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Dynamic Performance under linear load
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And this is you can say, when load is increased you will not find any change in the
generator current. And when the load is off again generator current are not affected.
Because the charging and discharging of the battery take place as you can see the battery

current here.
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Performance under Motoring Load
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PMSG based DG sets for 3P4W Loads
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And now we are coming for 3 phase 4 wire system by providing fourth leg. So, that
neutral current is also compensated either with the unbalanced load or with your non-

linear load neutral current is always there in 3 phase 4 wire system.
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Adaptive Notch Filter Based Control
Algorithm for 3P4W Loads

Estimation of fiundamental active power
component of load current phase-‘a’

Estimation of active power component ‘=0
iy of load current phase-‘b”
I"-- i
i e = Estimation of active power component
ligg _,| of load current phase-‘c’ S %S S SSS
MPTEL i

And this is the typical control we are using here notch adapting notch filter.
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Simulated Performance of PMSG
based DG set under 3P4W Linear loads

% Initially system is at no load and it is subjected
to a RL load of 3 kW at 0.8 lagging power

factoratt=2.3s.

" The system is subjected to unbalanced load by

removing load from phase ‘a’att=2.45s.

200
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Simulated Performance of PMSG based
DG set under 3P4W Nonlinear loads

% Initially system is at no load and it is subjected

to a non-linear load of 3.7 kW att=2.3s.

= The system is subjected to unbalanced load by

e removing load from phase ‘a’att=2.5s.

NPTEL 202
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And you have a total harmonic distortion of the load current around 37.76 %, but the
generator current THD is 3.63 % and the terminal voltage THD is 2.129 %.
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Experimental Performance of PMSG based DG set
under 3P4W Unbalanced Linear Loads

Steady state performance of PMSG based DG set under 3P4W Enear unbalanced load (3)
Vass 200 F:x(D) Vead G fs(c) Vi 20d e (d) Vs 20 Fn(e) Voo 20 e (f) verd 208 s () Ve
and ip (B) vy a0 iy (1) Ve 300 () it 200 s (K) Vo 20 e (1) Ve 20 iy 205

And you can see the here under unbalanced load, you are able to have a balance

generator current with the node current almost negligible.
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Experimental Performance of PMSG based
DG set under 3P4W Non-linear loads

S nonlinear balanced load () v:as and i:o(b) vias and izs(c) v:es and ics (d)
NPTEL Vass and din(i) V229 and izx(7) V208 and fcx () THD of vt (£) THD of i:x(5) 206
THD of iza

The voltage THD is 3.6 percent and where the generator current THD 3 percent where
the load current THD 38.5 percent like.
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Dynamic Performance under 3P4W Non-
linear loads

= Dynamic performance PMSG based DG set under 3P4W non-linear loads () Vs Lnts
NPTEL and Iy () Vo, o fps 200 i (€) Vi, Il 200 1 (0) Vst ipnlcn 20 iy 207
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POWER QUALITY IMPROVEMENTS
IN SyRG BASED DG SETS

MPTEL 208

Now, coming to the power quality improvement in synchronous reluctance based DG

set.

(Refer Slide Time: 14:02)

SyRG BASED DG
SETS

Synchronous reluctance machine has been used
for motoring purpose in limited number of
applications.

This machine has its potential unexplored in
standalone power generation. It can be used as a
generator similar to an induction generator with or
without excitation capacitor bank.

A DSTATCOM is used for voltage control and
power quality improvement

f) A diesel engine ruvat constant speed is used as
it prime mover. 209
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SyRG based DG set for 1P2W and
3P3W Loads)
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Control algorithms for SyRG based DG
sets

SRF Theory Based Control Algorithm for 1P2W
Loads o

PBT Based Control Algorithm for 3P3W Loads
ISCT Based Control Algorithm for 3P3W

S System with BESS

Composite Observer Based Control Algorithm
for 3P4W Loads

€

MPTEL

212

We have used here the synchronous reference frame theory for typical case of single
phase load and power balance theory for 3 phase 3 wire load.
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SRF Theory Based Control Algorithm for

1P2W Loads
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ISCT Based Control Algorithm for
3P3W Loads with BESS
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Simulated Performance of SyRG based
DG set under 1P2W Linear Loads

' The DG set is initially loaded with a single phase

load of 1 kW at lagging power factor of 0.8

connected between phases ‘a’ and ‘b'.

