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Welcome to the course on power quality. We will discuss today the Power Quality
Improvement in Diesel Generator Set Based Power Supply System with the outline that
will introduce the power quality improvement in conventional synchronous generator-
based diesel generator set and power quality improvement in self excited induction
generator based DG set. And power quality improvement in permanent synchronous
generator based diesel generator set and the power quality improvement in synchronous

reluctance based DG set.
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Introduction

NPTEL

A diesel generating set is used to furnish back-
up electric power in the event of commercial
power failure, so it is kept on stand-by for long
periods of time.

The most commonly used electric machine in DG
sets is wound field type conventional
synchronous generator.

This generator requires separate excitation
system so the system requires reasonable
maintenance. There are copper losses in the
rotor so the efficiency is also low.

Coming to introduction. A diesel generating set is used to furnish backup electric power
to the event of commercial power failure, so it is kept on stand-by for long periods of
time. The most commonly used electrical machines in DG sets is wound field type
conventional synchronous generator. This generator requires separate excitations. So, the

system requires reasonable maintenance and there are copper losses in the rotor so the

efficiency is also low.
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Continued..........

Power quality improvement of DG set is
analyzed with following generators

Conventional wound field synchronous
generator (SG)

Self Excited Induction Generator (SEIG)

Permanent magnet synchronous generator
(PMSG)

Synchronous reluctance generator (SyRG)




And power quality improvement of DG set is analyzed with the following generator with
conventional wound field synchronous generator, with self-excited induction generator,

with permanent synchronous generator, and synchronous reluctance generator.
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Continued..........

Wound Field Synchronous Generator (SG)

The most commonly used generator for DG set
based supply system is wound field
synchronous generator with automatic voltage
regulator(AVR).

But main problem with synchronous generator
is that it need separate excitation unit which
increases the maintenance cost and reliability
of power supply.

)

Well, coming to the wound field synchronous generator. The most commonly used
generator for DG sets supply system is wound field synchronous generator with
automatic voltage regulator, but the main problem is synchronous generator is that the

need separate excitation unit which increases maintenance and cost and reliability of the

supply.
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Continued..........

Wound Field Synchronous Generator (SG)

The advantage of self excited synchronous
generator is that it does draw any reactive
power as in case of induction generator.

Has problem of hunting

And the advantage of self excited synchronous generator is that it does not draw any

reactive power in case of as in generator. It has the problem of hunting.
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Continued..........

Self Excited Induction Generator (SEIG)

SEIG has rugged construction, less maintenance, no
separate source of excitation is required, easy availability,
no hunting, etc .

SEIG requires separate excitation capacitor bank.

The voltage and frequency regulation are the main
[ challenges of SEIG.

And self excited induction generator has rugged construction, less maintenance, and no
separate source of excitation is required, so, easy availability, and no hunting
phenomena. The Self Excited induction generator requires separate excitation capacitor
bank. Voltage and frequency regulation are main challenge of the self excited induction

generator.
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Continued..........

Permanent Magnet Synchronous Generator
(PMSG)

Construction of PMSG is simple and robust.

PMSG are brushless type. PMSG does not
require the field winding and DC supply
source.

Voltage regulation is main challenge
because field excitation is constant.
N However, it has been observed that PMSG
f) with capacitors has a voltage compensation
function. 8

Coming to permanent magnet synchronous generator. The construction of PMSG is
simple and robust. The permanent generators are brushless type and does not require the
field winding and DC supply source. Voltage regulation is the main challenge, because
the field excitation is constant. However, it has been observed that PMSG with capacitor

has the voltage compensation function.
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Continued..........

Synchronous Reluctance Generator (SyRG)
SyRG has rugged construction, less
maintenance, no separate source of
excitation is required, no hunting, etc .
lts frequency remains fixed if speed of prime
mover is kept fixed.

SYRG requires separate excitation capacitor
bank like SEIG.

. Its size is more as compared to conventional

*f) generator of similar rating.

And, the synchronous reluctance generator has rugged construction, less maintenance,

and no separate source for excitation is required, and its frequency remains fixed, if the



speed of prime mover is fixed. The synchronous reluctance generator requires separate
excitation capacitor like SEIG. Its size is more as compared to conventional generator of

same rating.
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Continued..........

Synchronous Reluctance Generator (SyRG)
It requires large excitation current.

The voltage regulation is the main challenge
of SyRG.

NPTEL 10

It requires large excitation current and voltage regulation is the main challenge of

synchro nous reluctance generator.
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State of Art

Most of research work on DG sets has been
focused on excitation control and voltage
regulation of wound field synchronous
generator.

Some researchers the use of variable speed
PMSG for improvement of power quality and
enhancement of fuel efficiency of DG sets.

Earlier an electronic converters is used with a
central DC bus to increase efficiency of
%} internal-combustion engine (ICE) for feeding a
variable load.

Most of the research work on DG sets have been focused on excitation control and

voltage regulation of wound field synchronous generator. Some researchers have used



the variable speed permanent magnet for improvement of power quality and
enhancement of fuel efficiency of DG set. Earlier an electronics controller is used with
central DC bus to increase efficiency of internal-combustion engine for feeding the
variable load.
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Continued..........

The steady-state performance of a standalone
permanent magnet synchronous generator
driven by a diesel engine with a fixed
capacitor-thyristor controlled reactor scheme
has been used to maintain the load voltage and
frequency constant under varying load
conditions.

