Introduction to Embedded System Design
Professor. Dhananjay V. Gadre
Netaji Subash University of Technology
Professor. Badri Subudhi
Indian Institute of Technology, Jammu
Lecture 13

MSP430 Architecture- Continued And Introduction to Lunchbox

Hello and welcome back to a new session. In this session we are going to talk about the MSP430
microcontroller, continuing from our previous lecture. This is part of the online course on
Introduction to Embedded System Design and as usual 1 am your instructor Dhananjay Gadre at
Netaji Subash University of Technology. Now in the last lecture on MSP430, we looked at the

MSP430 series map of the memory map and specifically the G2553 microcontroller we were

looking at that here.

(Refer Slide Time: 01:02)

MSP430 G Series Memory Map

A N

M§P430G2153

MSP430G2253
MSP430G2213

MSP43062353
MSP430G2313

MSP430G2453
MSP43062413

MSP430G2553
MSP43062513

Memory
Main: interrupt vector
Main: code memory

18
OxFFFF to OFFCO
OxFFFF o 0xFC00

A8
OxFFFF to OxFFCO
OxFFFF to 0xF800

48
OKFFFF to OKFFCO
OxFFFF to 0xFO00

88
OxFFFF to OFFCO
OXFFFF to OxE000

16kB
OxFFFF to OFFCO
OxFFFF to 0xC000

Information memory Size

25 Byte
010FFh o 01000

256 Byte
010FFh to 01000h

256 Byte
010FFh to 01000h

256 Byte
010FFh to 01000h

256 Byte
010FFh to 01000h

Size

25 Byte
0K025F 10 0x0200

2568yt
0x02FF to 0x0200

268yte
0H02FF to 0x0200

512 Byte
0x03FF to 0x0200

512Byte
0x03FF to 0x0200

16-bit
8bit
8-bit SFR

01FFh 10 0100k
OFFhto 010h
OFh to 000

01FFh o 01000
0FFh to 010
OFh to 00h

01FFh to 0100
0FFhto 010h
OFhto 00h

01FFhto 0100
0FFhto 010
OFhto 00h

01FFhto 01000
OFFhto 010h
0Fh to 00h

Let us continue further.

(Refer Slide Time: 01:06)

Memory Organization
(Flash)

MSP430 flash memory is partitioned inte segments. A
segment is the smallest size of flash memory that can be
erased.

The flash memory is partitioned into main and information
memory sections.

The differences between the two sections are the segment

size and the physical addresses. The information memory has

four 64-byte segments. The main memory has one or more
512-byte segments.

The flash memory which in this case is 16 Kilobytes of flash memory is partitioned into
segments. A segment is the smallest amount of memory that this microcontroller can erase and
the flash memory is partitioned in two parts, as we discussed, one is the memory where you store

the code and the other is what is called as the information memory.

The differences between the two sections here, the code segment and the information segment is
the size of the segment. The information segment is 64 bytes segments and the main memory
where you store code is 512 bytes.

(Refer Slide Time: 01:51)

Memory Organization

(Flash) FEFE; FFFF

The start address of Flash/ROM depends
Interrupt and Reset Vector Table

on the amount of Flash/ROM present and il
a ode Memory

OxFFCO

varies by device. OXFFBF

The end address for Flash/ROM is OXFFFF [(lower boundary varies)
for devices with less than 60KB

Flash/ROM.
Flash can be used for both code and data 0x1000
but is generally used as code memory. The
code memory holds the program.

Flash Information Memory

Bootstrap Loader (BSL)

The interrupt vectors are used to handle the

= S . 0x0200 (upper boundary varies)
interrupts. The interrupt vector table is COUE RIS

mapped into the upper 16 words of 0x0100 (word access)

- . 3 0x00FF peripheral registers
Flash/ROM address space, with the highest S (byteaccess)
priority interrupt vector at the highest 0x000F special function registers

i (byte s)
Flash/ROM word address (OXFFFE). = =

In our case the amount of memory that is available you have, in 2553 we have 16 kilobytes of
memory. We have already discussed what all we can do with this and | will repeat here that the
flash memory can be used to store code as well as constants and you can modify some of these
constants also. The interrupt vectors are stored in the flash memory part of the code code

memory in the very upper the is the uppermost part of the flash memory.

