
Introduction to Embedded System Design

Professor Dhananjay V. Gadre

Netaji Subhas University of Technology, New Delhi

Lecture 29

MSP430 Timer module: Introduction and Timer Capture

Hello and welcome to a new session for this online course on Introduction to Embedded system

design. I am your instructor, Dhananjay Gadre and in this session I am going to cover a very very

important aspects of embedded systems which is the ability to count time, measure time, count

events so on and so forth.

And the basic building block peripheral, critical peripheral in any micro controller ecosystem is

the ability to count time without the intervention of the micro, the CPU and such a peripheral is

called Timer and often times it is called Counter/Timer which means it can count as well as

count events as well as count time. The basic building block in counter timer is actually a

counter. Now, what is a counter?

(Refer Slide Time: 01:20)

If I show you n-bit counter and typically what you will have n-bits going out. And you would

have a clock input, may be you will have a reset pin so when will assert the reset signal, all the n

outputs of this counter. So, this is a counter or reset to 0. Thereafter for the given configuration

of the clock signal, every time there is a rising edge, the count will increment by 1.

If this was a down counter, then it will decrement by 1. So let us say, this is an up counter and so

on. So, if from here if the initial value before this was 0 then and this was an up counter, the

count will be 1 here and it will be 2 here. Now, whether the signals which are applied to the

clock are like this or like this.

Here it will be one and it will be 2 at this point of time. these are the time and these are the pulses

you are getting. If the frequency of the signal which is connected to the clock pin of the counter.

We do not know the frequency then we cannot say that how much time is elapsed. All we can

say how many events have come, how many clock signals have come and in such a case you are

operating this building block as a counter.

(Refer Slide Time: 02:50)

On the other hand, if I use the same hardware. I still have a n-bit counter, n-bits and let us say it

is a up-counter. You have a clock signal, you have reset signal but now instead of an external

signal which is generating some pulses, if this connected to a oscillator, rectangular output

oscillator something like this whose frequency is fixed and after reset assert reset on this pin. It

will count these pulses.

And if I query, if I am able to read this n-bits and I find let us say the count is 1030 1350. If I

find that the count is 1350, then I can also tell how much time is elapsed since the time I reset

this counter. How much time is elapsed? It is 1350 into the T oscillator that is the period of the

clock signal. Once I know this by performing this small calculation, I would be able to estimate

the time it has elapsed since the time I reset this counter.

So, the basic building block in a micro controller is the time is the counter. If you connect the

clock input of that counter to that external pin and expect external signals to be used for clocking

the counter, you are maintaining a counter. On the other hand, if the clock input of this counter is

derived from an internally generated clock then and if you know the frequency of that clock then

you would have converted this counter into a timer. And MSP430 is immensely capable in

providing various functions of this timer counter. Let us investigate what all we have.

(Refer Slide Time: 05:12)

Now, why do we need timers? We can also use the program to count time. The reason why we

want to use timers is that we can use the peripheral function to generate timing events. We can

use them for generating delays. We can use them for creating what we called as baud rates which

we are going to cover in a serial communication lecture subsequently. Or you can use these

timers as mentioned for counting the external events and so on.

Having a dedicated hardware for performing this function frees the CPU from performing the

task. You can also use the CPU, for example one of the pod pins could be connected to a external

signal where you are getting pulses and you can write a program saying, if this pulses high wait

for it to be low. Once it goes low, one pulse has been received you can count it and so on. But if

you did that your entire CPU life is going to be spent only counting pulses, you would not be

able to do any other activity at the same time.

By off loading this counting business to a counter, your CPU can perform other functions and

keep on finding out from the counter. How much, how many events have happened. This is what

the infrastructure related to a counter and a timer micro controller usually allows you to do. And

MSP430 is no exception. If you use a program to use generate leads as we have seen how we can

write a delay function, again the delay function depends on the accuracy of the CPU clock. And

if it is not very accurate the delay period will not be very accurate.

On the other hand, if you use the timer, you can use a external crystal oscillator like we have on

the MSP430 to provide clock to the timer and then it can generate very accurate delay periods.

MSP430G2553 has 2 16-bit Timer A and they are label timer as 0A and Timer1A. and this is

over and above the watchdog timer that it has which can also function as a Timer.