L= Self excited SyRG(Synchronous Reluctance
Generator) has been reported in the literature

- as good alternative to self excited |G due to its

ﬂ increased efficiency, low maintenance, rugged

B construction and constant frequency operation. 12

The steady-state performance of a standalone permanent magnet generator driven by
diesel engine with a fixed capacitor-thyristor controlled reactor scheme has been used to
maintain the load voltage and frequency constant under varying condition. The self-
excited synchronous generator has been reported in the literature as good alternative to
self excited induction generator, due to its increased efficiency, low maintenance and

rugged construction with constant frequency operation.
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OBJECTIVES

Unity power factor operation and power quality
improvement of wound field synchronous
generator based set using three-leg and four-
leg VSC.
Power quality improvement and voltage
control of SEIG, PMSG and SyRG based DG
sets using STATCOM.
Load compensation of SG, SEIG, PMSG and
- SYRG based DG sets using battery energy
’f} storage system (BESS).
NPTEL 13

Now, coming to the objectives. The unity power factor operation and power quality
improvement of wound field synchronous generator-based set using three-leg and four-
leg voltage source converter. The power quality improvement and voltage control of self
excited induction generator, permanent synchronous reluctance generator using static
compensators. Load compensation of synchronous generator self exciting permanent
generator and synchronous reluctance-based DG sets using the battery energy storage

system.
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A typical DG set




Well, this is the typical example of diesel generating set.
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Applications of DG sets

5
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Marine Application




(Refer Slide Time: 04:37)

Military Application
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Salient DG for Bank and Insurance
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High performance Data Centers

A leading data center in the southern city of Shenzhen is
. using 17 C2500D5A PowerBox containerized generator sets
i%3 to meet its standby power requirement - the largest

wie. PowerBox order Cummins Power Generation China has
fulfillad
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Many More Applications.........

»Sales infrastructure

»Agriculture-food and pharmaceutical industries

»Healthcare:  Hospitals, clinics and
retirement homes

»Water treatment facilities
» Transportation and logistics

] »Constructions sites

MPTEL
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Classification of DG sets based
supply systems

On the basis of connectivity
Grid Connected DG sets
Standalone DG sets

On the basis of generators used

Conventional wound field synchronous
P generator (SG) based DG set

. Self excited induction generator(SEIG) based
;9 DG set

This is the classification of DG sets based supply systems.
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Classification of DG sets based
supply systems

On the basis of generators used

Permanent magnet synchronous generator
(PMSG) based DG set

Synchronous Reluctance Generator (SyRG)
based DG set

Doubly fed induction generator (DFIG) based
DG set

NPTEL

This is the classification of DG sets based supply systems.
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Continued..........

On the basis of speed
Fixed speed
Variable speed

On the basis of load

e Single phase

o~ Three phase

This is the classification of DG sets based supply systems.
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Configurations of DG sets feeding
single-phase two wire (1P2W) loads

Linear and!
Nonlinear

Diesel ~ >
- — 7
Single
(i) phase

b A Loads

o Womd Field®_» |
Synch. Generator L
>

¢ . Vs
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] o STATCOM

E\ '\* STATCOM

NPTRL SG based DG set SEIG based DG set 24

These are the configurations of SG and SEIG based DG sets feeding single phase two
wire (1P2W) loads.
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Continued..........
Configuration of for single-phase two wire loads
Diesel e Diesel — >
Single i Single
T phase
Lincar and |[Lincar and|
Noalinear, c Nonlinear'
Loads L Loads
1>
Ak - SILLE
P b A
Le
0 -
3‘” STATCOM SN
- PMSG based DGset  SyRG based DG set 5

These are the configurations of PMSG and SyRG based DG sets feeding single phase
two wire (1P2W) loads.
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Configurations of DG sets feeding Three-phase
Three-Wire (3P3W) loads
T ; 1l .. e "
i A T !' Vs.-i (& 17
haag salaad
TS STATCOM g
NPTEL SG based DG set SEIG based DG set 2%

These are the configurations of SG and SEIG based DG sets feeding Three phase Three
wire (3P3W) loads.
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Continued..........
! 1 v
I T leed 28 i
_EE.S_S- STATCOM ESS  sTATCOM
4 PMSG based DG set SYRG based DG set "

These are the configurations of PMSG and SyRG based DG sets feeding Three phase
Three wire (3P3W) loads.
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Configurations of DG sets feeding Three phase Four-Wire
loads
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These are the configurations of SG and SEIG based DG sets feeding Three phase Four
wire (3P4W) loads.
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These are the configurations of PMSG and SyRG based DG sets feeding Three phase
Four wire (3P4W) loads.
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Design of DG set based supply
systems

Selection of Generator rating

230V, 3.7 kW, 50 Hz, 4 poles are used for

ease of implementation with power quality

improvement features.

30

Now, coming to the design part of the DG sets. We have taken a case study that has 3.7

kW, 230 V, 50 Hz, 4 pole generator set is used for the power quality improvement
features.
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Design of DG set based supply
systems

Generators

Selected rating

Parameters of the generator

Wound
field SG

Three phase, 5 kVA, 400V,

50 Hz, 4 poles, star
connected

R;=0.163W, L,=0.2 mH,
Lng=84mH, L, =0.9 mH

Three phase, 3.7 kW, 230 V,

R, = 0.394W, L,= 2 mH,

SEIG  [145A50Hz, 4 poles, star  |R, =048 WL =25mH
connected Ln=76.6 mH
Three phase, 3.7 kW, 230 V, X,=46690 X.=5573Q.
FR PMSG |13A, 50 Hz, 4 poles, star R‘:: 027470 9 '
connected
Three phase, 3.7 kW, 230V, (X,=22.51Q, X, =547Q, R,=
SyRG |22.7A, 50 Hz, 4 poles, star  |0.188 Q
L connected
NPTEL 31

These are the parameters and selected rating of all four machine based DG sets.
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Continued..........