This is the where you are storing the interrupts and various interrupt vectors as well as the reset
vectors. We have seen that the reset vectors is at address let me write it down here, is at address
FFFE and FFFF. You see it takes two bytes because the addresses are 16 bits that is why you
have to store these two locations.

(Refer Slide Time: 03:08)

8.4 Interrupt Vector Addrosses

The interrupt vectors and the power-up starting address are located in the address range OFFFFh to OFFCO
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.
If the reset vector (located at address OFFFEN) contains OFFFFh (for example. flash is not programmed), the
CPU goes into LPM4 immediately after power-up.

Table 5. Interrupt Sources, Flags, and Vectors

Here is the table which describes all the interrupt vectors. G2553 supports 32 interrupts and each
of the interrupt requires interrupt sub routine. Interrupt sub routine is going to be a program in
the flash memory and in this vector table you store the address of that location in the flash
memory and so each address is 16 bits and so for 32 interrupts it requires 64 memory locations
and this is the this is the description of that.

(Refer Slide Time: 03:48)

te e e wrn s s e e e % g Ao e 5 % % %% yware erveansopras s e e o yge e e g e
CPU goes into LPM4 immediately after power-up.
Table 5. Interrupt Sources, Flags, and Vectors
INTERRUPT SOURCE INTERRUPT FLAG e e PRIORITY
Power-Up PORIFG
External Reset RSTIFG
Watchdog Timer+ WOTIFG Reset OFFFER 31, highest
Flash key violation KEYV®
PC out-of-range '
NMI NMIFG {non)-maskable
Osaitator fault OFIFG (non)-maskable OFFFCh 30
Flash memory access violation ACCVIFG™! (non}-maskable
Timer1_A3 TA1CCRO CCIFG* maskable OFFFAh
Timer1_A3 TAICCR2 TA1CCR1 CCIFG,
TAIFG@ maskable OFFF8n 28
Comparator_A+ CAIFG™ maskable OFFFBh 27
Watchdog Timers WDTIFG maskable OFFF4h 26
Timer0_A3 TAOCCRO CCIFG* maskable OFFF2h 25
Timer0_A3 TAOCCR2 TAOCCR1 CCIFG, TAIFG maskable OFFFOR 24
ustagg.«;ng;ésf‘;:1n UCAORXIFG, UCBORXIFG @)% I p— =
USCI_AQ/USCI_BO transmit UCAOTXIFG, UCBOTXIFG #(®
USCI_BO FC receiveitransmit onskable OFFECh 2
ADC10 ADC10IFG ™
(MSP430G2x53 only) S— ihein a
OFFEBh 20
VO Port P2 (up to eight flags) P2IFG 0 to P2AFG. 7™ maskable OFFESh 19
VO Port P1 (up to eight flags) P1IFG 0 to PIIFG.79H! maskable OFFE4h 18
OFFE2h 17
OFFEOh 16
See ™ OFFDEN 15
See ™ OFFDER to
pAtmady 14 10 0, lowest
(1) A reset is generated i the CPU tries to fetch instructions from within the module register memory address range (Oh to 01FFh) or from
within i icadt addrace rannae

As you can see at the top of the location is reset vector and you have the other interrupts

associated with various peripherals of G2553. We will go in this details when we are using these

peripherals. So, | am not going through each one of them but as you can see from this table that it
has interrupts for timers as well as comparators, watch dog timer, the universal serial

communication interfaces and the EDCs and as well as ports.