Then it subjected to a load of 3.4 kW att=2.5's.

216
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Simulated Performance of SyRG based
DG set under 1P2W Nonlinear Loads

" The system is loaded with a single phase
rectifier load connected between phases ‘@’
and b’
“ Initially system is subjected to a load of 1 kW
and then it is subjected to load of 3.6 kW at t
{a; =26s. '

NPTEL 218
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Simulated Performance of SyRG based
DG set under 3P3W Linear Loads

% Initially system is subjected to a inductive load

of 1.6 kW with lagging power factor of 0.8.

" Att=2.25s the set is subjected to load of 3.6
kW with lagging power factor 0.8.

[— "At t =245 s the system is subjected to

unbalanced load by removing load from phase

o
® .
NPTEL 220
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Simulated Performance of SyRG based
DG set under 3P3W Nonlinear Loads

%

NPTEL

% Initially system is subjected to a non-linear load
of 1 kW and then it is subjected to non-linear
load of 3.7 kW att =2.25 s.
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And this is the typically harmonic spectrum of load current is 24.44 percent, total
harmonic distortion where generator current is 4.13 percent and the terminal voltage
THD is only 0.19 percent.
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Simulated Performance of SyRG based DG
set with BESS under 3P3W Linear Loads

Initially system is subjected to a load of 1.2 kW
at 0.8 lagging power factor which is less than
80 % of generator rating so battery is taking a
charging current.

Att=225s aload of 3.6 kW is connected to
the system.

This load is almost equal to the rating of
generator so whole of the load power is drawn

- from the source and the battery current is

9 almost zero.

NPTEL 225
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Simulated Performance of SyRG based DG
set with BESS under 3P3W Nonlinear loads

# Initially system is subjected to a non-linear load
of 840 W then it is subjected to non-linear load
of 44 kWatt=23s.

= From t =2.5 s to 2.65, the system is subjected
to unbalanced load by removing load from

phase ‘a’.

221
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Experimental Performance of SyRG
based DG set under 1P2W Linear Loads

) ® @®
Steady state performance of SYRG based DG set under 1P2W mear load () ¥ies and 1)
Vius A0 146) Vs W0 1 (@) Vi W0 11 (€) Vi 0 11 (D) Vit 20 148 Vot A0 1y (B) Vi 230
and 1 (1) Vs 204 1

And this is the THD of load current 20.6 percent whereas the source current is 4.22
percent. And where the generator current THD 1.16 and the voltage THD 0.14 percent.
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Steady State Performance under 1P2W
Nonlinear Loads

® ® ®
Steady state performance of SYRG based DG set under 1P2W nonlmear loads (a) vus and
£/5) Ve 0 £(C) Ve 20 fc (&) Voot 20 i (€) Vot 300 s () Vi 20 . () Farmonic 231
Spectrum of v (h) Harmonic Spectnum of ) Harmonic Spectram of s
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Dynamic Performance of SyRG based
DG set under 1P2W nonlinear Loads
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Or (i) Pcand Qc

232
Experimental Performance of SyRG
based DG set under 3P3W Linear Loads
N Steady state performance of SYRG based DG set under 3P3W linear load (a) vies and iu(b)
MPTEL Vas and £:3(C) Vios and £ (d) Vias and /12 (€) Viss and izs () vie and iz (2) P: and Qs (h) Pz and 233
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Experimental Performance under 3P3W
Nonlinear Loads
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Dynamic Performance under 3P3W
Nonlinear Loads
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Experimental Performance of SyRG based
DG set with BESS under 3P3W Linear load
Less 80% of generator rating

(%

NPTEL

252, s waer | | 8024

@ © ®
Steady state performance of SyRG based DG set with BESS under 3P3W under balanced
linear load less than 80% of generator rating (a) P, and 0, (b) P; and 0, (c) P and 0; (d)
Peand O (€) Poc () Voo and Iye
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Experimental Performance with BESS
and Load more than generator rating
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Dynamic Performance under linear load
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Performance under Motoring Load
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Composite Observer Based Control
Algorithm for 3P4W Loads
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SYRG based DG sets for 3P4W Loads

‘Three phase
Lumear and

Balanced

And
Unbalanced
Loads

oo Vi Vil b by e o s f Vi
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Scahng Circuat

CP 1103 ADC

- Grnreer M

CP 1103 DAC

—
P —— |
£ Gate Driver Circuit

242

(Refer Slide Time: 22:27)

Simulated Performance of SyRG based
DG set under 3P4W Linear loads

Initially system is at no load and it is subjected

to a RL load of 3 kW at 0.8 lagging power
factoratt=23s.

| The system is subjected to unbalanced load by

" removing load from phase ‘a’att=2.45s.