© Selection of Diesel Engine

A5 hp, 1500 rpm internal combustion diesel

engine is used as prime mover of the DG set.

Speed
Multipli
TPD | [Throtte o
= (Controller® Actuator ¥ Engine Power
T Reference
Speed Torque

NPTEL Speed 32
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Continued..........

Selection of DC Link Capacitor

| -
E Cdc[Vdc- i Vd

cmin

) =3 (al)t

Considering Vipin = 40£JV/\[dcj 395V, V=
132.79V,[1=10A, t=750ms,a=12

The calculated value of Cy, is 1793 uF and it

’9 is selected as 1650 pF.

NPTEL

33
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Continued..........

Selection of Interfacing Inductors

L:ﬁmm.
" Nafi

spr

Considering m=1, V4, =400 V, a=12, i,,= 1.5

A of rated VSC current and £, = 10 kHz.

The value of L; is obtained as 3.2 mH. A round
S

&) off value of 3.5 mH s used in this work.

34
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Continued..........

MPTEL

Selection of DC link battery voltage
Ve 2 (242/3m)V,

P v
Assuming m to be 1, the DC link voltage is
obtained as i’@V forV, (230 V)and itis

-
-

For a nominal battery voltage of 420V, 35 cell

units of 12V, 7Ah are connected in series.
3%
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Continued..........

Selection of Excitation Capacitors

c=qleph2 )
where V is rms phase voltage.

SEIG of 3.7 kW require

T

SYRG of 3.7 kW requires a 6.3 VAR at no

=N

load to maintain line voltage at 220V.

37
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POWER QUALITY
IMPROVEMENTS IN
CONVENTIONAL SG BASED
DG SET

38

Now, coming to power quality improvement in conventional synchronous generator-
based DG set.
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CONVENTIONAL SG BASED DG SET WITH
SINGLE PHASE TWO WIRE LOAD (1P2W)

Single phase
Linear and
Nonlmear,

Loads

IAAA22R]

Scalmg Circust

/ g
I R
AR 4 CP 1104 ADC
i | dSPACE

Digital 10

NPTEL 39

This is the typical configuration of conventional SG based DG set with 1-Phase two wire
load (1P2W).
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CONVENTIONAL SG BASED DG SET WITH
DSTATCOM (Battery Supported)

40

This is the typical configuration of conventional SG based DG set with battery supported
DSTATCOM.
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CONVENTIONAL SG BASED DG SET
WITH DSTATCOM (Self Supported)

-

Single phase
Three phase
Linear and
Noulmear
Loads

v

i Vi o e
Yy ¥

Scaling Curcunt

CP 1104 ADC
dSPACE

Digital 1O

This is the typical configuration of conventional SG based DG set with self supported
DSTATCOM.
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Control algorithms verified experimentally

for SG based DG set
Decoupled  ADALINE Based Control

Algorithm for 1P2W configuration with self
Supported

Composite Observer based Control Algorithm
for 3P3W Loads with BESS

e

Adaptive Theory Based Notch Filter Control
&) Algorithm for 3P4W Loads

NPTEL 8

These are the control algorithms which has been verified experimentally for the control

of conventional SG based DG sets.
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Decoupled ADALINE Based Control
Algorithm for 1P2W Confugurations
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P [. 17
7 b
o i
WPTEL 4

This is the block diagram of decoupled ADALINE based control algorithm for 1P2W

configurations.
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Continued......

Estimation of Instantaneous Phase Voltages
Y, 2 1}
v, =% 1 1 [:”}
v,| |1 2

The amplitude of phase voltages 7 - \li(v +v 4+ )

" Estimation of In-Phase Unit-Templates

NpEL Ugp = VeVt Upp = Vst/Vs, Ugp = VeVi 45
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Continued........

Estimation of Amplitude of Fundamental of Active Power
Component of Load Current
W, )=, (n=1) i, ()=, (n = Dt ), (),
W, ) = W, (n=1) i () =W, (1= D ), (),
. W)=, (n= 1)+ i, ()=, (n =D ), ),
where h is called the coefficient of convergence and its value

’9 can vary from 0.01 to 1 depending of the rate of convergence
MPTEL 46
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Continued.......

Final weight vector , W, (n)+W,(n)+W_(n)

DC Link Voltage PI Controller
[loss (n) Iloss (n o 1) 2 Kpdv {Vdcerr (n)_ Vzlverr (n A 1)} + Kichdcerr (n)

.~ Where, Ky, and Ky are proportional and integral controller
% ; ; S
wis, Parameters respectively and Vi, is error in dc link voltage. .

(Refer Slide Time: 18:59)

Continued........

Estimation of Amplitude of Refer%e Source Currents
pr = Wp(n)+ [,.(n)
e e

Instantaneous Reference Source Currents

* * *
—_ =] % i =] % &k
Isa =1 sp uap > Isb =1 p ubp ’ lsc =1 p ucp

>

NPTEL 48
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Simulated Performance of SG based
DG set under 1P2W Linear Loads

= The system is loaded with a single phase load

connected between phases ‘b"and ‘c’.

% Initially system is subjected to a load of 1 kW
and then it is subjected to load of 4.2 kW at t
=2.25s. The load is removed att = 2.45 s.

F O

WPFEL 49
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Continued......
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This is the simulated performance of SG based DG sets under 1P2W linear loads.
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Simulated Performance of SG based
DG set under 1P2W Nonlinear Loads

= The system is subjected to a load of 1 kW and
then it is subjected to load of 4.2 kW at t =2.25

s between phases ‘b"and ‘c’.

