
Introduction to Embedded System Design

Professor Dhananjay V. Gadre (NSUT)

&

Badri Subudhi (IIT Jammu)

Indian Institute of Technology, Delhi

Lecture 31

Analog to Digital Converter in the MSP430

Hello and welcome to a new session for this online course on Introduction to Embedded System

Design. I am your instructor Dhananjay Gadre and in this session we are going to talk about

another important aspect of embedded system that is the ability to read external analog voltages.

And to be able to do that, we need to have the support of a peripheral which is often available on

most modern microcontrollers that is the analog to digital converters.

Now why do we need ADCs? ADC means analog to digital converter. Why do we need them?

(Refer Slide Time: 1:01)

We need them because the world is analog which means the values that surround us, the features

that are around us, they are all changing their parameters continuously. They can take any

arbitrary value. Information like temperature or pressure or distance or light intensity as we have

seen, they are all continuous in nature. And so we need to convert that continuous voltage

continuous parameter into discreet numbers discreet values.

Examples of sensors which provide continuous values are for using a Potentiometer or Light

dependent resistor or negative temperature coefficient thermistor, load cell, microphone there are

so many. So problem is that the CPU cannot read analog values, it can only accept digital

numbers 0s and 1s. And so we need a mechanism to convert these analog inputs in digital value

and that is where an ADC comes into use. So that is the justification for having an analog to

digital convertor mechanism connected to the micro-controller.

(Refer Slide Time: 2:27)

This is how ADC works. You have the analog signal in the form of the output of a particular

sensor or a voltage. You need to sample it that is you decide at what point of time you want to

look at this value. Now the input is asynchronous, meaning it can change whenever it wants to

but while the conversion process from the analog voltage into a digital number is in process, you

do not want the input voltage to change. So you include a circuit which can hold the value of the

analog voltage to a fixed value to that value when you start the conversion and hold it till the

conversion is over, such a circuit is called a sample and hold circuit.

Then, once you have started the conversion and you convert it, you quantise it into a discreet

number and you encode it meaning assign a digital code to this quantise number. And once that

is done the analog voltage which started from here is available as a digital signal ready for the

micro-controller to be processed or stored or whatever else you would want to do.

(Refer Slide Time: 3:48)

Here is a Sample and Hold Circuit. You have an analog input; you can pass it through an

operational amplifier which provides very high input impedance using a switch, when the switch

is closed it will charge its capacitor but when you open the switch the capacitor will hold the

value to which it was charged. And as long as the input impedance of the subsequent amplifier is

very high the capacitor is not going to discharge. Therefore, it will hold the voltage to a fixed

state fixed value for the ADC to complete its function.

Quantisation, this is the next important step. After the sample and hold process which we have

seen, the signal becomes discreet in time, meaning it has been held to a value but it is still

continuous in amplitude meaning the value could have been any value in the range that is

acceptable. You need to have a reference voltage against which this analog voltage will be

compared and will be divided in small discreet steps and from there on it will be converted into a

number.

(Refer Slide Time: 5:06)

This is where the encoding comes into picture, the process of assigning a binary code. Do you

want it to be linearly converted or do you want it to have a non linear function or do you want to

have a 2’s complement. All this you can include in the encoding function of the ADC.

(Refer Slide Time: 5:23)

There are many types of ADCs, depends on the kind of functions that you want to perform that is

the kind of input that you have, the kind of speed that you want with the AC because ADC is not

a very fast process. It takes some time for the sample and hold and rest of the circuit to operate.

And therefore, each type of ADC has a specific application. The simplest of the ADC is called a

Counter ADC, Counter-Type of ADC which we use as a counter and a comparator to convert the

analog voltage into a number.

The most common ADC is called Successive Approximation Type of ADC and the ADC that we

have on MSP430 is actually a Successive Approximation Type of ADC SAR. Then we have a

Dual Slope it is also is a counter type except now you use two slopes, one where you are

charging the voltage to the input value and then from the input value you discharge to a non

reference value.

Then you have very fast ADCs of the type called Flash ADCs. In fact, the most common use of

ADC is that you would notice that in your engineering life would be in the use of a digital

storage oscilloscope. A DSO is a digital device but the voltage is that it is able to sample are

analog in nature. And therefore at the front end after you have your amplifier you have a ADC

and the ADC you have in these DSO are f the type called Flash ADC. The reason why they are

called Flash is because they are very very fast.

But because they are very fast the kind of fastness comes from the architecture of these ADCs,

they consume a lot of power. And usually these ADCs offer a resolution from 8 to 10 bits but

they offer blistering speeds. For example if you look at the front panel of the DSO it would say,

for example the one we had in our lab says 1 GSPS. This stands for one giga samples per second,

this is the kind of ADC that we have on these modern digital storage oscilloscopes.