(Refer Slide Time: 07:18)

The timers on the MSP430 are 16-bit counter which means they can count from 0 to 65535

which means they can count a very large number. The timers can be used for capture and

compare functions. I will come to this feature shortly. And it can also used to generate Pulse

Width Modulation signal which we have briefly mentioned in a previous lecture.

The timers can be used to generate interrupts on a timely fashion. You want to generate interrupt

every one second or every 100 mille seconds, you can employ a timer by appropriately

programming it, it can generate very accurate interrupt events which you can used to do some

housekeeping jobs.

You remember in a previous lecture we said, we want to connect 4 7-segment displays and we

want to multiplex them and multiplexing requires that you refresh the display which means one

digit which was on you have to turn it off. And after a pre-determined period of time you have to

turn second digit on.

Now, you can do the job with the help of the interrupted generated by the timer. You can also

use the timer infrastructure to measure frequency of the external signals. You can use it to

measure period of external pulses. And you can use it to output information on pins on pre-

determined intervals. So, these are the features of the timer.

(Refer Slide Time: 08:46)

Here is a block diagram and I am going to broadly tell you that any timer has actually two parts

the timer part that is the counterpart and the rest of the parts which allow you to compare the

value of the timer to pre-determined value. So, that you know you have started the timer from 0,

I want the notification when the count reaches 5000. So, you are going to compare the value of

the timer with the value in a register which you write 5000 whenever that match happens, it will

inform you.

So, here is the 16-bit timer. This is called TAR which means Timer register and then you have 3

compare capture channels, they are called CCR0 Capture Compare Register 0. Capture Compare

Register 1 and Capture Compare Register 2. So, with one timer, you have 3 channels of capture

and compare features. Of course, you can either capture or compare and by choosing a

appropriate function whether we want to capture or compare.

What is the meaning of capture? You have to capture the value in the timer. What is the meaning

of the compare? You have to compare the value of the timer register with the pre-determined

value stored in that compare register. And using these two compare and capture registers; you

can do amazing things with the timer.

The for this counter, although it says the timer as I mentioned. It can basic building block is the

counter. The clock of the timer can be derived from these sources as you see here, you can have

the A- clock, oscillatory clock or you can have SM clock and TA clock in this case is actually a

pin which means the signal of the pin is used to clock the counter and these feature can be used

when you want to count the external pulses, when you want to count external events.

You may remember in one of the previous lectures, suppose in this room we have to count how

many people have entered, you can easily install the censor which detects human presence and

when it detects the human presence it will generate a pulse. This pulse can be connected to the

TA clock pin and it will increment the timer. And you can query the timer at any given point of

time after resetting at onset that what is the value at this point of time and you know how many

people have entered the room.

So, this is then A clock and SM clock allows you to operate the timer in the timer mode. Why?

Because A clock and SM clock is locally generated clock signals and you know the frequency of

these clock generator. So, the count in the timer will tell you how much time is elapsed, since

time you have started the timer.

Now, when do you compare and when do you capture, you can do that based on signals on

micro-controller as well as events within the micro-controller. You can use it to capture the value

of the timer. You can use it to compare the value of the timer, using the value written in the

comparator. And are going to use this feature to see various activities. So, this is the basic block

diagram. You have another timer so this is TimerA0 and TimerA1. And both of them have these

three channels which allow you to do multiple things.

(Refer Slide Time: 12:35)

So, the major components of the timer are Timer Counter register as we have seen TAR in both

the timers we had they all 16 bit registers. They all read-write registers.

(Refer Slide Time: 12:48)

You also have timer capture and compare register and there are three capture and compare

register for each of the timer. Timer A0CCR0 Timer capture compare register 0, Capture

compare register 1, register 2 for Timer 0A and capture compare register 0, 1 and 2 for Timer

1A. And both these three channels for say for this will use a given timer. These three channels

will use a second timer register and you can write values in this, you can read values from this to

know whether you want to capture or you want to compare and so on.

(Refer Slide Time: 13:38)

In the capture mode, the value of the timer is stored and captured in the capture register and you

can read it thereafter. In the compare mode, you load a value in the register and wait for timer

value to reach that number. When that number is reached some event will happen. And usually a

flag will be set and if you want a interrupt will be generated and these feature is used to generate

Pulse width modulated signal.