% The generator is unloaded att=245s.

S
7
§y
¥

NPTEL 51
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This is the simulated performance of SG based DG sets under 1P2W non-linear loads.
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Continued......

— (a) (b) (©)
Harmonic spectra of (a) phase voltage (v,,), (b)
source current (i;) and (c) load current (i,) for non-
linear load

53

And these are the harmonic spectrum. The load current have a quite high THD, but you
can see the generator current THD is quite low as well as voltage THD is also quite low,
at the point of common coupling. But if you do not put this compensator certainly, the

load currents will become your generator current.
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Composite Observer based Control
Algorithm for 3P3W configuration with BESS

Fundamental Signal Extraction of phase ‘a’
=

%‘m

phase ‘b’
—_— ‘"'q‘
iz.| Fundamental Signal Extraction of %
W phase ‘¢’ /
= — $ 8 S S S S
I:’ Tty
£
NPTEL 54

This is another control algorithm.
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Continued......

Estimation of Instantaneous Phase Voltages
v, 2 1
v, =§-1 1 E#}
-1 2]

v
S

The amplitude of phase voltages

b, .
T— V,= =2+ +92
t q:;( sa sb ¢
1 Estimation of In-Phase Unit-Templates
(%
NPTEL Ugp =V Vi, Upp = ViV, Ugp = Vs/Vy

55
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Continued......

Estimation of Active Power Component of Reference Source Current

56




(Refer Slide Time: 21:48)

Continued......

Error signal u, = u - y;; U is input signal, y;; is
fundamental component of extracted by the composite

observer.
For the proposed state observer, the optimum values of

— gain vectors d;; and d,, are 40 and -2 respectively for

extraction of fundamental component of load current.

ﬁ{/;;\§

NPTEL 57
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Continued........

Overall Amplitude of Fundamental component of load current

B ]MP+IMP+]LCP

Lp 3

Estimation of Amplitude of Reference Source Currents
I =1

— sp Ip

For load between 80% and 100% of generator rating

1,=08x1,,, ;Forloadless than 80% of generator rating

r rated '

’9 I,=1,,, ;Forload more than 100% of generator rating58

]
MPTEL
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Continued........

Instantaneous Reference Source Currents

‘ . .
= —=F % i o= * i = *
(Ol ST ol St e

==

MPTEL
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Simulated Performance of SG based
DG set under 3P3W Linear Loads

Initially the system is subjected to an inductive
load of 1 kW

Then it is subjected to load of 4.2 kW with
power factorof 0.8 att=2.25s.

[— At t =245 s the system is subjected to

unbalanced load by removing load from phase

’9 a.

NPTEL

60
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Continued......

vy

ia

Vi) fefB) o8 e A) 1 A) i) 1A

? 35 : i : i : ; : :
1 225 23 2135 24 245 25 25 26 265
NPTEL Time(Sec) 61

These are the simulated performance of SG based DG set under 3P3W linear loads.

(Refer Slide Time: 23:11)

Simulated Performance of SG based
DG set under 3P3W Nonlinear Loads

% The system is subjected to loads of 1kW and
4.2kW and finally unbalanced load.

NPTEL 62
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Continued......

vV

L YY) A A e (A) A (A (A ia)

i i i i i i i i
NPTEL 22 225 23 235 24 245 25 255 26 265 63
Tume(Sec)

These are the simulated performance of SG based DG set under 3P3W non-linear loads.
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Continued......
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;; current (i,) and (c) load current (j,) for non-linear load
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And these are harmonic the spectrum, when the load current THD is 24%; you are able

to get the generator current THD only typically of 3.64% and the voltage THD is
maintained 1.07%.
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Simulated Performance of SG based DG
set with BESS under 3P3W Linear Loads

Tnitially system is subjected to a load of T KW at 0.8 lagging
power factor and which is less than 80 % of generator rating
so battery is taking a charging current.

" Att=225saload of 4.2 kW is connected to the system .
This load is slightly more than 80% of rating of generator so
the generator supplies the load current and battery supplies
no current.

L "Att=245s aload of 6.2 kW is connected to the system.

This load is more than rating of the generator so battery is
~supplying the current to meet the excess load demand.

NPTEL 65
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U

o Ry R A g P S Y St
A

1 1 I i 1 1 1
2 225 23 235 24 245 25 255 26 265
Time(Sec)

These are the simulated performance of SG based DG set with BES system under 3P3W

linear loads.
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Simulated Performance of SG based DG
set with BESS under 3P3W Nonlinear loads

% Initially system is subjected to a non-linear load
of 1 kW and then it is subjected to non-linear
load of 5 kW att=23s.

- 1 From t =2.5 s to 2.65, the system is subjected

to unbalanced load by removing load from

'O
8 phase ‘a’.
MPTEL 67
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Continued......