(Refer Slide Time: 04:28)

Memory Organization

(Information Memory)

~ —
~ . 5 OxFFFF
Information memory 1s OXFFCO Interrupt and Reset Vector Table
OXFFBF [

block of flash memory Flash Code Memory
intended for storage of nonvolatile [ERws floWErboUnKATy:vares)

OxEFFF
data. . 0x1100
Memory address range is: 0x1000h [JESUS

= — R Flash Information Memory
to Ox10FFh. — |- e

L
The information memory has 4 0x0C00 Bootstrap Loader;{BSL), :-
O0xOBFF
segments of 64 bytes each. Segment [Pt

A contains factory calibration data 0x027F RAM
for the DCO in the MSP430G2553. [eke {upper boundary varies)

OxO1FF peripheral registers

e :
After reset, segment A is protected 3t (word access)

. . . Ox00FF peripheral registers
against programming and erasing. 050100 st ncoass)

0x000F special function registers
0x0000 (byte access)

Now the information part information memory of the flash memory is in the case of G2553 you
have 256 bytes here and it is starting from this address to this address. This is 256 bytes and the
information these 256 bytes are splits in four segments of 64 bytes each as | mentioned earlier
and these are used to store various information. You can store constants as well as the first
segment is used to store factory calibration data for the digital controlled oscillator. The

oscillator that uses the RC oscillators.

You want them to be accurate so each one of them is calibrated so that they provide your 16
megahertz or 8 Megahertz clock frequency and so that information is stored there and this
segment called segment of the information memory is protected at reset. You cannot reset after

reset you can overwrite this information because this is very critical information.

The next part of the memory is what we call as the bootstrap loader. Now | have mentioned in
the past that MSP430 microcontroller can be programmed in several ways. One of them is to use
this spy-bi-wire protocol and the other is through the J-Tag four J-Tag pins that we have on the

micro controller like MSP430 and the third method is through the boot loader which in

application programming method of uploading a code and in MSP430 jargon this is called

bootstrap loader.

(Refer Slide Time: 06:12)

Memory Organization

Bootstrap Loadey

A OXFFFF
Bootstrap Loader memory is a oxFrco| Interrupt and Reset Vector Table

1023B block of flash memory UELOF Flash Code Memory
(lower boundary varies)

that 1s intended for storage of 0xF000

olatile dz OXEFFF

Memory address range is: OX10FF =)

= = 0x1000 ash Information Memory
0x0CO00h to OxOFFFh. =

Bootstrap Loader (BSL) memory

space contains code which is
invoked when the controllers 0x027F RAM

o J 0x0200 (upper boundary varies)
enters into BSL programming] T

mode 0x0100 B _(word access)
Ox00FF peripheral registers
0x0100 (byte accessﬁ)ﬁ
0x000F special function registers

0x0000 (byte access)

And that bootstrap loader is located at this address as you see here. This is the location and in the
case of MSP430 microcontroller you do not have to write that program. The each and each every
MSP430 microcontroller specially the G series, they come with a preprogrammed bootstrap
loader.

All you have to do is in your microcontroller system provide an ecosystem which is compatible
with invoking the bootstrap loader mechanism and then you can upload any program from your
desktop computer into the memory of the microcontroller and later in this section we will discuss
about that but to mention here that about 1 kilobyte is flash memory is available and

preprogrammed with a Bootloader provided by Texas Instruments.

(Refer Slide Time: 07:14)

Memory Organization

(RAM)

OXFFFF
o ~ OxFFCO
e RAM is used for OXFFBF

Flash Code Memory

da[a/\'ari ablCS. OXFO0O (lower boundary varies)

RAM starts at 0200h. The end Siiiii,_

~ Ox10FF "
address of RAM depends on deioth Flash Information Memory

ol OxOFFF
the amount of RAM present gkl Bootstrap Loader (BSL)

: s OxOBFF
and varies by device. o

MSP430G2553 has 512 Bytes [l RAM

0x0200 g—: (upper boundary varies)
e —— =
Of RAM OxO1FF peripheral registers

0x0100 (word access)
Ox00FF peripheral registers
0x0100 (byte access)
0x000F special function registers
0x0000 (byte access)

Interrupt and Reset Vector Table

The RAM is used for storing variables as well as stacks and you have 512 bytes of S RAM
available on the G255 series. Here is the address. This is the starting address 0200 and the upper
limit of that address depends on exact chip number. In this case 512 bytes so from 0200 it will go

up to 212, 512 locations.

