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Hello and welcome to a new session for this online course on Introduction to Embedded 

System Design. I am your instructor Dhananjay Gadre. Today we are going to look at a very 

different topic. Although we mentioned this topic in the first lecture, where we were talking 

about various ways of implementing the embedded computers and to revise that or to mention 

what we had repeat what we had mentioned, we had said that there are 3 ways of 

implementing an embed computer. 
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The first method is using a general general purpose computer plus processor, the second is to 

use an application application specific processor. For the first approach you might be using 

commonly available microprocessor such as 8086, 68000 and so on. For the second approach, 

we will be using a microcontroller which is what we are doing in this course. But we had 

mentioned a third approach and this is this was called single purpose computers, which 

means computers which are designed with only one objective in mind which is to solve the 

current problem at hand, it cannot do anything else. If you want to modify it, you will have to 

redesign everything.  



Usually the single purpose computers are implemented using digital logic. And it follows 

paradigm which we also showed how that paradigm of looking at the computational model 

applies to the general purpose processor, as well as the application specific processor. That 

paradigm included 2 building blocks. One was called the sequencer or the controller, and the 

second was called the data path.  

The sequencer decided which elements of the data path to be used for what computational 

tasks, the elements of data path would perform their tasks, process data as they are capable 

of, and convey the result or parts of the result to the sequencer to decide the next course of 

action. 

In this lecture here, I am going to show you a sample project implemented using such an 

approach. The heart of a single purpose computer is the finite state machine. This finite state 

machine is a computational model with which you can create sequences. It uses a concept 

called states and outputs and conditions of transition. 
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When a certain machine has characteristics of switching into other states in accordance with 

its inputs, past status, clock signals, these class of machines are called finite state machines, 

they are known by other terms also such as finite automata sequencer as we will be using that 

term often in this lecture or control path. 
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Now broadly, there are 2 types of finite state machines. One is called the MOORE machine 

here. The characteristics of this MOORE machine is that the machine output depends only on 

the current state. So, the representation of the states, outputs and the transition conditions are 

illustrated using a diagram called state diagram.  

So, here in this machine, there are 2 states, one is we could we could call it as 0, state 0 and 

another is state 1. And if you are in state 1, state 0, then it would produce certain outputs 

which you can define here. We are just given a label output, but you can mention what all 

outputs you have, what is the values of those outputs 0, 1 whatever. 

And then when a certain condition is true, here, it should be that if the condition is say not 

true, then it will remain in the state but if the condition becomes true, it will transition to S 1. 

Similarly, we could make it that if the condition is true, it remains in the state, but if the 

condition becomes false, so I have used a condition bar, it will transition from S 1 to s 0. This 

is the complete description of a MOORE state MOORE type of finite state machine. There is 

another method of modelling state machines and that is called Mealy machine. 
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In Mealy machine, we have the states are still the same, but now, the outputs have moved 

from within these states, these circles which represent the state on the edges which represents 

the condition and again I will have to correct this, here is the condition bar and if there is 

condition, then say I can say output one, this is output 2, if it is condition you remain in so, 

this is state S 0, this is state S 1 and for condition 1 and you could have output 2 here, it 

continues to produce output 2. And if it goes back here it could be output 1 again and it goes 

back into state S 0. 

This is the graphical representation of any finite state machine. As you can see, it uses 2 

symbols, one is a circle to represent the state and one is these arrows which represent the 

transition conditions. These transition conditions are basically inputs, which when they 

change, they transition from one state to another state.  

However, one must also keep in mind that if these finite state machines are implemented 

using a synchronous logic, then the transition happens on 2 conditions. One is this condition 

being checked, but also at the rising or falling edge of the clock whichever may be the case in 

your implementation. So, it requires 2 conditions to be true, the physical condition that is the 

input to have a certain value and the transition of a clock from 0 to 1, then only it will 

transition from state S 0 to S 1, this must be kept in mind. It is not mentioned here, but this is 

what is the assumption. 
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The physical representation of such a state machine can be done by using 3 building blocks. 

One of them is the memory as you see here, this is the memory, this is the combinational 

logic and this also is so this I would say combinational logic 1 and this is combinational logic 

2. The combinational logic receives the inputs, these inputs are external inputs, which means 

we call them asynchronous inputs, which means they are coming from an outside world 

outside of this system.  

And therefore, they can change whenever they wish to. They are applied to this 

combinational logic block. This combinational logic block produces an output, which 

becomes the input of the memory. And so since this is the value that is currently known, this 

is called next state I will come to that in a moment. 