And then the next type of ADCs that we have is called Sigma-Delta type of ADC. They are used

in voice encoding. So these are the various types. But since our micro-controller is a general

purpose microcontroller, is not specifically useful for high speed conversions. The ADC that it

has is a SAR type ADC. So we are going to look at ADC in this context.

This is a ADC where you do binary search, compare analog voltage that is applied to the ADC

with binary with a voltage generated through a binary number. And when the number matches

then you stop the conversion. You can go through this slide to go through the entire conversion

process.

(Refer Slide Time: 8:34)

This is the block diagram of the SAR type of ADC. SAR type of AD requires a clock, so you

need to decide what type of clock source are you going to use in your MSP430 ADC. We have

option of a lot of clock sources. You also need a reference voltage against which the values will

be compared in this comparator. Here is the input voltage held to a value using the sample and

hold circuit ad when that value matches then you stop the conversion.

(Refer Slide Time: 9:10)

Now these are the features of ADC on the MSP430, we call it ADC10. The reason is that

resolution of ADC is a 10-bit resolution, which means from the entire range of input voltages

that it can accept, the range is divided in 10-bits and therefore the number of levels that you have

from the minimum to maximum is 2 raised to power 10 which is 1024 twenty four discreet

values.

The ADC on the MSP430 offers quite a fast conversion speed. These conversion speeds are up to

200 kilo samples per second, of course these is very small compared to the ADCs that are

available in digital storage oscilloscopes as I mentioned, they offer speeds up to one giga

samples or more giga samples per seconds.

The module implements at 10-bit SAR and it has a mechanism to select the input channel

because in this case you do not have multiple ADCs on your micro-controller. You have only

one ADC but you have a analog multiplexer which allows you to select a particular source of

voltage through the analog multiplexer and use the common ADC feature to convert that voltage

and then you can change the multiplexer and convert another voltage.

The reference, the converted value is handled by a data transfer controller called a DTC. The

DTC allows the samples to be converted and stored anywhere in the memory without the CPU

intervention. So your program simply instructs the ADC which channel you want to convert and

where do you want to store the results.

The DTC will take care of it. You can do up to eight external input channels you can convert

voltages on eight external inputs, of course not simultaneously but in a sequential or serial

fashion. You can through software select the reference voltage, the MSP430 micro-controller

offers on-chip reference voltage which you can select to be of 1.5 volts or 2.5 volts or if you

want you have a special requirement you can provide external voltage reference also through a

available pin.

And the ADC core that is the peripheral which controls the ADC and the reference voltage can

be powered down meaning you can enter a low power mode so that these peripheral devices do

not consume power.

(Refer Slide Time: 11:46)

Here is the block diagram of the ADC. This is the core part of the ADC here, this is the actual

convertor. Here is the analog multiplexer that allows you to select so many input channels. Here

is the part which allows you to select the reference voltage. You can have an internal reference

voltage of 1.5 or 2.5 volts. You can have internal, interestingly MSP430 has an internal

temperature sensor and the output of that temperature sensor can also be routed through the

multiplexer into the ADC so that you can determine the temperature of the micro-controller, the

temperature of the chip of the micro-controller.

And you can also have, read the voltage through the divider here. Now, once the ADC converts

the value it is sent to this ADC10 memory from where it can decide to send it to appropriate

memory location so that the processor can implement a new conversion. So this is the basic

block diagram of the ADC that we have on MSP430.

Refer Slide Time: 13:05)

The ADC core converts analog voltages using a 10-bit representation. The reference voltage as

we have discussed can be selected by the user. The digital output full scale is when the input is

higher or equal to the positive reference voltage and a 0 when it is 0 or equal to or less than the

negative reference voltage. In this case it is 0.

The conversion formula for the binary format of the number is this that is the N bits that you will

get, the value of the 10-bits that you will get will be represented by this information. Here is the

input voltage and here is the reference voltage with which it is being compared. The clock that is

the rate at which the comparison will be made in this excessive approximation register module of

the ADC, the clock source can be selected from a variety of sources. And this is available

through these registers through these bits.

And the sources could be SM clock, M clock or A clock and you could also have an extra

internal dedicated oscillator called ADC10 oscillator.

(Refer Slide Time: 14:30)

The ADC on MSP430 offers multiple ways of conversion. One of them is that you can do a

single channel conversion or you can do sequence of channels meaning you can do channel

1,2,3…1,2,3 like that. You could repeat a single channel that is selected channel you can have

continuous conversion or a sequence of channels you can do repeat of conversions on those

channels.

(Refer Slide Time: 15:02)

These are the registers associated with the 10-bit ADC. You have the control register 0 which

selects the reference voltage, the sample time and it also allows you to generate interrupts once

the conversion is over. So that your micro-controller can keep on doing something whenever a

conversion on the selected channel is complete, the micro-controller the ADC module will tell

the micro-controller that the conversion is complete and please look at the numbers and do

whatever you can with it.

