
Introduction to Embedded System Design

Professor. Dhananjay V. Gadre

Netaji Subhas University of Technology, New Delhi

Lecture 22

MSP430 Digital I/O

Hello, and welcome back to a new session. And in this session, we are going to actually

connect a piece of hardware, that is our MSP430 lunch box to a laptop, as you can see my

setup here has changed apart from the iPad that I used to write and present this lecture. I

also have a laptop, on which I have connected the MSP430 lunch box. And I am going to

go through the first aspect that you would do when you connect a microcontroller to your

system that you would like to run the first program.

And when you learn C programming, the first program that you wrote was ‘Hello World’

in which you wrote a program, compiled it, and when you executed it on the screen of the

laptop or desktop computer it printed ‘Hello World’.

Now in our world of embedded systems, our world is dictated by the LED. And so the

first program will be ‘Hello LED’ and I will show you, once I explain how to write a

program to manipulate the bits and the pins that we have on our MSP430 microcontroller,

how do we write our first program so that we can convey the information on a LED

connected to our kit, that we, that is the objective of this lecture. So, let us begin.

Now, the problem is that in a microcontroller you have so many pins and you have many

more functions and the way to address this disparity is that allocate many, many

functions on a single pin and leave it to you the programmer, the embedded system

designer to write an appropriate program, to select an appropriate function to be routed to

that pin. But the basic function of each pin is to serve as either an input pin or an output

pin and even that is a big question that, how do you make a pin programmable?

You may recall that in one of the previous lectures I had mentioned, that one of the great

features of modern microcontrollers is the ability to decide by writing an appropriate

program that of the given number of input output pins how many will be input and how

many will be output. And so in this lecture, we are going to first of all solve that

conundrum and then we are going to address the issue as to how multiple functions are

routed to these pins, if you choose not to have those pins functions that in, function as

input output pins, how do you route additional functions on those pins?

So, we have a slightly complex task at hand and in the beginning it may appear very

daunting to you but please you know stay with me and I am sure, I would be able to help

you understand this whole complex arrangement of logic which allows a microcontroller

to funnel so many functionalities on one side onto a single pin. So since, we are dealing

with a MSP430G2553 microcontroller, which itself is available in two footprints,

meaning physical devices.

(Refer Slide Time: 03:37)

The fact is that the first version of the microcontroller, if you choose dip package you

will get two ports and those two ports are labeled P1 and P2, and our MSP430 lunch box

as a dip IC. In case you choose to implement your system using the SMD version, then

you will get 3 ports because that SMD version has 28 pins and those 3 ports are labeled

P1, P2 and P3.

Each of these ports has eight input output pins, meaning you can choose whether these

eight pins can be input or output or any combination thereof. As I mentioned, each of

these input output pins can be input or output and you can read or write to these pins.

You can also, apart from being input and output or output pins you can also configure

these input pins to become a source of interrupts on P1 and P2.

Apart from this functionality if you choose these pins to become input pins, then I had

mentioned that when you connect external devices which do not provide any logic

voltage then you had to transform the state of those signals as open and closed into 1 and

0, and so you need external resistors, you need pull-up or pull down resistors.

Well, on the microcontroller such as MSP430 you do not have to connect external

resistors, you can program the chip so that internal resistors can be pressed into service

and you can choose either a pull up resistor or pull-down resistor.

So, you can configure a pull up or pull down resistor and these ports, all these

functionalities are programmed through the 8-bit peripheral register interface that I had

discussed earlier, in the memory map of the microcontroller there were some registers

which were 8-bit access, some which were 16-bit so for the digital input output these are

all 8-bit registers. So, this is what we talked about here.

(Refer Slide Time: 05:42)

Now here is a schematic of one of the pin, you see this is such a complex circuit, it is

very much possible that you as a beginner will get, you know confused with such a

circuit but you do not have to worry, I am here to simplify things for you.

(Refer Slide Time: 06:04)

So, let me draw a simple diagram to illustrate this idea. The idea is that, I have a physical

pin, this is my pin, let me label it a pin, this is a pin of the microcontroller and you want a

mechanism, you want some circuit which will convert this pin as an output pin, which

means here is my microprocessor CPU bus, data bus and I would like to make this pin

output when I want to.