The output of the sequential logic which is which could be implemented with D type flip 

flops is passed through another combinational logic block and that produces the output. And 

since we said in the Moore machine, the outputs are dependent only on the present state. So, 

this is your present state. The combinational logic does not change the state, it simply 

transforms these present state values into expected output.  

And these are the outputs that you mentioned in the circles that represented each of these 

states. These present state values also are fed back into the first combinational block and 

together with the inputs they decide the next course of action that is, it provides next state 

inputs. 



And as you see, the memory is clocked and this clock is locally generated and the rate of this 

clock will decide how quickly the state machine can transition. All of this can be 

implemented using logic circuit, this is combinational logic, this is memory that is flip flops 

and this is another set of combinational logic.  

Now, in this block diagram, if you want to represent a Mealy machine, all you have to do is 

the inputs now are able to affect the outputs, not only the outputs are affected by the current 

state, but current inputs may also modify the outputs.  
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And this is represented in this second diagram here. And you see, the rest of everything 

remains the same, this is my next state. This is my present state, that present state is being fed 

back into the combinational logic, but some of some or all the inputs are being fed into the 

output combinational logic and therefore, these outputs are dependent not only on the present 

state, but also on the present inputs.  

And these are two alternative methods of implementing the finite state machine using the 

Mealy model or the MOORE model. Now, when you probably would study this as part of 

digital circuits and systems, and they would talk about various examples, and I want to take 

one example, what are simple examples that you already know? 

A counter is an example of a finite state machines, it has finite number of states, which can be 

limited by the will be limited by the maximum number of flip flops being used in that 

counter. And so, the state diagram can be drawn to represent the transition of the states that is 

how the counter is working? Is it counting up or is it counting down? Or is there any 



sequence, up or down sequence or you want to change that sequence, you can create a 

counter with arbitrary outputs also. Outputs that do not seem to have a pattern of being 

increasing or decreasing, you can choose that. 
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And let me show you an example of a finite state machine. Essentially, it is a counter except 

with the little addition that I have added an enable signal. If the enable signal is 1, it transition 

from one state to the other. If the enable signal is held to 0, it will retain the current state, and 

if it retains the current state, it will keep on producing the outputs as mentioned in the state 

circle in the symbol that represents the state.  

Now, how do you implement such a finite state machine? How do you implement that 

counter? Now you can actually draw from the state diagram you can create a state table, in 

the state table you will create a table, let me show you what that table would look like. 



(Refer Slide Time: 12:10)  

 

In the table you will create what is your present state, we call it PS, what is your next state 

and what are the outputs. And if it is a MOORE machine, then the outputs will can be 

mentioned as a function of the states only. So, if I know my present state S 0, I know my 

output so maybe output 1 and my next state could be S 1 and if my present state is S 1, this 

the next state is S 2 and you can have output 2 and so on, and eventually it will somewhere it 

will say let us say s 7 and I want to go to S 0 and output will be O P 7.  

Now with this table I have actually represented a counter with no enable signal, why? 

Because whenever you are in state S 0, the clock will take you to S 1 if you are in S 1 it will 

take to S 2, there is no condition to hold the current state. If we want to modify it to be 

representative, this is the state diagram. This is the state table from the state diagram we drew 

earlier, if you want to create the state table for the earlier state diagram, then it will have to 

have the following representation. 
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So, this is a state table, here you will write present state and if the input is enabled, if it is 0 

and if it is 1 because there is only one input what will be the next state, and here is your 

output. So if the present state is S 0, if the enable signal is 0 is the next state will be S 0. 

However, if the enable signal is 1, the next state will be S 1, but if you know as 0, you can 

say I want the output to be 000. If the present state is S 1 and if enable signal is 0, it will 

retain that state and if it is 1, it will go to the next state and I can have my output 001 and so 

on and so forth. 

Now once you create the state table, you know the relationship between the inputs and 

outputs of your first combinational block, the relationship between inputs and outputs of your 

second combinational block and the middle block is just few flip flops and we can decide 

how many flip flops to use. One method is for the total number of states that we have, we 

take log 2. So like we have 8 states, we take log 2, you get 3. So, all you have to do is use 3 

flip flops, this is the encoded method of representing the states.  

The other option is for all the states you have one flip flop, and that is called one hot method 

of encoding representing the state, we are not going to go there, it may appear that one hot 

encoding uses more memory. But the advantage of that oftentimes is that when you use more 

memory, your decode logic that is the first block of combinational circuit, maybe even the 

second block of combinational circuit, the complexity of that circuit will simplify. 