(Refer Slide Time: 07:54)

Memory Organization
(Peripheral Modules)

Peripheral registers are used by CPU

to access and configure peripherals. OFFFF | | terrupt and Reset Vector Table

The address space from 0100 to OKFFBF

Flash Code Memory
(lower boundary varies)

01FFh is reserved for 16-bit peripheral

accessed with word instructions. If OOy Flash Information Memory

modules. These modules should be

Bootstrap Loader (BSL)

byte instructions are used, only even OXOFFF

addresses are permissible, and the

high byte of the result is always 0.
You can find the details of each 0:0200] (upper boundary varies)

RAM.

N] .) OXO1FF peripheral registers
peripheral register and its address in oow00| T (wordaccess)
< . ; P 0x00FF peripheral registers
the ‘Peripheral File Map’ in the 0x0100 14 (byte access)
0x000F special function registers
E (byte access)

datasheet.

Apart from the flash, the information flash and the RAM, you also have memory used by the
peripheral resisters of the CPU and you can see them here. There are 3 types of resistors. Some

of the resistors require 16 bit access so they are available here word access. Some of the

peripherals require 8 bit storage and so those resistors are accessible through this and then there

are special function resistors which we will come to shortly.

(Refer Slide Time: 08:38)

Table 14. Peripherals With Word Access

MODULE REGISTER DESCRIPTION i OFFSET

ADC10 TADC data transfer start address | Apc10sA 18Ch
(MSP430G2x53 devices only) A5G memoty Y e
ADC control register 1 ADC10CTLY 182n

ADC control register 0 ADC10CTLO 180h

Capture/compare register TAICCR2 0196h

Capture/compare register TAICCR1 0194h

Capture/compare register | Tatccro 0192h

Timer_A register | TR oteon

Capture/compare control TAICCTL2 0186h

Capture/compare control TAICCTLY 0184n

Capture/compare control TA1CCTLO 0182h

Timer_A control | mc. | oteon

Timer_A interrupt vector TAIV 011Eh

Capture/compare register TAOCCR2 0176h

Capture/compare register TAOCCR1 0174n

Capture/compare register " Taoccro | 0172h

Timer_A register TAOR 0170n

Capture/compare control TAOCCTL2 0166h

Capture/compare control | Taocem 0164h

Capture/compare control TAOCCTLO 0162h

Timer_A control [Taoch 0160n

Timer_A interrupt vector TAOV 012€h

Flash Memory Flash control 3 | FcM3 | o1ch
— Flash control 2 FCTL2 012Ah
—— Flash control 1 [Fema 0128h
Watchdog Timer+ &— | Watchdog/imer control | wotetL 01200

This is the various 16 bit word storage peripheral resistors as you can see they deal with ADCs,
they deal with timer 1 and timer 0 as well as flash memory. You can control access to the flash
memory by writing into these resistors and you can also write to the control the watch dog timer
at this location.

(Refer Slide Time: 09:05)

Memory Organization

(Peripheral Modules)

The address space from 010h to OXFFFF

: < 4 1 OXFFCO
OFFh is reserved for 8-bit peripheral i

Interrupt and Reset Vector Table

Flash Code Memory

modules. These modules should be |- (lower boundary varies)

accessed with byte instructions. OXEFFF _l
0x1100

o s Ox10FF .
Read access of byte modules using [Flash Information Memory

0x1000

OxOFFF d
0x0C00 Bootstrap Loader (BSL)

OxOBFF
0x0280
0x027F RAM

0x0200 _(upper boundary varies)
Ox01FF peripheral registers

word instructions results in
unpredictable data in the high byte.

If word data is written to a byte

module only the low byte is written

into the peripheral register, ignoring | {word access)

= = R 0x00FF peripheral registers
the hlgh ble. 0x0100 ? (byte access)
0x000F special function registers
0x0000 (byte access)

Then you have the peripheral modules for 8 Bit peripherals which is here

writing 8 bit data into this information you can control such peripherals.

(Refer Slide Time:

Here is a list as you can see there

09:21)

moouLE
Usci_so

PR
—

and by reading and

Table 15. Peripherals With Byte Access
REGISTER DESCRIPTION

are much more than what you saw in

the world accessible

peripherals. This is the USCI that is Universal Serial Communication Interface. The second

module you have some ADC devices, you have the comparator. The clock system can be

controlled various low power modes by writing into this and the ports P3 and P2 can be

accessed.