These are the simulated performance of SG based DG set with BES system under 3P3W

non linear loads.
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Experimental Performance of SG based
DG set under 1P2W Linear Loads
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This is the experimental performance of SG based DG set under 1P2W linear loads.
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Dynamic performance under 1P2W Linear

Loads
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This is the experimental performance of SG based DG set under dynamic condition with
1P2W linear loads.
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Experimental Performance of SG based
DG set under 1P2W Nonlinear Loads
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This is the experimental performance of SG based DG set under 1P2W non-linear loads.
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Experimental Performance under 3P3W
Linear Loads
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This is the experimental performance of SG based DG set under 3P3W linear loads.
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Experimental Performance under 3P3W
Non-Linear Loads
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This is the experimental performance of SG based DG set under 3P3W non-linear loads.
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Dynamic Performance under 3P3W

Nonlinear Loads
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This is the experimental performance of SG based DG set under dynamic condition with
3P3W linear loads.
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Experimental Performance with BESS under
3P3W Linear loads

4628 we 496w

v 1844,

(©)
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This is the experimental performance of SG based DG with BESS under 3P3W linear

loads.
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Load more than generator rating
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This is the experimental performance of SG based DG set under load more than
generator rating.
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Load between 80% to 100 % of Generator
Rating
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This is the experimental performance of SG based DG set under load between 80% to
100% generator rating.
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Dynamic Performance under linear load
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This is the experimental performance of SG based DG set (with BESS) under dynamic

condition with 3P3W linear loads.
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Performance under Motoring Load
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This is the experimental performance of SG based DG set under motoring loads.
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SG based DG sets for 3P4W Loads

Three phase
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Nonlmear
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Now, coming to another configuration. This is the circuit configuration of SG based DG
sets for 3P4W loads.
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Adaptive Theory Based Notch Filter Control
Algorithm for 3P4W Loads

Estimation of fundamental active power
component of load current phase-‘a’

- Estimation of active power component
of load current phase-‘b”
N
:l 9
NPTEL 82

This is the control algorithm based on adaptive theory based notch filter controller.
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Continued......

Estimation of Instantaneous Phase Voltages
v, 2 1
v, :% S E”}
-1 2™

»
‘!(

The amplitude of phase voltages - \g (2 +3 +12)

" Estimation of In-Phase Unit-Templates

NFEL Ugp = Vsl Vi, Upp = VsrfVy, U = ViV &
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Continued......

Estimation of Fundamental of Active Power Components of
the Load Current with ANF

i;(1)+k3a):].il(1)dt =oe(t)  O=-Yi,(f)oe(r)

e(t)=i,(1)- ) ii;(0)

where, w is estimated value (L)fI instantaneous fundamental
frequency, and g are real and positive numbers which
determine accuracy and convergence speed of ANF. e(t) is
error between input and its estimated signal.

a and g giving satisfactory performance of the system which
“TEare 0.375 and 10000 respectively. 84
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Continued........

Overall Amplitude of Fundamental component of load current

I =1Lap+llbp+lw
* 3

DC Link Voltage PI Controller
o I[oss (I’I) = Iloss (n _1)+ Kpdc {Vdrerr (n)—Vdcen (n-])}+ Kidtp:icerr (n)

. Where, Ky and Ky are proportional and integral controller
Uk : : o
wis, Parameters respectively and Vi, is error in dc link voltage. .
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Continued........

Estimation of Amplitude %eference Source Currents
Isp - ]Lp (”) i ][055 (n)

=

Instantaneous Reference Source Currents
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Continued.......

Neutral Current Compensation

The neutral terminal of load is then connected at
neutral point of RC filter and fourth leg of VSC through
an inductor.

Fourth leg of VSC is used for source neutral current
compensation.

It is therefore desired that no current should flow from
the neutral point of RC filter to load neutral terminal.

This compensation is achieved by gating pulses of
fourth leg of VSC using error signal which is a
difference of source neutral current (i,) and its
reference value (i.e. /'y, = 0).

87
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Simulated Performance of SG based
DG set under 3P4W Linear loads

5

Initially system is at no load and it is subjected
to a RL load of 5 kW at 0.8 lagging power

factoratt=2.3s.

The system is subjected to unbalanced load at
t=25s.

NPTEL

88
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Continued......
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This is the simulated performance of SG based DG set under 3P4W linear loads.
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Simulated Performance of SG based
DG set with BESS under 3P4W
_ Nonlinear loads

% Initially system is subjected to no load and then
att=23sitis subjected to a non-linear load of
5 kW.

— © The load is made unbalanced att=2.5s.

NPTEL 90




(Refer Slide Time: 31:29)

Continued......
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This is the simulated performance of SG based DG set under 3P4W non-linear loads.

(Refer Slide Time: 31:52)

Continued......
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And you can see the THD of the load current is 31.9%, where the THD of your generator
current is only 4.2% and it is a 1.8 % THD of the terminal voltage PCC voltage of the

generator.
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Experimental Performance of SG
based DG set under 3P4W Nonlinear

loads

e
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This is the experimental performance of SG based DG set under 3P4W nonlinear loads.
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Dynamic Performance under 3P4W Non-
linear loads
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This is the experimental performance of SG based DG set under 3P4W nonlinear loads

under dynamic conditions.
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POWER QUALITY IMPROVEMENT IN

SELF EXCITED INDUCTION

GENERATOR (SEIG) BASED DG SETS

9
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SEIG BASED DG SETS

I/‘-

MPTEL

A DSTATCOM is used for voltage control and

power quality improyement
A diesel engine r@ét constant speed is used

as prime mover.

A fixed capacitor bank connected at terminals

of SEIG is used as source of excitation.

9%

Now, coming to now performance of your power quality improvement in self excited

induction generator, in based DG set. In self excited induction generator if you look into,

we can use the DSTATCOM voltage. Here, we have to regulate the voltage also voltage

control, because there is no other way as well as we have to improve the power quality

by load balancing harmonic elimination and diesel engine runs at typically at constant

speed. And the fixed capacitor bank is connected at the terminal of SEIG.
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SEIG based DG sets with 1P2W Loads
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Hyperbolic Tangent Function based LMS Control Algorithm for
1P2W Loads o
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Continued......