243
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Simulated Performance of SyRG based
DG set under 3P4W Nonlinear loads

% Initially system is at no load and it is subjected

to a non-linear load of 3.7 kW att=2.3s.

= The system is subjected to unbalanced load

[— by removing load from phase ‘a’ at t = 25s.

¥
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And the THD of the load current is 37.76 percent, where the THD of your generator

current is 3.63 percent and terminal voltage THD 2.29 percent.
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Experimental Performance of SyRG based
DG set under 3P4W Unbalanced Linear

Loads
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Experimental Performance of SyRG based
DG set under 3P4W Non-linear loads

P18, .o 48| fo189. o 438 qam. w43 !zam. w43
b 1 A NN A AN A AN
o | N . /m S, A
(@) (b) (© (@)
T E—T E—y
& 1 ‘, 10 t’ 10 "I 10
alf @ || e | | W o=
|Uﬁ ” |'a" L] |Iﬁ:4 L ’.ﬁ‘h
() ® @ @)
Steady state performance of SYRG based DG set under 3P4W nonlinear balanced load (2)
Vass A0 ipe(b) V205 20d 1:5(C) Viop 20 iz (d) Vs 20d dce(e) Vias (£) THD of vi (g) THD of
i.4(h) THD of iz, 249




(Refer Slide Time: 23:35)

Dynamic Performance under 3P4W Nonlinear
loads
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Numerical Problems

251

Now, coming to the numerical problems.
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Q1. A 415V 75kVA synchronous machine based isolated diesel generator
(DG) system is integrated with a 660V battery through a VSI. This DG system
is controlled such that the load m system remains always between 80
and 100% of generator capamfﬁciency of the DG system.
If load is\ below 80%, the battery charging takes place; if the load is beyond
- 100%, discharging of the battery takes place; and 'ﬁn/b—et’w:en 80 and 100%
load, the battery remains in ﬂoatingcﬂdition. There is a load shidding
E:'\'z?vision if load increases mzs%. Calculate the watthgur rating and

weiffe current of the battery if at peak load (125%) a backup of 4 h is desired.
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Solution: Given that an isolated three-phase three-wire 415 V, 75

kVA diesel engine generating (DG) system based on synchronous

generator is connected with a 660 V battery at the DC side of a VSC.
lasaa Sgll

The watt-hour rating of the battery if at fol| load a<backup of 4 h is
desired is E = % of the full load x PH = 0.2 x 75 x4'= 75 kWh (since
ull

the battery is required to feed 25% of the-full load active power).

The battery current is I, =E/VbH =75000/(660 x 4)=28.41A.

—
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Q2. A 400V 50kVA PMSG based isolated diesel generator (DG) system is
integrated with a 720V battery through a VSI. This DG system is controlled
such that the load on the system remains always between 80 and 100% of
generator capacity to improve the efficiency of the DG system. If load is
below 80%, the battery charging takes place; if the load is beyond 100%,
discharging of the battery takes place; and in between 80 and 100% load,
T the battery remains in floating condition. Calculate the apparent power flow
;’_t_hrough the VSI if a 0.8 power factor linear load with (a) 50% of DG capacity
i}% of 50kW), (b) 85% of DG capacity, and (c) 110% of DG capacity is

NPTE

connected to the DG set.
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This is the typical system with the battery which provide the power leveling.
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Solution: Given that an isolated three-phase three-wire 415 V, 50 kVA diesel
engine generating (DG) system based on PMSg is connected with a 720 V
battery at the DC side of a VSC.