(Refer Slide Time: 14:08)

The source of the timer can be A clock or SM clock and you can source it from an external pin

like TA clock. The clock source is selected with the help of the registers in this these register bits

and once you have selected the source of clock, you can also further divide it, so you can divide

it by 1, 2, 4 or 8 and so on.

(Refer Slide Time: 14:35)

These are the modes of the timer, the basic timer that is the TAR works in 4 modes. You can stop

the timer which means once you stop it, it can hold the value. Or you can use it in the up mode

means it can count from 0 and it will keep on counting till a highest value but the highest value

in the capture compare register are 0. The other second mode of operation is what is called as the

continues mode in which it will go from 0 count upto the maximum count which is FFF and

again reset to 0 and again keep on counting.

And then you have an up down mode where it goes from 0, counts upto maximum value and

decrements from maximum value to 0. And so on and so forth. So, you will see in up count it

will goes like a ram and in the continuous mode it also goes to ram but the value the maximum

value is FFF. In the up down mode it goes like a triangle way form. Will see this in diagrams

here.

(Refer Slide Time: 15:40)

So, this is the up mode, it goes from 0 but the maximum value you set in the Timer A capture

compare register 0. So, the point to note is the value in capture compare register is very

important. That is the register which decides upto what value the timer will count.

(Refer Slide Time: 16:02)

In this mode, you can use it to generate interrupt at two times. One once when it reaches this

value and once when it resets to 0, when it become 0. As you see here, you have generate a

interrupt here when it goes from here to here and when it is here. So, there are two times this

counting process when interrupts can be generated.

(Refer Slide Time: 16:30)

Then you have the continuous mode, very similar to the continuous mode except the value the

maximum value will be this. It will start from 0 and it will go to maximum capability of the timer

and it will reset to 0. And when it resets to 0, it will generate an interrupt as you see here. When

it resets to 0, it is generating an interrupt.

(Refer Slide Time: 16:53)

In the up down mode, it goes from 0 to the maximum value set in this register. And once it

reaches there it decrements it till it reached 0. In this mode, it is going to generate when it is just

reaching that and when it is reaching 0.

(Refer Slide Time: 17:13)

These are the registers associated with the timer. And I strongly recommend you to go through

the data sheet to understand each of these. The best understanding will come when you write a

program and play with the various features.

(Refer Slide Time: 17:26)

This is the timer control register. And as you see these are the bits which allow you to turn the

timer on and off. These are the bits which allow you to unable the interrupts.

(Refer Slide Time: 17:41)

I recommend you again to go through these registers.

(Refer Slide Time: 17:46)

This is the capture control register. This are the values, bits which you can decide which mode of

the timer whether it is going to operate in the capture mode or the compare mode.

(Refer Slide Time: 18:07)

And this is the interrupt vector for the interrupts that will be generated because of the Timer A

operation and as you see, many of the interrupts are shared. Here is the interrupt of capture

compare 1 and this is the interrupt of the capture compare 2. This is the interrupt of the timer

overflow for a given timer.

(Refer Slide Time: 18:30)

And there are many many sources of interrupts for these timers. I again very strongly

recommend you that you go through the slides as well as the data sheets.

(Refer Slide Time: 18:42)

Now, we are going to run a little program to illustrate what can be achieved with the timer. Now,

in a previous exercise, we saw that we can use a delay function to toggle LED at a certain rate by

changing the delay period, you can slow down the toggling rate or you can make it fast. Here, we

can do that except we are not just toggling a single LED, we are actually counting, the count on 8

LEDs which we connected to port 1 bits.

We have connected 8 LEDs, as you see this part of the LED is grounded all these LEDs are

grounded which means whenever this bit is one that LED is going to glow. Now, we are going to

have a internal counter which will count from 0 to 255. When the value 0 all the LED will be off.

When it is 1, one LED will be on, when it is 2, the first LED will turn off, the second will turn on

and so on and so forth. So, you will you are going to see the counter value in a binary form.