Estimation of Instantaneous Phase Voltages

v, { 2 1
‘lsb =1 _l 1 1:1 Mb}
3 v,
l'“ [_1 _2 KV

2
The amplitude of phase voltages 7 = ‘—(vl +V, 4V )
t \J3 sa si s¢
—_— / gp—

Estimation of In-Phase Unit-Templates

-
&)
NPTEL Ugp = Vs Vs Upp = Vse/Vs, Ugp = Ve /Vy 99
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Continued......

Estimation of Active Power Component of Load Current
e(n) =iy (n) = {W, (n)xu, (n);
W, (m) =W, (n=1)+{p(n)*e(n)*u,(n)}

where, u is the leaming rate which depends upon the

operating parameters and e(n) is error signal.

>
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Continued.......

Final weight vector p,  _ W, () + W, () + W.(n) .~
?
3

DC Link Voltage PI Controller
Iioxx ( n) > [Io&s (” = 1)+ Kpdc {Vdcen' (”) _Vdrerr (" = 1)} + K{dcrdcerr ()1)

where, Koy, and K are proportional and integral controller

parameters respectively and V., is error in dc link voltage.

101
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Continued........

Estimation of amplitude of active power component of

Reference Source Currents
I -W @m)+I(n)

p
Instantaneous Reference Source Currents
1.0 b= %0 .1 =]
P p

- *u
sap 5 ap? “shp bp> “sep p e
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Continued......

Estimation of Reactive Power Component of Load Current
W, (n) =17, (n=1)+ {a(n)* ) a1, ()}
e(n) =i (n)= W, (n)xu,(n);

Final weight vector )= Wq(n)w;;(n)mq(n)

where W,q(n), Wiy(n) and W4(n) are weighted components of

% phase ‘@', phase ‘b’ and phase ‘c’ respectively.
NPTEL 103
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Continued.......

Computation of Learning Rate

Hose ()= o {1-1/ {1 +exp(7[e, . (n) e, (=D}
To meet the fast convergence the learing rate is at beginning is
kept at maximum (m,,, ). The optimal value of y,,, and g for
experiment are chosen as 0.6 and 10.
The output of the terminal voltage P! controller at the nth
sampling instant is given as, _
IqSTAT(n) - IqSTAT(n - 1) * va {Verr(n) = Verr(n - 1)} + Kivven(n)

,ﬁ
’9 where, K, and Kj,are parameters terminal voltage P! controller
7% and V,(n) is error in terminal voltage 104
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Continued........

Estimation of reactive component of Reference Source Currents

-
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Instantaneous reactive component of Reference Source Currents
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Simulated Performance of SEIG based
DG set under 1P2W Linear Loads

=

The DG set is initially loaded with a single phase

load of 2.4 kW at lagging power factor of 0.8

connected between phases ‘b"and ‘c’.

Then it subjected to a load of 3.4 kW att=3.3 s.

M"rEL 106
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Continued......
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Simulated Performance of SEIG based
DG set under 1P2W Nonlinear Load

= Single phase load is connected between phase
‘b’and ‘¢

% Initially system is subjected to a load of 1 kW
and then it is subjected to load of 3.6 kW at t

| - =3.3s.

NPTEL 108
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Continued......
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And here, the THD of the load is typically of 28%, but the THD of current generator
current is 3.73 % and you can call it that THD voltage of only 2.77 %.
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Experimental Performance of SEIG based
DG set under 1P2W Linear Loads
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Steady State Performance under 1P2W
Nonlinear Loads

*

NPTEL
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Dynamic Performance of SEIG based DG
set under 1P2W Nonlinear Loads
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Dynamic performance of SEIG based DG set under 1P2W nonlinear Loads (a) vsg, isa.is» and
e (b) Vi, deaips A0 iy (€) Vi, iz a0d iy

(b) Ch.1:500V/div, Ch.23 & 4:
20.0A/div. Time axis : 20 ms/div
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These are the dynamic performance of SEIG based DG set under 1P2W nonlinear loads
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SEIG based DG sets with 3P3W Loads with self
supported DC bus voltage
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SEIG based DG sets with 3P3W Loads battery

supported DC bus voltage
Single phase.
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Experimentally verified Control algorithms for SEIG
based DG sets

Improved linear sinusoidal tracer (ILST)
based Control Algorithm for 3P3W Loads with
self supported

Instantaneous ~ Symmetrical  Component

S
Theory (ISCT) based control algorithm for
3P3W Loads with BESS

PN
7

NPTEL 116




(Refer Slide Time: 38:31)

ILST based Control Algorithm for 3P3W Loads with self
supported DC bus voltage
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Estimation of Instantaneous Phase Voltages

¥
v, =§ -1 1 {“"}
V.
v, | |-l =2

. )
The amplitude of phase voltages 7, = =(2, +1} +v} |
Estimation of In-Phase Unit-Templates

Ugp = VeVt Upp = Vst/Vs, Ugp = VeVi
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Continued......

Estimation of Active Power Component of Load Current

| twthytl,

p= 2
3

DC Link Voltage PI Controller

Iloss(n):]/oss(n 1)+K {Ldmr() Vd(err(n_l)} detVdferr()

where, K4 and Kjy are proportional and integral controller

M’Q parameters respectively and Vy, is error in dc link voltage. 1
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Continued........

Estimation of amplitude of active power component of

Reference Source Currents

=k (n)+1,w()

Instantaneous Reference Source Currents
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Continued......

Estimation of Reactive Power Component of Load Current

I Il,aq +1qu +1[.(q
g~ -‘

The output of the terminal voltage PI controller at the nth
sampling instant is given as,
—  losrarn) = lystar(n = 1) + Koy (Vern) = Ver{n = 1)} + Ki V()

’;j) where, K, and K;,are parameters terminal voltage Pl

wereL controller and V,(n) is error in terminal voltage 121
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Continued........