You have another control register 1 which selects the input channel, the format of the input data,

the clock source and the divider. Then you have the analog ADC 10 analog enable 10 control

register 0 which is used to select analog inputs A0 to A7. And control register 1 which allows

you to select inputs A12 to A15. And this is only available for devices which have those

additional pins.

(Refer Slide Time: 16:08)

Then you have ADC10MEM register which allows you to store the result in binary or 2s

compliment format as selected in the control register. This ADC10DTC0 is date transfer control

register 0 which selects the mood of the conversion control, the transfer control.

ADC10DTC1 selects the DTC transfer whether it defines the number of transfers in each block.

And then the start register once you have start register address, once you have started the

conversion and you want to convert a whole set of numbers where do you want to store them

because if you overwrite a memory location then there is no point in having a series of

conversions.

So you have you can define the start address and it will convert the first value and store it at the

start address and the next address and so on. These are the registers and the memory locations. I

strongly recommend that you go through these slides so that you understand that this is nothing

but a repeat of what I have just gone through. Now what we are going to do is we are going to

look at the few exercises so that you can get familiar with the whole process of initializing the

ADC, selecting an appropriate channel, selecting the clock for the conversion and once the result

is available what do you want to do with that result, you want to store it in the memory location

or do you want to send it to some output port or change the duty cycle of a timer for that matter.

(Refer Slide Time: 18:03)

So we are going to look at some examples. In the first example the code example we are going to

read the analog voltage connected using this mechanism where we have connected a

potentiometer. And the central tap of the potentiometer we have connected to the P1.0, we will

ensure that the P1.0 becomes an ADC input. And the result of the ADC will be used to send to

LED connected to P1.6, remember P1.6.

(Refer Slide Time: 18:28)

So this is what the definitions are, you have decided that you are going to connect a green LED

to bit 6. You are going to have ADC on bit 0. Then we have a map function, we will come to this

later.

(Refer Slide Time: 18:44)

Here are the register settings for ADC 0. What are we going to do, we are going to use P1.0 for

ADC input and we are going to use Vcc as the reference and we are going to use 64 clock cycles

for sample and hold. This allows the values to be stabilized. Then for the timer 0 we are going to

connect the timer output to P1.6 and we have selected P1.6 as the output and we have selected to

be timer output.

And we have CCR0, you may recall that in our previous discussions we discussed that CCR0

decides the resolution and the time period of the PWM signal. So we have decided CCR0 value

to be 255 which means we have chosen 8-bit ADC, 8-bit PWM. The we are choosing the output

mode to be output 7 which means PWM output and the initial value of CCR1 is 1. And the clock

source of the timer is going to be SM clock and it is going to operate the timer in the up count

mode.

(Refer Slide Time: 20:10)

Here is the main code, as usual we have stopped the watchdog timer and we have called this

function for register setting for the ADC and register setting for the timer 0. And then we simply

enter infinite loop in which we read the value of the ADC and once the ADC tells that it has

completed the conversion we simply call this map function.

Now the ADC result is a 10-bit value but our PWM requirement is 8-bits. So we have to map 10-

bits to 8-bits. Instead of doing the bits yourself, we call this map functions. So basically it does 0

to 1023 values the output of the 8-bit, 10-bit ADC be mapped to 0255. And the best way to think

of it is imagine that out of those 10-bits the least two bits are thrown off that is how you can map

very easily a 10-bit number into a 8-bit output. And so what you should see when you compile

and output load this into your lunchbox.

Let me correct myself here LED is connected to P1.6 which as you recall in our previous

exercise I not an onboard LED, onboard LED is on a different pin.

(Refer Slide Time: 21:44)

Here an onboard LED is on a pin which does not have a PWM function. We have connected the

LED to P1.6 which I connected to here so you need a bread board to connect a LED. Here is

another bread board connection which allows you to connect a potentiometer to an appropriate

pin as discussed earlier to the ADC input. Now when you move the potentiometer from

minimum to maximum, you should see that the LED intensity goes from off to fully lit condition.

And you will see the intensity of the LED can be changed by changing the potentiometer setting.

So this is the objective of the code. Is strongly recommend that you download this code, build it

and send this code into the memory of lunch box and make this connection on the bread board to

see the impact.

(Refer Slide Time: 22:35)

Now we have another variation of the same code not much is changing here except instead of

modulating the PWM duty cycle we are just printing the value as read by the ADC and printing it

on our LCD. We already covered LCD, so you know how LCD can be connected to the MSP430

lunchbox. In this case the ADC is still connected to P1.0; these are the same connections that we

considered last time when we were talking about the LCD. So those connections remain the

same.