So, it is a trade off. If you use the encoded method that is used less number of flip flops, your 

combination circuit might increase. And so you decide whether you want to use the encoded 



method of State representation or the one hot method. Anyway, this can be manually 

implemented meaning you could create a table which which implements the relationship here 

between inputs.  
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Now, your input here is enable as well as the present states and you are producing next state. 

So, if I use the encoded method, the number of flip flops will be 3 therefore, you have to deal 

with 3 d type inputs to the flip flops, we can label them D 0, D 1 and D 2. The outputs of 

these flip flops will be Q 0, Q 1 and Q 2 and these outputs here they go into the 

combinational circuit including the signal enable. 

(Refer Slide Time: 16:57)  

 



So, you have to create a table which has Q 2, Q 1, Q 0 and enable to produce outputs which is 

D 2, D 1 and D 0. Which means it is a matter of implementing 4 combinational circuits with 

16 states here, these 16 states will produce one output the same 16 states will also produce 

another output and the third output and that resultant combination logic circuit will go in the 

first combinational block one. So, here you are putting E N enable, we are also putting Q 2, 

and it is producing D 2, D 1 and D 0. 

So, implementing finite state machine is an exercise in starting from creating the state 

diagram from there to create the state table. That state table will give you the relationship 

between inputs of the combinational circuit and the outputs, it will also give you another 

relationship for the second building block combinational circuit 2. The inputs to this will be 

Q 2, Q 1 and Q 0 and the outputs will be say O 2, O 1and O 0.  

So, you solve this combinational circuit using minimization techniques that you are aware of, 

you solve this combinational circuit using the same approach and the middle path is just 

sufficient number of D type flip flops. So you see, solving implementing a finite state 

machine is all about implementing a couple of combinational circuits. Now, this is possible 

manually using a pen and paper method.  

If the number of inputs on your combination circuit are few meaning 4 or 5 or 6, because 

with four inputs you can draw a K map, but as the number of inputs increase, then you may 

have to resort to other methods. And in the contemporary world, this is only for learning 

purpose, real implementation is done with the help of representing the requirements of this 

state machine as a hardware description language code. So, I am going to show you that for 

this counter what kind of VHDL code is implemented. 
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Here is the VHDL code here, as you are aware VHDL code consists of 2 parts; the entity 

declaration here, which defines the relationship of this circuit with the outside world. So, in 

this case the entity will have all those signals which enter the circuit and which exit the 

circuit. In our case, we have a clock and enable signal and the outputs are these actual outputs 

which are the output of the counter.  

And then the second part of a VHDL code is the architectural description architectural block 

which decides the relationship between these input signals and the output signal. And you can 

express that in various ways various methods of writing your code, one of a common popular 

method is called behavioural style of modelling. 

In this you have represented your code and once this code is compiled, it will give you a net 

list of components or digital logic building blocks which when connected, as the net list 

suggests, it will implement a 3 bit counter. Now, what can I do with that counter? Let me 

show you an interesting variation to that counter. We have a counter with 3 outputs and it 

uses all the possible states that is going from 000 to 7. So, essentially what was implemented 

was an up counter with an enable signal, whenever enable is 1 it will transition to the next 

state, if the enable is held to 0, it will hold that current state. 

Let me say that I modify that counter to not ha3 three d type flip flops, because the number of 

states is more than 4 and less than 8. What would I use that for? I could use this circuit to 

actually implement a dice, how? 
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So, it is like this that I have created a counter. The counter requires a clock. Yes, it can be 

high frequency clock, but now I have a enabled signal in the following form, I have VCC, I 

have a switch, and I have a pull down resistor. And this is going into the enable signal of the 

counter. Now since this is 0, it is going to hold the state, this 3 bit, we will call it 3 bit dice 

counter. The outputs are, let us say, y 2, y 1 and y 0, so there are three outputs. And the state 

diagram for this is as follows. You have 1, 2, 3, 4, 5 and 6 states, if the enable signal is 0, so 

enable bar is going to remain in that state this is S 0. 

Now instead, I can choose whatever outputs I want in those states, and I want because the 

dice will give you random numbers between 1 and 6. I want the first state to give me 1, 2, 3, 

4, 5 and 6, and if the enable signal is 1, it goes to the next. Here again, e n bar so it is S 1, e n, 

here e n bar. Again, this is S 2, S 3, S 4, S 5, e n, this is going to stay here for e n bar, e n, e 

bar, e n, and I am going to stay here for e n bar. Now, basically what I have done is I have 

repurposed that counter to become a dice. The only condition is that the clock frequency 

should be very high. 