Estimation of reactive component of Reference Source Currents

/I:q = Lispia(n) = ()

=

Instantaneous reactive component of Reference Source Currents
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ISCT Based Control Algorithm for 3P3W Loads with BESS
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Continued......

1 This algorithm uses phase voltages (v, Vg, V), average load
power(P,4,) and source power factor angle(f) for estimation of

reference source currents

Estimation of Instantaneous Phase Voltages

v, 201
v
- v, =§ -1 1 {“"}
V.
v, | [ 2™

H:Q The amplitude of phase voltages - |2
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Continued......

Estimation Reference Source Current

¢ Pa 0B, #_ (st 0,V )P,

s s ;

L Y

i=ab.c

p Ot Camr ),

sc

S Z "Y:i
I 3}() 1=a.b.c
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Continued......

€

NPT

- q, _tang
The parameter b is givenby,  f=——=—+-
Bp, B

fis power factor angle of load

The parameter b is function of reactive power to be supplied by the
source which directly relates to the terminal voltage of the system.

So, b can be used to control the terminal voltage.

It can be generated using a Pl controller which fed with the

* Hterminal voltage error.
TEL 126
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Continued........

Output of terminal voltage P! controller ,
b(n) =b (n-1) + Koy (Ver{) = Verln - 1)} + Ky Verln)
where, K, and K;, gain parameters of Pl controller and V,,(n)

error voltage.

The terminal voltage error can be given as,

{fé) Verl) = Viedn) = Vi(n)

MPTEL 127
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Simulated Performance of SEIG based
DG set under 3P3W Linear Loads

Initially system is subjected to a inductive load of 2 kW

with lagging power factor of 0.8.
Att=2.25 s the set is subjected to load of 3.6 kW with

lagging power factor 0.8.

- At t =2.45 s the system is subjected to unbalanced

load by removing load from phase ‘a’.

NPTEL 128
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Continued......
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These are the simulated performance of the SEIG based DG set under 3P3W linear loads.
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Simulated Performance of SEIG based
DG set under 3P3W Non-linear Loads

% The system is initially subjected to a non-linear
load of 2 kW and then it is subjected to non-
linear load of 3.6 kW att=2.25s.

[E— | The system is subjected to an unbalanced load
from from t =2.45s to 2.65s.

NPTEL 130
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Continued......
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These are the simulated performance of the SEIG based DG set under 3P3W non-linear

loads.
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Continued......

Tene(5)

Pl
(a) (b) (c)
7~ Harmonic spectra of (a) phase voltage (v,,,), (b) source
{5 current (i;) and (c) load current (i) for non-linear load
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Here, we have a THD of the load; typically order of 19%, but the current THD in
generator is only 3.92 % where the voltage THD is only 2.79 %.
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Simulated Performance of SEIG based DG set
with BESS under 3P3W Linear Loads

u The system is initially subjected to a load of 1.2 kW at 0.8 lagglng
power factor which is less than 80 % of generator rating so battery is
taking a charging current.

» Att=2.25saload of 3.6 kW is connected to the system. This load is
almost equal to the rating of generator so whole of the load power is
drawn from the source and the battery current is almost zero.

n Att=24s aload of 4.4 kW is connected to the system. This load is
more than rating of the generator so battery is supplying the current
to meet the excess load demand.

1 Att=2.55 s system is subjected to unbalanced load by removing the

1% load from phase ‘a’. It is observed that the source current is still

writbalanced. 133
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2 2
Time(Sec)

These are the simulated performance of the SEIG based DG set with BESS under 3P3W

linear loads.
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Continued......
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Wave forms and harmonic spectra of (a) Line voltage (vs),
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NPTRL load current (i) for 3P3W non-linear load with BESS 137

Here, we have the THD of the load current, 20%, whereas, the THD of generator current

is 4 % where voltage THD is only 1%.
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Experimental Steady State Performance
under 3P3W Linear Loads

-

€) ¥ 20 1 () P: 208 0. (€)Y 208 s 1) Vi 208 s (¢) Vo 0 .
oK) Ve i ) Peamd Oc
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These are the experimental steady state performance under 3P3W linear loads.
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Experimental Performance under 3P3W
Non-Linear Loads
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Steady state performance of SEIG based DG set under 3P3W noalincar balanced load (a) vus
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izs(h) THD of igs
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These are the experimental steady state performance under 3P3W non-linear loads.
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Dynamic Performance under 3P3W Linear Loads
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These are the experimental dynamic performance under 3P3W linear loads.
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Experimental Performance of SEIG based DG set
with BESS under 3P3W Linear loads less 80 % of

Generator Rating . -
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,;;? Steady state performance of SEIG based DG set with BESS under 3P3W under balanced

') linear load less than 80% of generator rating (a) Py 2ad 0y (b) P and @: (c) P; and 0: (6)
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Experimental Performance with BESS
and Load more than generator rating

@ ® ]
Steady state performance of SEIG based DG set with BESS under 3P3W under balanced
linear load more than generator rating () P,and @, (b) P; and 0. (¢) Py and 0; (6) Peand
Qc (&) Poc () Vocand Ipe
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Load between 80% to 100 % of Generator
Rating
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Steady state performance of SEIG based DG set with BESS under 3P3W balanced linear
load between 80% and 100% of generator rating (a) P, and 0, (b) P and 0. (c) Py and O;
(d) Peand Qc (&) Poc (f) Vocand Jpe
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Dynamic Performance under linear load
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Dynamic performance of SEIG based DG set with BESS under 3P3W balanced linear loads
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These are the experimental dynamic performance under linear loads.
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Performance under Motoring Load
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{;;) and ica (b) Vie, izaizs and Li
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These are the experimental performance under motoring load.
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SEIG based DG sets with 3P4W Loads