(a) The active power of load = 50% of capacity = 50 x 0.5 = 25 kW
Reactive power of load = Ptan® = 18.75 kVAR

Active power from DG set = 80% of capacity (for optimal fuel consumption) =
L 50"0.8=40kW

Active power through the VSC is Pyg, = Py, - P, = 40-25 = 15 KW (battery
7 gharging)
i eactive power through the VSC is Qg = 18.75 KVAR
~ Apparent Power = Syg = V( Pys/? + Qug;?) = 24.01 kVA
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(b) The active power of load = 85% of capacity = 50 x 0.85
=425 kW u =
Reactive power of load = P@WR

Active power from QG set = Equal to load (85% of capacity)

=425 kW
=_ Active power through the VSC is Pyg = 0 kW (battery is
floating) -

R Reactive power through the VSC is Qyg = 31.875 kVAR
%)  Avparent Power =Syg =[Py + Que’) = 31 875 KVA

N b

(Refer Slide Time: 27:01)

(c) The active power of load = 110% of capacity = M
=55kW T ‘
Reactive power of load = Ptan® = 41.25 kVAR

S

Active power from DG set = 100% of capacity (for optimal
fuel consumption) = 50 kW

L Active power through the VSC is Pg = Py, - P, =50 - 55 =
-5 kW (battery is discharging) =
] Reactive power through the VSC is Q5 = 41.25 KVAR
o Apparent Power = S = V( Pys? + Qug?) = 41.55 KVA

(Refer Slide Time: 27:22)



Q3 A three-phase 400 V, 22 kW, 50 Hz self-excited squirrel cage induction

machine used for diesel generation needs an excitation of 9 kVAR at no
load and 15 kVAR at a unity power factor full load. A self supporting PWM-
e s 1/
based VS| is used for meeting the reactive power requirements of this
=i
induction ge/n_eitgr. Considering fixed cwuaﬁuggual to no load

excitation VAR, calculate the reactive power flow and line current of the
b Sl oady,

Vsl jt (a) no load, (b) unity power factor full load (22 kW), (c) 0.9 Iagging
E.r‘fﬁ’wer factor full load (22 kW), and (d) 0.9 leading power factor full load (22

wrtelV).

(Refer Slide Time: 28:01)
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Sol: Given that a three-ph_zi§e self-excited 400 V, 22 kW, 50 Hz,
squirrel cage induction generator based G set needs the excitation of
9 kVAR at no load and 15 kVAR at a unity power factor full load.

The fixed capacitor kVAR rating is equal to no load excitation = Q. =
9kVAR.

(a) At no load:
The reactive power flow through the VS| is Qg = Q;-Q = 0 kVAR.

A’i) The line current of the VSl is |, = Qg /v3V; = 0/(v3x400) = 0 A.

MPTEL
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(b) For a unity power factor full load (22 kW):
The reactive power flow through the VS| is Qg = Qq - Q¢ = (15 - 9) kVAR
=6 kVAR.

The line current of the VSl is | = Qug/ 3V, = 6000/(3x400) = 8.66 A.

(c) For a 0.9 lagging power factor full load (22 kW):
Reactive power of load = Pjtan® = 10.65 kVAR

The reactive power flow through the VSl is Qg = Qp+ Qqaq = Q= (15 +
10.65 - 9) kVAR = 16.65 kVAR.

)T he line current of the VSl is I, = Qyg/V3V, = 22.69/(v3x400) = 24.04 A.

MPTEL
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(d) For a 0.9 leading power factor full load (22 kW):
Reactive power of load = Ptan® = 10.65 kVAR

The reactive power flow through the VSI is Qug = Q; +
Qeag = Qc = (15 = 10.65 - 9) VAR = — 465 kVAR.

The negative sign denotes that the VS| has to provide lagging
reactive power to maintain unity power factor.
o -

The line current of the VSl is /; = st¢\3vs/= 4650/(v3x400) =
6.71A. «c

(Refer Slide Time: 29:39)

Q4 In the previous question, if a fixed capacitor bank is
used for redu&(gﬁe rating of the VS| andﬁe’V_SIu/_s_e_d
only for smoogcontrol of voltage at rated value, then
calculate calculate the IﬂAR rating and_lin/e current of Eg
VSl at (a) /unity power factor full load (ZZJ(W), (b) 0.9 lagging
power factor full load (22 kW), and (c) 0.9 leading power
factor full load (2ETW) i '

S}

NPTEL
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This is the typical system.
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In a reduced rating VSI-based voltage regulator, as the VS| can
work in leading and lagging reactive power modes depending on
the extent of load, its rating can be reduced by using an appropriate
rating AC capacitor at the induction generator terminals to cover
total range of the operation.