But who is changing the count, the count is changing at every one second but that one second

duration is not being achieved by some delay loop. And instead we have used a timer to generate

an interrupt at every one second. And at every one second interval, we are incrementing the

count and outputting the count onto the port 1 register. So, that you will see the LEDs blinking or

rather counting information at the rate of one second. There is no other interaction; there is no

switch anything like that. Once you load the program and download it and power it up, you will

see the LEDs blinking.

(Refer Slide Time: 20:40)

So, here in this program, we have certain registers, we have certain sub-routines. These sub-

routines simply determines that all the pins of the port 1 should be set as output and their initial

value set to 0. So, that when you turn on the values will be 0. Here, we are choosing the timer

various modes of timer 0. What we are doing is, we are saying that we want to generate a

interrupt on capture compare register 0.

The clock for the timer is A clock. And A clock is source from the low frequency crystal as you

know on our MSP430 lunchbox, there is 32.768 kilohertz crystal. The frequency of that crystal

will be use to drive this counter, drive this timer and we want to compare when that count

reaches 32768 by loading the capture counter register to 32768.

When it reaches 32768 that means 32,768 pulses from the oscillator have elapsed. And since the

frequency is 32.768 kilohertz that means one second has elapsed. Upon that event it will generate

an interrupt.

(Refer Slide Time: 22:06)

See let us see the program, what we are doing as we always do. This is the main void and we

have disabled the watchdog timer. Now, you remember when we were discussing about the

clocks, the ACLK clock derived out of low frequency oscillator as well as low frequency low

frequency crystal oscillator. Both have to start working.

They are not very fast oscillators which means they will not start working right away after reset.

It may take some time to oscillators to build and stabilize and to do that you have to check for

this flag as we have seen in the previous lecture. We are just repeating that code here. We are

waiting in this loop to make sure that our oscillator is stable, was that oscillator stable. We are

calling this sub routine which we have seen previously here. Here we are here we are feeding

that A clock to timer 0 A0.

(Refer Slide Time: 23:08)

And then we are calling this sub routine to make all the bits of port 1 to be turned off. Then what

we are doing, then we are entering, we have loaded a value into starters register to unable the

global inter flag. This is very important. But we also have chosen to use low power 3. Low

power mode 3, this will disable everything except, it will keep on keep the A clock active. And

since we have chosen A clock to feed the timer which means timer will keep on working.

Also, the peripheral such as the ports will keep on working. So, once you execute this

instruction. Let me remove the comments here. Once you execute the comments here, you can

immediately go in the low power mode 3. And you are enabling the interrupts and before that

you have already enable the timer. The timer clock is selected from A clock that means once one

second gets over, you are going to go in the interrupt. And this is the interrupt program. We are

saying that our vector is timer is 0_A0 vector and this is the code for it. And what is the code?

Simply, have a count where you are saying the count is equal to increment the count and what is

count.

(Refer Slide Time: 24:41)

If you see here the count is see very important. Count is declared as volatile variable of the type

CAR which means it is a 8 bit counter and the initial value 0. Now, volatile means whenever you

increment it, it will be fetched again and again from the actual location instead of copy being

read from any register, internal register. It will be read from memory because this is going to be

initialized in memory.

So, we have declared this variable as volatile. And in that variable, we are incrementing and that

value incremented value simply outputting on the port 1 bits. So, once you compile, rebuild and

download this program. What you should see that every one second, the 8 bits LEDs will start

working like a binary counter and it will keep on counting from 0, it will reach all the LEDs are,

at 0 all the LEDs will be off.

Then as it gets every one second it will increment and at 255 seconds, you will see all the LEDs

on. And then in next second all the LEDs will be off again. And this will keep on happening.

And this is basically to show that the delay period of incrementing the LEDs, incrementing the

count display on the LEDs is not being done with the help of a CPU program, with the help of

the code but it is being performed by the peripheral which is the timer A_0.

And we will see more activities involving the timer such as the capture compare modes. And

also how to use the timer in the PWM generation facility. We will see in our subsequent lecture.

I suggest you play with this, if you want to change the frequency at the rate the clock the count is

being updated, you can go into this part of the code.

And change this number to a lower value and you will see that it blinks the LEDs, it counts the

LEDs faster. If you increase this you can have a slower update. So, I suggest that you play with

this code, update it, modify it, download it and see how various changes to the code will impact

the actual performance. Thank you very much, I will see you very soon, bye bye..