(Refer Slide Time:

09:48)
Table 15. Peripherals With Byte Access (continued)
MODULE REGISTER DESCRPTION Rfﬂf‘?’* OFFSET

Port Pt Port P1 selection 2 PISEL2 Mth
— Port P1 resistor enable PIREN 027h
_— PortP1 selecion PISEL 28
Port P1 internupt enable PIE 025
Port P1 interrupt edge select P1IES 024h
Port P1 interupt flag P1IFG 023h
Port P1 drecton PIDR 022
Port P1 output P1OUT 02t
Port P1 input PIIN 1200
Special Function SFR interrupt lag 2 IFG2 003
=? SFR interrupt flag 1 IFG1 002h
o SFR iterupt enable 2 2 0th
SFR interrupt enable 1 IE1 000h

And similarly Port 1 and other special function resistors related to the interrupt control are
accessible through this byte access special function resistors. Well | meant byte accessed

peripheral resistors.

(Refer Slide Time: 10:02)

Memory Organization

(Special Function Registers)

4 5 . OxFFFF
Some peripheral functions are R R

configured in the SFRs. The ekt

SFRs are located in the lower 00
X

16 bytes of the address space, 0x1100

and are organized by byte. g

SFRs must be accessed using s Bootstrap Loader (BSL)

byte instructions only. 0X0BFF
0x0280
MSP430G2553 has interrupt 0x027F | RAM

. 0x0200 (upper boundary varies)
enablCS and lntcrmpt ﬂag Ox01FF Wpenpheral regﬁers

registers as SFRs 0x0100 __(wordaccess)
= . O0x00FF peripheral registers

0x0100 (byte access)

0x000F ‘ special function registers
0x0000 (byte access)

Flash Code Memory
(lower boundary varies)

Flash Information Memory

Then we have special function resistors, these deals with various enabling of interrupts and
allowing interrupts to function and flag resistors related to them. The storage is 16 locations that
is 16 bytes. Now we have reached a stage where we are ready to talk about the CPU in MSP430.
This CPU of MSP430 is RISC architecture and as recommended by the risk specifications which
were brought forward in early 80’s. RISC wanted all the CPU to have large number of resistors
so that local variables could be stored within the CPU rather than having to go in the external

memory such as the RAM for fetching them which slows down the execution

(Refer Slide Time: 11:09)

MS43O CPU Block Diagram
And in keeping with that recommendation MSP430 has 16 general purpose resistors. They have
labeled from RO here to R15. Each of these resistors can store 16 bit of data. These resistor feed
16 bit ALU as you see here. The ALU can perform various mathematical and logical operations
like add, subtract and AND/OR operations and the result of these operations can be observed
through these flags but these flags are accessible though one of these general purpose resistors

that we will see. So, we have in all 16 resistors. Let us see the function of these resistors.

(Refer Slide Time: 11:52)

CPU Registers

Program Counter PC/RO

16 Registers: The generous set of 16
registers is characteristic of a RISC CPU.
These Registers provide reduced coama
instruction execution time. General-Purpose Register | R4
Register to register operation takes only Senerst Purpsss figiser || i
ClOCk Cych. General-Purpose Register

SP/R1

Status Register SRICG1/R2

General-Purpose Register

4 Special Purpose General-Purpose Register

Program Counter(PC) &= ———
Stack Pointer(SP) & — [[Generar-Purpose Register]

General-Purpose Register

General-Purpose Register

Status Register(SR) &—

General-Purpose Register

Constant Generator == S
12 General Purpose - CPU Resisters

e e

There are 4 special function resistors which means that out of this 16, 4 are taken off because
they have dedicated function. One of the resistors is the program counter which means that the
content of this resistor will tell you which memory location in flash the microcontroller CPU is
fetching the current instruction from. The second resistor is for stack pointer which tells you that
where is the stack located in the RAM.

It is your responsibility to ensure that the stack pointer is pointing in the right memory of the
RAM and the third is the status resistor which indicates the various flags that we just saw
whether the result of a particular CPU operation of AND (12.36) whether the result is 0 or
whether there is a overflow. All those flags will be available in this status resistor and there is
interesting concept called the constant generator.