But when I reprogram the hardware related to this pin, I should be able to convert this pin

into a input pin. Of course, MSP430 offers you even more options but let us first see how

very basic digital circuit components can be pressed into service to provide that

functionality of being able to change the pin as input pin or as output pin. And one of the

biggest beauties of digital electronics is this, tri-state buffer.

So imagine, that I have a tri-state buffer, here is my flip-flop, a D type flip-flop, I call it

D-FF, into which I can write any value and here is a clock so that at the clock edge that I

decide a particular bit is stored in this flip-flop, the output of this flip-flop feeds the input

of this tri-state buffer, now it becomes a tri-state buffer. If the tri-state buffer control

signal is 1, then this output gets the value as input.

If on the other hand it is 0, then this tri-state buffer is disconnected from the pin and this

is how a typical microcontroller, a modern microcontroller such as MSP430 uses this

kind of hardware to select the functionality and give the control of that functionality to

you, the system designer or the programmer so that you can choose.

Do you want this pin to be an output, yes, if you want to this pin to be an output you will

write through appropriate registers, a logic one here that will enable this tri-state buffer

after that whatever you write into this flip-flop that value will appear here and

subsequently it will appear on the pin.

And so when I want to make a pin an output pin, I, my micro controller would have

suitable circuitry especially with the tri-state buffer which will be enabled through

writing bits into appropriate control registers and this tri-state buffer will be enabled,

thereafter I can keep on writing any bit sequence into this flip-flop and that value will

appear on this pin.

Now suppose, you want to convert this pin into an input pin. Obviously, you expect an

external voltage to be applied to this pin, this voltage could come from a external device

or it could be a switch, then you do not want this tri-state buffer to be enabled. Because

otherwise, this logic will come from here, and some logic will come from here, and if

these two logic values do not agree with each other it will lead to what we call as bus

contention.

And the simplest way to avoid it is to write, is to write a logic 0 here, if I write a 0 on this

control pin, then it as if disconnects this part. So, I am just left with a hanging pin from

the microcontroller side, and now I can use an external device to apply voltage.

And of course, this goes through a buffer and goes into the data bus, so that now, and

again this also needs a tri-state buffer so that on demand when the microcontroller

program reads, makes this bit a logic 1, here it will read the pin value and put it on the

data bus and eventually it will go into your register so, that you can process that

information. So, this is the basic idea behind any pin with the functionality that it can be

made input pin or output pin. And this is actually what is happening on this pin.

(Refer Slide Time: 10:19)

Here is my pin, if you see here, here is the pin. And you see, this is the tri-state buffer that

I was talking about, this tri-state buffer is controlled by this gate which is getting

information from some of these registers here and I am going to simplify that information

for you.

If this is enabled, this information is coming from this multiplexer and one of the

multiplexer inputs is this register called PxOUT. And you writing information here can

be routed into this and it can appear at this pin, if you want to make this pin as output, if

you want to make this pin as input then obviously, you will have to ensure that this tri-

state buffer here becomes 0, and then you can apply external voltage it will go through

this buffer, tri-state buffer and go into here and then can be read by the microcontroller.

So, as you see here, there are several, you know value is written here, some of them here

are related to the port, some of them are talking about timer, there is something here

about comparator, and ADC, and so on and so forth. So, this is to just indicate that

MSP430 microcontroller pin is multifunctional and it is up to you as the programmer to

decide which function this particular pin should behave and so we are going to look at

that.

(Refer Slide Time: 11:52)

Now, you see we are going to look at one example, let us see that, let us say that our pin

is P1.0. Now P1.0 pin whatever physical pin it maps on to has several functionalities, one

of the functionality is that it will act as a port pin 1.0, the other is that it can act as input to

one of the timers here TA 0 clock.

The other could be that it can be used to route an external information, in this case the

auxiliary clock value can be outputted on this pin. The fourth function that this can serve

is it can become the ADC input for with bit 0, the third is that it is a CA 0 input that is the

input for a comparator, and the last function that it can serve is that it can be used for

capacitive sensing.

So, as you can see each of these port pins has1, 2, 3, 4, 5, 6 functions and how do you

select which function will be used to make this pin work in, these are all the registers we

have. So we have one register called P1DIR, that DIR stands for direction, then we have

two registers called P1SEL and P1SEL2 so these are select registers.