MRS
4 .

bhbbibiey
Scaling Curcut
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Gate Driver Circust
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This is the circuit configuration of SEIG Based DG sets with 3P4W loads.
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Decoupled ADALINE Based Control
Algorithm for 3P4W System

147

This is control algorithms applied for the control of the DG sets.
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Continued......
Estimation of Instantaneous Phase Voltages 21
N 1 vsab
‘.xb :g —1 1 :
v, -1 22 Sbc/-
The amplitude of phase voltages
- F= Sl )
#~ " Estimation of In-Phase Unit-Templates
£
NPTRL Ugp = Ve/Vs, Upp = Vee/Vi, Ugp = VVy 148
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Continued.......
Final weight active power component
W, )+ W, (m) + W, (n)
B 3
DC Link Voltage PI Controller
E Ifox: (n) i Ix'ass (n & 1) 23 Kpdt {thelr (n) i Vdcen (ﬂ = 1 )} i Kldrrdcen (ﬂ)

. Where, K, and Kj, are proportional and integral controller
{6 . . o
wis, Parameters respectively and Vi, is error in dc link voltage. o
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Continued........

Estimation of amplitude of active power component of

Reference Source Currents
L, =W, m)+1,,(n)

P

_ Instantaneous Reference Source Currents

X 3% > B ¥ SN
';_ zmp—lsp Uy, zsbp-lsp ubp’lscp_[xp u,

150
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Continued......

Estimation of Reactive Power Component of Load Current
Waq(n)=Waq(n—l)+I]{im(n)—W;q(n—l)unq(n)}uaq(n), “
W,y )=, 1=1) -, ()=, 1=y () (), =

W, (n) =n;q(;z-1)+q{i[_,(n)-mq (n-Du, (n)},,{q(,,)/

Final weight vector W ()= W, (n)+ W, (n)+ W, (n)

q b}

J

.; where W,,(n), Wq(n) and W,(n) are weighted components of
151

win phase ‘a’, phase ‘b’ and phase ‘c’ respectively.
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Continued.......

=
4

(%

The output of the terminal voltage P! controller at the nth
sampling instant is given as,
quTAT(n)/: IqSTAT(” - 1) + va {Verr(n) B Verr(n = 1)} + Kivven(n)

—

where, K, and Kj,are parameters terminal voltage P! controller

and V,,(n) is error in terminal voltage

MFB“E 152
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Continued........

Estimation of reactive component of Reference Source
Currents Ly = Lspa(n) = W(n)

c

Instantaneous reactive component of Reference Source

Currents
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e

Estimation of Total Reference Source Currents
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Continued.......
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NPTEL

Neutral Current Compensation

The neutral terminal of load is then connected at neutral
point of RC filter and fourth leg of VSC through an
inductor.

Fourth leg of VSC is used for source neutral current
compensation.

It is therefore desired that no current should flow from
the neutral point of RC filter to load neutral terminal.

This compensation is achieved by gating pulses of fourth
leg of VSC using error signal which is a difference of
source neutral current (is,) and its reference value (i.e.
i'=0).
154
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Selected parameters
— Component Rating =
Prototype of Diesel Engine 7.5 hp variable frequency induction
motor drive
SEIG 3.7 kW, three phase, 230V, 50Hz,
1435 rpm, 4-pole,
VSsC Semikron’'s make, 25 kVA
DC Link Capacitor 165!
Interfacing Inductors /9 mH
Ripple Filter %
[r— DC link battery nomifal voltage of 420V, 35 cell
units of 12V, 7Ah
o Current Sensors LEM make LA-55P
' 39 Voltage sensors LEM make LV-25 P
Wik OSPACE dSPACE 1103 155
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Simulated Performance of SEIG based
DG set under 3P4W Linear loads

7 Initially system is at no load and then at t =
2.3s, it is subjected to a RL load of 3 kW at 0.8

lagging power factor.
— | The system is subjected to unbalanced load at
- t=245s.
B;;TEL 156
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These are the simulated performance of SEIG based DG set under 3WA4P linear loads.
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Simulated Performance of SEIG based
DG set under 3P4W Nonlinear loads

% The DG set is subjected to a nonlinear load of
3.7kWat 3.7 kW att = 2.3 s and then load is

made unbalancedt=2.5s.

%

NPTEL 158
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These are the simulated performance of SEIG based DG set under 3W4P non-linear

loads.
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Continued......
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Wave forms and harmonic spectra of (a) Line voltage (v),

7 (b) generator current (ig) (c) source current (is,) and (d) load
*’9 current (i, ;) for 3P4W nonlinear load
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Here, the load current THD is 28.8%, whereas, the generator current THD is 3.8% and

the point of common coupling voltage THD is only 3.2 %.
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Experimental Performance of SEIG
based DG set under 3P4W linear loads

£

“___ﬂ Steady state performance of SEIG based DG set under 3P4W linear unbalanced load (2)
NPTEL Vi 2 D) Vi 20 () Vo 00 e (6) Vo 00 ) Y 200 s (9) i 00 s (0) Vi 161
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Experimental Performance of SEIG
based DG set under 3P4W Non-linear
loads
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These are the experimental performance of SEIG based DG set under 3P4W non-linear

loads.
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Dynamic Performance under 3P4W Non-
linear loads
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These are the experimental dynamic performance under 3P4W non-linear loads.