Here is the code, I am not going to go through that code this is nothing but a mix of code for the

previous exercise of reading the ADC value of the connected to the potentiometer and changing

the duty cycle instead of changing the duty cycle now we are outputting a number onto the LCD.

(Refer Slide Time: 23:35)

Here is the display that you see, it has been converted into a voltage instead of the binary number

it has been converted to a voltage. So you should see the voltage going from 0 to 3.3 volts

because we are choosing the reference to be 3.3 volts which is the power supply voltage.

(Refer Slide Time: 23:48)

Now in the block diagram of the ADC you saw that the ADC also has an input from the

temperature sensor that is on-chip temperature sensor and we can modulate the ADC control

registers so that we can select that channel which is connected to the on-chip temperature sensor.

So in this third code example what we are going to do is read the value, convert it in the formula

that is given here recommended in the application note and user manual of MSP430 and the

number that you get out of that ADC can be directly mapped to the actual temperature. These are

the formulas that you have.

(Refer Slide Time: 24:46)

And once you understand this code, build and download it into the MSP430 lunchbox, what you

would see is that the display would tell you the temperature at which the MSP430 is currently

operating at and you can see the impact of it by trying to cool it or maybe you connect your you

know the soldering iron gently onto the MSP430 IC and you should see this temperature reading

changing. This is the current temperature when this experiment was being performed; this is the

temperature of the IC at that point of time.

So I strongly recommend that you go through the codes, the three codes that have been discussed

here. The first one was to read the value of the potentiometer and change the duty cycle of the

LED connected on P 1.6. In second code example we took the value coming out from the

potentiometer but instead of manipulating anything else we started displaying it on the LCD.

And in the third code example what we did was, we took the instead of reading the voltage from

an external source we use the internal temperature source to feed the ADC, converted the values,

applied these equations to convert these numbers into temperature and then printed the value

onto the LCD display.

So this will give you a brief outline and idea about how to use the ADC and how to convert

analog voltages connected to the ADC input of the MSP430 and use them in any which way.

(Refer Slide Time: 26:29)

Now one every important point I want to make here is that in any of the cases that you have here,

let us draw a block diagram. So here is your source of analog voltage which could be a

microphone or it could be a temperature sensor or it could be any other source. You should not

connect, let us say this is our MSP430, and let us say this is the ADC input. It is not

recommended that you convert; you connect the output of this source directly reason being

depending upon the rate at which the source voltages may change.

Although you are saying that your sample and hold is going to hold the value it is still

recommended that you incorporate a filter, a low pass filter in this and this low pass filter is often

called Anti- aliasing filter, such that the conversion rate that you hope to have in your ADC the

input source remains much lower in frequency compared to the conversion rate. And in our

previous examples because the input voltages are not changing that much fast, we did not

incorporate such a anti-aliasing filter.

But an anti-aliasing filter is nothing but a low pass filter which can make out of using the R and

C. And the requirement is that the this filter will be less than much less than half the conversion

rate.

So to take an example, suppose your ADC is going to convert at ten thousand samples per

seconds. Now because of the nyquist rate, we require that the input to the ADC should never the

frequency of the input connected to the ADC input should never be more than five thousand

hertz, five thousand times or seconds, it should not change. And therefore this filter should, the

low pass filter should have a bandwidth of five kilo hertz less than five kilo hertz.

So the input should never exceed that, so you should always include a low pass filter to serve as

an anti aliasing filter. In our case in the input filters we saw, a potentiometer or an internal

temperature sensor it is not going to change so fast because we are converting the ADC at a

much higher rate. Therefore, we are not bothered about having an external anti aliasing filter but

wherever you expect that the input frequency could go higher, you need to remove those

elements from the spectrum so that the ADC can perform as per the nyquist rate.

So having an anti-aliasing filter is very important. And I hope that in any application where you

expect the input source to have a component which is exceeding the nyquist rate, that you would

cut down the source using a low pass filter to conform to the nyquist rate. So I hope that this

lecture has introduced you to the great feature of 10-bit ADC that we have on MSP430.

It offers so many input channels; it also has an internal temperature sensor as an input to the

ADC, an internal resistor divider which allows you to read the live voltage that is available on

the MSP430 that powers the MSP430. You can read that through the ADC. I hope you will play

with the ADC features and find how any various ways external signals you can convert using the

ADC of MSP430.

In one of the next lectures we are going to not only look at some applications of the ADC by

converting voltages being produced by thermistors but we are also going to use the ADC as the

mechanism to give us random numbers or at least the seed for a random number. We are also

going to consider how MSP430 can be programmed with additional hardware to produce analog

voltages.

In this case we have seen how MSP430 can read analog voltages but we also need to generate

analog voltages. We have already seen one mechanism which is using the PWM and using the

low pass filter. But we will see additional mechanisms by which we can generate analog output

voltages.

So I will see you very soon in a new lecture. Thank you. Bye bye.