So let us simplify it, say select register and select two register associated with each port,

which means P1 would have a select register, P1 would also have select two register, P1

would have direction register, P1 would also have registers associated with the ADC, and

P1 would have register associated with the capacitive sense functionality.

So, let us see, if we want to use the pin as an input output pin then what should be the

value of the register called direction register, what should be the value of the two

registers called select, and select two registers and the rest of the registers. Now you see

here, I can write a 0 or a 1 into the direction register, this will decide whether it becomes

input or output. But, to select it as input output, whether it is input or output will be

determined by the direction register.

But for it to become an input output pin you have to write a 0 and into the select register

and another 0 into the select two registers in the appropriate bit, remember each port has

eight pins, each pin is associated with the port bit. So, if I am talking about bit 0, that

means I am saying P1DIR 0, I am talking of P1SEL 0, I am talking of P1SEL2.0, and so

on.

So, this is very important that you have this functionality associated with each and every

pin. Now let us say, that no, you do not want to use this pin as a input output pin, you in

fact wanted to become a clock for the timer. That means, the value of P1DIR register for

bit 0, let us talk about 0, should be 0 and the select and select two pins, select and select

two bits should be 1 and 0 and ADC and the capacitive register can have 0, 0.

If it has to be used to route the internal auxiliary clock signal on to this pin, now you see

the direction becomes that it becomes an output. And that is why, you have written the 1

you have to write a 1 into the direction register. And select value is 1 and 0, select two 0

and ADC is 0, CAPD 0. If you want it to become ADC input, then it does not matter what

is the direction value, it does not matter what is the select bit value, select two bit value,

X means do not care, you overwrite that function by writing a bit 1 into this register

ADC10AE and since you do not want it to be the capacitive sense you write a 0.

On the other hand, if you want it to become a comparator input again this is X , X, X, this

is 0 and CAPD becomes 1. And if you want it to become capacitive sense then, the value

here is X but SEL1 value has to be 0 and 1 and these two are again 0, 0 this will select

this particular pin to become capacitive input.

And this as you see, this kind of functionality is repeated for rest of the pins, the actual

functionality will change from pin to pin but the selection process is the same. So, let us

see, how many resistors are we going to deal with when we are going to connect, decide

to use these pins as input or output.

(Refer Slide Time: 17:15)

So, for using the input output pins as I/O registers we have at least 1 the direction

register. X here refers to which port are we talking of, for example, if you are talking

about port 1 this will become P1DIR, if we are talking of port 2 it will become P2DIR,

and so on. So, I will not repeat this. So, we have PxDIR means the export, the direction

register, then we have the information register called PxIN, this is the register that you

will read if you want to make this pin or this port as input, if you want to make this pin of

this port as output you will write to the PxOUT register.

Now, if you choose to make this pin of this register as of this port as input you will of

course read this, but you may choose that you want a pull-up resistor or pull down

resistor, for that you have to enable the resistors and you do that by writing into this.

Whether it will be pull-up or pull down will depend on what you write into the PxOUT

register.

And then, is this pin going to function as input output pin or is it going to take the

alternative functions associated with this pin will be determined by writing appropriate

bits into SEL and SEL2 bits. So, this is the sequence of operation that we have to perform

and let us see how we do that.

(Refer Slide Time: 18:48)

So, we already gone through that, here X refers to the particular port, P refers to the port.

So, if I say, P1DIR that means, I am talking of the direction register associated with port

1. And if we choose the 28 pin package you will have port 1, port 2, port 3 it is a 8 bit

register. A value if you write in a particular bit, so you have 8 bits in a port, so let me

show that 8 bits to you, this is how I make 8 bits, this is bit 0 and going up to here bit 7.

Now, in this if I write a 0, so this is my P1DIR register. If in this I write 0 at bit 0 that

means the pin connected to bit 0 of port 1 will be configured as an input, that is the

meaning. If next pin if I write 1, that means bit 1 of port 1whichever pin it is connected to

will become an output pin and I will write appropriate values in this register to decide the

basic functionality of the port, whether I want them as input or output. I hope it is clear.