In many programs you require certain constants and this constant generator offers you that
flexibility without having to store them in your program and then apart from that you are left
with twelve general purpose resistors which the CPU utilizes. Now since we are not going to
program MSP430 in our course in assembly language program, we do not really worry about

how this general purpose resistor are going to be used.

It is depended on the C compiler or whichever compiler that we use to optimally use these
resistors but to know that they exist is great consolation that our program is going to be compiled

efficiently.

(Refer Slide Time: 13:33)

CPU Registers

Program Counter

— This contains the address of the next instruction to be
executed. Instructions are composed of 1-3 words, which
must be aligned to even addresses, so the LSB of the PC is
hard-wired to 0.

Program Counter Bits 1510 1

So, let us see which special resistors we have. We have a program counter and since the program
counter deals with reading the next instruction. The instruction are all 16 bits wide whereas our
memories are arranged in terms of bytes and therefore the least significant bit here is set to 0

because we want to store all our instructions at even byte addresses even addresses.

So, our first instruction if it is if it is at O the next will be 2 and then next will be at 4 and this can
be ensured by ensuring the least significant bit is set to 0 and therefore out of potential 64
kilobyte memory space we can actually store how many instructions? We can store half of them

32768 total instruction you can store.

Of course, the actual number of instruction that you store will depend on the available memory.
The flash memory that you have but this kind of limits the maximum number of instruction that
you can have. Instructions themselves can be one word which means 2 bytes or two words or

three words that is the depends on the exact instruction.

(Refer Slide Time: 14:55)

CPU Registers

Stack Pointer

? . .
— The stack pointer is used by the CPU to store the return
addresses of subroutine calls and interrupts.

— The SP is initialized into RAM by the user, and is
aligned to even addresses.
— SP hold the address of the most recently added word'in

the stack and is automatically adjusted as the stack goes
up and down.

Stack Pointer Bits 15 o 1

Then the second resistor we have is a stack pointer. A stack pointer is a special resistor which
points to the stack and stack is that memory area where you are going to store your return
address and you call a subroutine or where the CPU stores the return address in case an (instruct)

interrupt subroutine gets called.

So this is the location, this is the RAM location in which you store your return address. Again

just like the program counter, the insignificant bit is set to 0 so that it is able to write 16 bit

numbers which refer to the address of your program the return address and therefore this bit is 0
the rest of the bits are available to you and of course it your responsibility to initialize the stack

pointer appropriately.

(Refer Slide Time: 15:44)

CPU Registers

Status Register

— This contains a set of flags (single bits), whose functions fall
into three categories.
The most commonly used flags are C, Z, N, and V, which
give information about the result of the last arithmetic or
logical operation. Decisions that affect the flow of control
in the program can be made by testing these bits.
Setting the GIE bit enables maskable interrupts.
The final group of bits is CPUOFF, OSCOFF, SCGO, and
SCG1, which control the mode of operation of the MCU.
e 5 4 3 2 1 o

EACICEIEICI KRR

w0 w0 w0 w0 w0 w0 w0 w0 w0

The third resistor is a status resistor and the status resistor consists of various flags and we will
see the details of it. It also has access to the interrupt mask so that you can enable disable
interrupts and it has some special flags which allow you to turn the CPU off or turn the oscillator

off and so on and we will see these operations subsequently in our exercises.

(Refer Slide Time: 16:10)

Status Register

Bit Description

Overflow bit. This bit is set when the result of an arithmetic operation overflows the signed-variable range.
ADD(.B) ,ADDC(.B) Set when
Positive + Positive = Negative

v
o

Negative + Negative = Positive

Otherwise reset

Set when

Positive -~ Negative = Negative

Negative - Positive = Positive

Otherwise reset
SCG1 System clock generator 1. When set, turns off the SMCLK.
SCGO0 E System clock generator 0. When set, turns off the DCO dc generator, if DCOCLK is not used for MCLK or SMCLK
OSCOFF (© Oscillator Off. When set, turns off the LFXT1 crystal oscillator, when LFXT1CLK is not use for MCLK or SMCLK
CPUOFF;CPU off. When set, turns off the CPU
GIE4~
N Negative bit. Set when the result of a byte or word operation is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the resuit

General interrupt enable. When set, enables maskable interrupts. When reset, all maskable interrupts are disabled

Byte operation: N is set to the value of bit 7 of the result.