Now, when the user presses the switch, the counter will start working, it will go transition 

through all the states and when I remove the switch press, when I release the switch, the 

enable signal will become 0 and it will hold a state where it had reached and those outputs 

will become stable. Now, these 3 bits can be decoded passed through another combinational 

circuit and can be represented on a 7 segment display if you like.  



And so, what you have done is started with a simple finite state machine and convert it into a 

useful piece of equipment or gadget. However, please understand that this is not really what 

full computer would do. This does serve a purpose but this is a very simple applications. In 

real applications, the finite state machine is only a sequencer which means it tells somebody 

what to do and that somebody has to actually perform those operations.  

In this simple application, the sequence itself could be converted into numbers, but nothing 

more. And so, what we are going to look at is a bigger model where we are able to not only 

decide the sequence, we can program what sequence we want by implementing the state 

machine and we have other elements of data processing, which are under the control of the 

outputs from the state machine to perform useful computational operations. And that 

approach involves a building block which we call as the data path. 
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So, data path nothing is nothing but it represents all the functional elements which process 

data which are under the control of the finite state machine. And when you glue these 2 

building blocks together, one which consists of the sequencer or the control path and the 

other which consists of data path elements, then you are able to implement a single purpose 

computer.  
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And that is represented or that is called FSMD that is Finite State Machine with Data Path. A 

finite state machine sequences operations into data path through signals called control 

signals, the data path elements under the control of these control signals perform certain 

useful operations, they may give the feedback back to the sequencer using what we call as 

status signals. And the happy marriage of these 2 elements will be used to implement a single 

purpose computer. 
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So, we need to send control signals to the data path from the sequencer, and the data path will 

need to perform useful operations and give feedback to the sequencer to show that the 

sequencer can decide what is the next course of action. Here is a block diagram 
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I this is a repeat of what I had shown earlier that we have a sequencer, which is nothing but a 

state machine. And the state machine produces control signals and feeds various elements of 

data processing elements. And here is a list, I will show you a bigger list, these elements will 

operate on that data which may be coming from outside or may be provided by the sequencer 

and it will give a feedback to the state machine.  

State machine can also provide some outputs or these data processing elements will provide 

outputs either stored them in memory or provided in the outside world. Let me draw a 

representation of FSM-D which is useful for implementing single purpose computers. 
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So, here is my sequencer, here are inputs and these might be these would turn out to be 

asynchronous inputs, I would need a clock signal, this is my clock, here is my elements of 

data path data path, these data path elements will get control signals from the sequencer. So, 

these are control, the data path elements will perform certain operations for which it may 

have some inputs from the same inputs which are going to the sequencer, or it may have 

certain other inputs, it will provide feedback and we call this status.  

The data path may produce certain outputs for global consumption that is for the outside 

world. The sequencer may also produce some outputs if it so wishes, and these 2 outputs are 

your global outputs or user outputs. So, this is the block diagram that we are going to use in 

this lecture and we will implement a useful single purpose computer. 
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What are the elements of data path? This is not this is not the only 10 elements, this is just a 

sample of such data processing elements. Usually data path elements are elements of 

combinational circuit, you can implement elements of data path using simple combinational 

logic, but that is not necessary. Sometimes you may have to store some information for 

further processing. So, for that you may require latch and flip flops. Sometimes you want a 

flip flop with the enable signal so that you only capture the data whenever the enable signal 

allows you to. 

You may use tri state buffers, you may use comparators for comparing 2 numbers, you may 

use encoder and decoder, you may use multiplexers and demultiplexers and counters and you 

can use adders and subtractors or you could make generic building block and arithmetic 



logical logic unit which would not only perform mathematical operations, but may also 

perform logical operations. You could also divide the clock for use in certain parts of the data 

path. And this is just a sample of some of the data path building blocks. 
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So, here is the representation of a flip flop. And, like I mentioned, we do not manually 

connect all the building blocks such as flip flops or gates, but we write VHDL code to model 

them. So for our flip flop here, it is a rising edge flip flop as this clock indicates here, this is 

the rising edge. And so it is going to capture whatever data here on every rising edge and 

present it to the output. 
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Here is a VHDL code to represent that. I am not going to go in detail and I strongly urge you 

and encourage you to learn VHDL or other hardware description language such as Verilog 

and there are many, many software programs available which you can which you can use to 

practice and develop logic systems. 
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Here is a controlled latch which means it is going to capture information at the rising edge 

but only when enable is 1, let me show you what does it mean? 
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It means if enable is equal to 1, then Q gets the value of D on clock rising edge, else if enable 

is equal to 0, Q gets the value of the previous value, so I will call it Q previous which means 



it does not capture the input. Now, how does it how does it use a normal D type flip flop, how 

does a normal D type flip flop get modified to implement such a such a requirement? Well, 

this can be implemented as a finite state machine by itself.  