Now, if I choose by writing in the P1 direction register to be a 0 to make it as input,

where do I read the input from? This is just going to determine the direction input or

output. Now, you have to read different registers if you have made this pin as input or

you have made this pin as output.

(Refer Slide Time: 20:33)

If you want to make this pin as input, you have to read a register called PxIN, so here for

P1 it will become P1IN. Now of course, you may choose that for the 8 bits some of them

are inputs some of them are output, how do you read the value, you will read the entire

register, you will read P1IN and then isolate those bits which you have configured as

input and identify their values, a 1 means the pin is 1 is held at logic 1, if it this register

reads a 0 in a particular bit location, that means that pin was externally set to 0 that is the

meaning of this entire slide here and you can go through it to verify what I mentioned.

On the other hand, if you have decided that for a particular bit you want it to be output

you are going to write a 1 in that bit location.

(Refer Slide Time: 21:37)

How do you actually write the value, how do you actually send the value to the port pin,

you are going to do that by writing into the register called PxOUT, in this case that value

becomes P1OUT. So you will write values in this register, those bits of port 1 which are

configured as output they will take value that you write into P1OUT and will decide

whether that pin becomes 1 or 0, you will of course write it into the entire register but

only those ones will be affected which you have made as output, please understand this.

You, when you write to a register you are writing all the 8 bits but maybe you have only

one bit we have configured as output so the other seven bits will not affect the

functionality on those pins because they are not output, only the one which was

configured as output will get the value. And if you want to output a 0, you write a 0 into

the PxOUT register, if you want to output a 1 you are going to write a bit 1 into that bit.

(Refer Slide Time: 22:37)

And then as I mentioned, if you want to configure a port as input, you had to decide do

you want internal pull-up resistors, if you do, then you control and program this register

called PxREN, which means for port 1 this will become P1REN, port 1 resistor enable

and this enables either the pull-up or pull down.

Now, if you write a 0 in the PxREN register at an appropriate bit location it will disable

the function of pull-up pull down, if you write a 1 it will enable it, if you write a 1,

question is will it become pull-up or pull down? The answer is provided by writing an

appropriate value into the corresponding bit of the P1OUT register, by writing 1 into

P1OUT at that bit location it will make a pull-up function, if you write a 0 it will become

pull down function that is the meaning of this.

(Refer Slide Time: 23:48)

Now, we also had to deal with the select bits, there are two registers; one is called P1SEL

and P1SEL2, so this will become P1SEL for port 1, and this will become P1SEL2. And

what are the options we have? If the value is 0, 0 written into these two registers at any

bit location that enables that pin to function as input output, if it is 0, 1 it is the primary

peripheral module if it is 1, 0 it is reserved you are not supposed to use this combination

and if you write a 1, 1 into corresponding bit locations of these two registers a secondary

peripheral function is selected.

And we have already gone through the various combinations of PSEL and PSEL2, how

the other functions are selected. So now, we know that we have so many registers to deal,

with we have a direction register, we have a input register, we have a output register, we

have a pull-up enable register, and we have select and select two registers these many

registers you have to write.

Now thankfully, many of the resistors have friendly default values, that is values which

are at reset are helping you that these are configured as port and they are usually

configured as input, so you do not have to worry.

So, the only thing you have to do is, you have to decide whether you want the port to

become input or output by writing into the direction register and if you have chosen them

to become output to write values into the output register and that is it. Only when you

want to invoke the additional functionality, the secondary functionality you have to worry

about writing into the PSEL and PSEL2 registers.

Now since, in this first exercise we are going to deal with writing values, converting

these pins as output and writing values of ones and zeros we are, our program is going to

be very simple. But we still need to go through how we manipulate bits, so that I can

make a 1 or 0.

(Refer Slide Time: 26:17)

So as we know, we involve bitwise operations and we can invoke or function, that is or

two bits in corresponding locations and two bits for this we use a symbol this, for or we

use, this XOR we use this here, for shift right we use this, for left we use this, and for

inverting we use this tilde. Let us see some examples to deal with this.

(Refer Slide Time: 26:40)

Now, since the input output pins are independently configurable, it is very important that

we understand what information are we writing into any direction register, then

outputting into the output register, reading from the input register, selecting appropriate

pull-up values by enabling or disabling the REN register, and so on. So here let us say,

that we execute an instruction P1OUT is equal to P1OUT or BIT3. Now what is this

BIT3, BIT3 are value stored in the header file associated with this, we will show that with

an example.