Zero bit. Set when the result of a byte or word operation is 0 and cleared when the result is not 0.

Carry bit. Set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

We have overflow flag which is set to 1 when the result is an overflow as a result of
mathematical operations when you are dealing with sine bit numbers. We have these two system
clock generator bits where you can turn on and turn off the main clock or the other clocks. We
have the oscillator clocks and so on and here is the general purpose interruptible and then these
are the 3 flags apart from the overflow flag which is the negative flag which means that when the
result the most significant bit of your number that you are looking at if it is 1 this is negative flag
you have the 0 flag.

When you do any mathematical operation or logical operations it results in 0 in all the bits and a

carry flag when there is carry from the most significant bit into the outside that. So these are the
flags that are available.

(Refer Slide Time: 17:09)

CPU Registers

Constant Generator Registers

Six commonly-used constants are generated with
the constant generator registers R2 and R3,
without requiring an additional 16-bit word of
program code. The constants are selected with the
source-register addressing modes (As).

The constant generator advantages are:

— No special instructions required

— No additional code word for the six constants

— No code memory access required to fetch the constant

The constant generator resistors resistor is able to provide 6 commonly used commonly used
values using R2 and R3 and no special instruction is required to access those constant values and

we look at a program so that we illustrate this concept.

(Refer Slide Time: 17:31)

CPU Registers

General Purpose Registers

- The remaining 12 registers R4-R15 have no
dedicated purpose and may Be used as general

working registers.

They may be used for either data or addresses
because both are 16-bit values, which simplifies
the operation significantly.

The rest of the general purpose resistors can store 16 bit values and you have 12 resistors to do
that as you see here from R4 to R15 and there is no dedicated function associated with these
resistors. These will depend on if you are going to program in assembly language then it is your
responsibility to use them judiciously. If you are going to use a high level language compiler
then it is compiler responsibility to use these resistors as it may deem fit.

Now, since we are not going to program MSP430 in assembly language programming but we
still want to have a feel of the kind of instructions that are available as | mentioned MSP430 is
RISC architecture which means the number of instructions expected is less compared to

corresponding CISC architecture.

It may have varieties of those basic instructions in the form of addressing modes so we will just
go through those names and we will see how much time some these instruction take and what is
the size of these instructions as | mentioned the instructions could be 1 word or 2 words or 3
words and then eventually we will see how we are going to be experimenting with MSP430
microcontroller in our course by looking at the design of the MSP430 lunchbox.

(Refer Slide Time: 18:53)

Instruction Format

There are three formats of instructions in the MSP430:

Double operand: Arithmetic and logical operations with two operands such as
ADD R4,RS5. Both operands must be specified in the instruction. This contrasts
with accumulator-based architectures, where an accumulator.or working regis
used automatically as the destination and one operand.

Single operand: A mixture of instructions for control or to manipulate a single
operand, which is effectively the source for the addressing modes.

Jumps: The jump to the destination rather than its absolute address, in‘other words
the offset that must be added to the program counter.

Table 3. Instruction Word Formats
INSTRUCTION FORMAT EXAMPLE OPERATION
Dual operands, source-destination ADD R4 R5 R4+R5 -~>E —_—
Single operands, destination only CALLR8 6—- PC ->(TOS), R8--> PC
Relative jump, un/conditional 6— JNE Jump-on-equal bit = 0

So, the instructions are they can have double operands here such that you want to add the value
of as an example R4 and R5. Here the sum of R4 and R5 which are general purpose resistor is

stored in resistor R5 here. This is the destination.

You can have a single operand instruction where apart from the instruction the opcode you have
a operand here you are saying call subroutine which is located at an address whose address is
located at a flash address whose the address which is stored in a resister R8 and you could have
another instruction such as a jump instruction where it is unconditional jump with a relative

which means compare to current location you can jump forward or you can jump backward.