And you could draw the state diagram for this final state machine and implement it, and the 

implementation will look something like this that it does use a D type flip flop, but it uses an 

additional component which in this case is a 2 input multiplexer; 0 and 1 are the inputs, the 

output of the multiplexer provides the connection to the D input of the D type flip flop. 

Here is the Q which will go to the outside, but it will also be fed back into the 0 input of the 

multiplexer. The one input of the multiplexer is actually the D in, which you want to capture 

here so D in. The clock will be applied to the clock input and the control signal of the select 

line of the multiplexer will become the enable signal.  

Now, let us go through this circuit to understand that it actually implements this requirement. 

Now, if enable is equal to 0, the 0th input gets connected here. And the 0th input is nothing 

but the current value of Q. So on every rising edge, it is going to just capture D and transfer it 

to queue which means Q value is not going to change, but the moment enable signal becomes 

1. Now it is going to route the D in input to the Q and now on every rising edge every rising 

edge it is going to capture this value and put it at the output, this is exactly what we wanted. 

And so, this is the method of implementing a latch with enable signal. Similarly, you can add 

more signals to this by saying that I want a reset signal that is if reset is one, then irrespective 

of the state of the rest of the input signals, the output should be 0 and so on and so forth. And 

you can implement VHDL code to implement whatever functionality that you wish, here this 

is the code for control the flip flop that is a flip flop where there is a enable signal, then one 

important building block is the tri state buffer. 
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Here output becomes gets the value of input provided select line is equal 1, but if select line 

is 0, then the output becomes high impedance. 
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Here is a VHDL code for that, this is Z here represents indicates the high impedance. 
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Then you would require comparators to compare digital numbers. Here in this example, two 3 

bit numbers A and B are being compared. And a comparator typically has three outputs, A is 

greater than B, A is equal to B and A is less than B. Whenever, any of these three conditions 

is true, that particular output becomes 1 and the others are 0.  

So if numerical value of A those three bits as a number is more than the numerical value of B, 

AGT will be 1 and the rest of the 2 outputs will be 0. If the numerical value of A is equal to 

B, AGT will be 0, A equal to B will become 1 and A less than B will also remain 0. 
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Likewise, this is the VHDL code for implementing such a three bit comparator and you can 

increase the size by having n bits on the 2 inputs. 
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Similarly, this is an encoder which encodes the value here depending upon the combination 

here of 0s and 1s, it provides an output and you could make a priority encoder meaning if this 

is 1, then the value of this will indicate that I n 2 is 1 and so on. 
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Here is the code for the encoder. 
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This is the opposite of encoder, this is a decoder. In this case is a 4 to 16 decoder and again 

VHDL representation for such a decoder. 
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Then we have a multiplexer, this is an eight input multiplexer, each of the inputs is single bits 

and the select lines here will decide which of the inputs get routed to the output, we use such 

a multiplexer 2 input multiplexer in a previous example, and multiplexers are very, very 

useful building blocks and we are going to see their use in our implementation. 
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This is the VHDL representation. 
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Again, this is a counter and in this case the counter has a clock and a clear signal which 

means if there is 1, all output bits of the counter will become 0, else it will count. Now, this 

does not indicate whether it is going to count up or count down or may have a different 

counting sequence that will be decided by the kind of VHDL we have. 
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And as we see here the count is being incremented on each clock edge. Therefore, this is a up 

counter, VHDL code for up counter. 
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This is a arithmetic and logical unit and there are 2 operands, operand 1 and operand 0, and 

the opcode that is the bits here will decide what operation it performs and it will depend on 

you, if you want to do add, subtract, and to the bits of operands 1 and 0, it will depend on all 

of you.  
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As you can see here, a lot of functions are being performed, here you are ANDing you are 

ORing, you are adding subtracting you are incrementing, you are decrementing and so on. So, 

you can implement a wide variety of functions using a ALU. 
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Clock bigger divider is used to divide the clock frequency from a higher value to a lower 

value and it is often useful in FSM-D applications. 
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Now what we are going to do this is the VHDL code for a clock divider. 
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What we are going to do is, in our next lecture, we are going to implement a single purpose 

computer to implement a particular requirement and that is to implement a dual dice scheme. 

That is a game in which there are 2 dice outputs and the rules of the game will be mentioned 

and we will see how these are implemented very easily using the finite state machine with 

data path approach. So, I will see you soon in the next lecture.  

 

 