And this allows us, these are mask bits, now if I say BIT3, now let me show where is

BIT3. In 8-bit register this is bit 0, 1, 2 and this is bit 3. Now we are saying, P1OUT is

equal to P1OUT or with bit 3, so bit 3 is 0 0 0 0 1 0 0 0. Essentially, this is nothing but if

you see this this becomes these are four bits become 0, these 4 becomes 8, so this is 0 8 in

hexadecimal.

So, these 3 are doing the same thing, here we are explicitly saying that P1OUT is equal to

P1OUT original value ored with BIT3 which is 8. In the second statement we are saying

it in a different, way we are saying P1OUT is equal to, repeat this operation P1OUT with

odd with BIT3. And in this one we are explicitly saying, that or P1OUT with this

information which is 0x08. So, this is the way you can manipulate the bits using the or

operator. Now we have seen, how to make a bit 1 or 0 on any of the port pins. Let us look

at how do we turn that LED on.

(Refer Slide Time: 28:53)

Now you see here, the basic assumption is that on our port in this case P1.3 our LED is

connected like this, which means if the bit is 1 the LED will glow, if the P1.3 bit is 0 it

will become, it will turn off. Now we want to turn off the LED, we do not know what is

the previous value, we do not know whether the LED was on or off, how do you ensure

that we turn off that LED? Now there is no way to directly address this LED, why,

because this pin is part of eight pins and so if you write to this register it is likely to

change the information on the other bits.

So what we must do is, we must isolate this bit and only make it 0 and so this is what it

does, that P1OUT is equal to the original value of P1OUT which means the value that

exists right now on this port, I want to and it with the invert of BIT3, I already mentioned

what is BIT3, BIT3 is 08hex, which means 0 0 0 0 1 0 0 0.

Now what is the invert of that, it becomes 1 1 1 1 0 1 1 1 which is equal to F7. So in this,

without explicitly mentioning F7x, I have inverted that bit and involved in that operation

it is going to take the original value of port 1 out register and it with this F7 which will

make the BIT3 equal to 0 and I am going to send that information to that port, what will it

do, it will retain the information on the rest of the seven pins and only make port 1 BIT3

equal to 0.

Another way of doing that is this. And the third way is to explicitly mention, that you

want to and P1OUT with F7 which of course, you got using inversion of BIT3 also. So,

this is the way to turn a particular pin of the previous one showed how to turn it on.

(Refer Slide Time: 31:06)

Now in case you want to make a particular port pin as input, then you must read the value

on the register called P1IN. And here we have taken an example, that suppose we have a

switch connected to P1.5, port1 bit 5 then you must and the BIT5, now what is BIT5?

Here, this is 0 1 2 3 4 and this is 5 6 and 7, so you want to know what is this value so you

will read it, isolate this bit and if, if the anding operation is equal to 0 that means this bit

is 0 you can choose to do something, if else you can do something else, that is the

meaning of this structure of the program.

So, you can read entire register P1IN, isolate a particular bit that you are interested in

using bit operations and the result will be 1 or 0, which will allow you to do one or the

other thing that you want to do.

So we have now seen how to manipulate the registers to program the MSP430

appropriately, so that we can control the pins whether they are input or output, right now

we are going to deal with the port pins as output and so we are ready to write our first

program and to write it, compile it, and then download it into our MSP430 to control the

LED which is connected on the appropriate pin of the MSP430 lunch box, which I will

mention in the next part of this where I am going to switch over to the laptop.

So, what I have here is my laptop and I have opened the ‘Hello LED’ program you would

have downloaded it from the git repository and you would see a program called ‘Hello

LED’ I will go through that.

(Refer Slide Time: 33:09)

So, the first part of the program is talking about including MSP430H, this is a header file

which has useful information, such as the bit mask and so on. Then you have the main

code, this main code is like an infinite loop where you are doing something. And the

reset, when you reset a MSP430 micro controller you remember when we were talking

about reset it turns on the watchdog timer, and if the watchdog timer is turned on it is

going to reset you very frequently.