In most of the cases, half the required rating (other than no load)
can be selected as the rating of the VSI and full load required
reactive power rating is selected as the rating of the AC capacitor.

At no load, the VSI works as an inductor and at full load it works as
a capacitor.
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(a) For a unity power factor full load (22 kW):
The kVAR rating of the DSTATCOM is Qg = (Qq ~Qp)2 = (15

~

-9)12 = 3KVAR. - }
Since the capacitor rating is Qc = Qg + (Qq~Qy)2 = 9 + (15
-9)2=9+3=12kVAR. = =

At no load the VSI is to provide 3 kVAR lagging reactive power
and at full load the VS is to provide 3 kVAR leading reactive
power to the diesel generator system =

a The line current of the VSl is fg; = Qg V3V, = 3092/1\"3x400) =
NPTEL 4 33A. & . .

(Refer Slide Time: 31:01)

(b) For a 0.9 lagging power factor full load (22 kW)
Reactive power of load = Ptan® = 10.65 kVAR

o —

The kVAR rating of the VSl is Qg = (Qq+ Quag=Qo)/2 = (15 + 10.65 - 9)2
=8.325kVAR. o
The line current of the VSl is g = QVS,/\ki VS} 8325/(3x400) = 12.02 A.

- > /—~ BT ——

(c) For a 0.9 leading power factor full load (22 kW)
—— Reactive power of Io/ad =Ptan® = 10.65 kVAR

~The KVAR rating ofthe VS1is Qys = (Qy+ Qg Q2= (15 - 1065 - 9)2:2

{% 2.335}1/\ i
wrizThe Tine current of the VSl is kg = QVSI&S VD= 2325/(13+400) = 3.35A.
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Summary

Conventional SG based DG Set

The harmonics of the source voltage and
current could be kept within limits of IEEE-519
standard under highly nonlinear loads.

The power factor of source has been
maintained at unity by VSC under different
loading conditions.

The unity power factor operation has been able
~ to reduce the de-rating of conventional SG
‘9 based DG set.
270

So, with this, we like to summarize, the power quality improvement in DG set. We
discussed conventional synchronous generator based DG set. The harmonics of the
source voltage or generator voltage and the current are kept within the limit of IEEE 519
standard under highly non-linear load, and, the power factor of the source has been

maintained at unity by voltage source converter operating under different conditions.

(Refer Slide Time: 32:06)

Summary

SEIG based DG Set

There has been slightly variation in
frequency of supply with load due to
change in slip of S/ElG.

The main challenge in this generator is
variation in frequency with the variation in
R load due to variation in slip.

PN
']
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Now, coming to self excited induction generator based DG set. There has been a slightly

variation in the frequency of the supply with the load due to changing of the slip in the



self excited induction generator. The main challenge in this generator is to variation

frequency with variation of load due to variation in slip.

(Refer Slide Time: 32:25)

Summary

PMSG based DG Set

FrequencyGf\supply could be maintained at
50 Hz with slight variation of +0.4 with the
help of variable frequency induction motor
drive used as prototype of diesel engine.

It has been observed that PMSG based DG

set gives very smaller variation in supply
frequency and terminal voltage under
different loading conditions as compared to
%} conventional SG , SEIG and SyRG based
o DG sets. -

In case of permanent synchronous generator based DG set the frequency of supply could
be maintained 50 percent with slight variation of plus minus 0.4 with the help of variable
frequency drive used as a prototype. It has been observed that the PMSG based set DG
set give the very smaller variation in the supply frequency and the terminal voltage under
different loading conditions as compared to conventional synchronous, SEIG and

synchro nous generator set.
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Summary

SYRG based DG Set

It gives very small variation supply frequency
under different loads unlike SEIG.

The variation is terminal voltage is also small.
The main disadvantage of this generator is
that it requires heavy excitation curren
compared to SEIG. So, the size of this
generator is largest among conventional SG,
SEIG and PMSQ of the same rating

273

Coming to synchronous reluctance generator set it give the very small variation in supply
frequency under different loads unlike SEIG. And the variation is in terminal voltage is
also small. And the main disadvantage of this generator is that it requires a heavy
excitation current as compared to self excitation. So, the size of the generator is larger
among the conventional synchronous generators, self excitation and PMSG of same

rating.
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These are the some of the references which we referred for typically for this power

quality improvement of DG set and typically for different generators.

Thank you.