So, we do not want the watchdog timer to interrupt what we are doing or to stop what we

are doing and therefore, the first instruction is to stop the watchdog timer from generating

reset information. Then we come to dealing with the deciding the direction of our port,

here we have LED connected to bit seven. And so what we do is, we make P1DIR which

is the direction register for port 1 we make it 1 and we do it without affecting the

functionality on the other pins.

So we have an instruction called P1DIR is equal to P1DIR ored with 0x80, so that means

the most significant bit being equal to 1 the rest being 0 is anded, is ored with the rest of

the, with the original value of direction register and that is sent again to the direction

register, this configures P1.7 pin to become an output pin. Now, in the current form we

have, we are writing a 1 into that by saying P1OUT is equal to the original value of

P1OUT ored with 0x80, so we are turning it on and I am going to do this.

So, I select the ‘Hello LED’ program and on that I press the rebuild project and you see

what it does, it is going to compile the program and eventually it will download the code

into the microcontroller bit and lo and behold the user LED has turned on. Now let me,

modify this program, so as to turn it off. I will comment this part of the code here, I am

going to comment this and uncomment this part where I want to make it 0 and so I

remove it.

And now I will recompile this, rebuild this, again it is going to, you know compile it and

then download it and you see the LED has been turned off. So, this is the first part of the

exercise of writing a program and downloading it into the microcontroller kit.

What have we seen in this, that our first part of the instruction is to disable the watchdog

timer, then select, write into the direction register so as to select the direction of the bit

that we are dealing with, in this case it is P1.7, and then since we want it as an output we

write appropriate values on the output register that is P1OUT on bit seven because we do

not want to affect the output pins of other bits, so we only isolate P1.7 and write whether

we want to write a 0 will turn the LED off, if we write a 1 will turn the LED on, and that

is the first part of this exercise.

Now this may look very trivial, but to be able to come to this point gives you great

confidence for many things, one that your compile process is working, that you have the

ability to download code into your working board and that the board is also working.

Now let us go to the second part of this program, which is to basically blink the same

LED so instead of just turning it on or off we are going to add a certain more code into

that initial this program and make it blink.

(Refer Slide Time: 37:52)

So, this we call as the ‘Hello Blink’ you would again, by downloading it from the git you

would have access to this. Here again we have the include instruction and then we have

the main code loop which is an infinite loop in that we, on line number seven or whatever

line you have on your version you would find that we have disabled the watchdog timer.

And then we write the direction, we make the direction of pin 1.7 port 1 bit seven, we

make it output by writing a 1 into it and then we go into an infinite loop.

See in the earlier case we just wanted to write 1 or 0, now we want to continuously write

1 with some delay we write a 0, then with some delay we write 1 again and so on so

forth, so that the LED can blink. Now it will appear to be blinking only when the delay

between, delay between the turn on and turn off is sufficient to be observed by human

eye and so we have written a delay, small delay function which delays, it ensures that the

state of the LED is held to a value of 0 or 1 long enough for it to be observable by human

eye.

And so, what we have here is mechanism to do that, in the first part we are turning the

LED on by writing a 1 into that register, then we have a line where we say for i equal to

0, i less than ten-thousand essentially this is a delay. We can also replace with some built-

in delay functions which we will look at later on. But right now, this is like a delay

created using a loop which runs for certain amount of time, once you get out of that loop

you again you toggle the value.

Now here we have done and the value of the original value with the inverted value of 80,

that is what we have done here. And this toggles, this makes the LED 0 and then again

we delay, so we have another same repeat of delay function and then this is the complete

while loops, so it is going to go through that writing 1, delay, writing 0, delay, and it is

going to do this infinitely.

Now when you do compile this, when you build this code, so I have choose rebuild

project, now you see it is going to compile, and download and lo and behold that LED is

now blinking at a comfortable rate which is observable by the human eye. I hope you are

able to get a similar experience with your kit that you are able to turn the LED on and off

and then you are also able to blink it, if you have reached this stage I must extend my

congratulations to you because that means that the entire ecosystem is working as good to

you with you as it is to us.

And we are ready to jump into the next part of our programming exercises, where we will

show how to read inputs from the pins, how to output values based on the inputs that we

read and many other things including interrupts, and so on and so forth. So, I hope you

are with us in this activity, I thank you and I will see you very soon. Bye.