(Refer Slide Time: 19:46)

-

Addressing Modes
Addressing modes are the ways in which operands can be
specified.

MSP430 has seven addressing modes. These are:

Register Mode é——

Indexed Mode Q——-

Symbolic Mode «f——
Absolute Mode &—

Indirect Register Mode <—
Indirect Autoincrement Mode ﬁ——
Immediate Mode 44—

These are the 7 addressing modes which on the basic operation you can the addressing mode
specifies how do we get the operands and so we have a resistor mode in which 2 resistor or 1
resistor is used to specify the operand. You have indexed mode which means one the resistor is
used as an address to go into a memory location to fetch the operand. You have symbolic mode
which is referring to the labels that you would use in a program jump here or call that subroutine

at that location.

You have absolute mode where you are specifying the entire value. You have indirect resistor
mode which means you are going to use resistor in a indirect mode. You can do an auto
increment on those resistor values and you could use an immediate value such as you want to
initialize the resistor with some number. These are 7 addressing modes that operate on the basic

instructions and create variety for you.

(Refer Slide Time: 20:48)

Source/Destination
Dperand Addressing Modes

Addressing Mode

Description

Register mode
Indexed mode
Symbolic mode

Absolute mode
Indirect register mode
Indirect autoincrement

Immediate mode

Register contents are operand
(Rn + X) points to the operand. X is stored in the next word.

(PC + X) points to the operand. X is stored in the next word
Indexed mode X(PC) is used.

The word following the instruction contains the absolute
address. X is stored in the next word. Indexed mode X(SR) is
used

Rn is used as a pointer to the operand.

Rn is used as a pointer to the operand. Rn is incremented
afterwards by 1 for B instructions and by 2 for . W instructions.

The word following the instruction contains the immediate
constant N. Indirect autoincrement mode @PC+ is used

And this is the addressing the source and destination bits that specify each of these modes as you

can see. We are not going to again go into the details of this because as an embedded system

designer we would worry about other issues.

(Refer Slide Time: 21:08)

introduction to MSP430
MSPA—BD Luncox 3

Lowmch fad.

MSP430 LunchBox is a low cost DIY platform for learning
microcontrollers and physical computing.

CH340
USB<>UART UART

Bridge
Y ATS
DTR

UART Sockel

Brid
USB<>UART

Ieclor
4l<—|_> MSP430

spva re

Now we are we have reached a point where we are now ready to jump into experimenting with

MSP430 microcontroller and for that as you see as | have mentioned you mentioned here several

times we have designed microcontroller evaluation kit called as MSP430 lunchbox. Now let me

also briefly mention that this is not the only evaluation kit that you have. That Texas instruments

makes several, several wonderful evaluation kit and the most popular is called MSP430 launch

pad that is that is their official evaluation kit.

This kit is priced very, very competitively and if you get your hands on it you will realize that on
this kit there are actually two microcontrollers. One of the microcontroller is the one that you are
going to use which we call as the target microcontroller and there is a control microcontroller
which controls this target microcontroller and helps you download program into it or to emulate

it or to debug it and so it is a extremely competitive and extremely versatile piece of hardware.

Unfortunately it is slightly more expensive than what is possible to make with microcontroller by
itself and this where we come into picture and we have designed this lunch box. As you see here
is our target microcontroller which is going to bre MSP430 G2553 in the in the dip format. Now
| have been mentioning this several times in the past that there are several ways of programming
MSP430 microcontroller.

One is through these Spy-bi-wire methods which incidentally is the method that official Texas
instruments MSP430 launch pad uses. The other method is by accessing the J tag interface pins
four of them. TDI TDU TMS and TCK. The third method is using what is called as the in
application programming what Texas instruments calls as a bootstrap loader and the advantage
of that is that you do not need any special mechanism to transfer program from your
development host which is the desktop or laptop computer into the memory of the

microcontroller.

All you need is knowledge of which signals to activate and a mechanism to connect the desktop
computer and microcontroller and today as you know one of the most common methods of
connecting anything to the desktop computer or laptop computer is through the USB.
Unfortunately the G2553 microcontroller does not have USB interface.

It has UART interface so you have to have a mechanism by which the USB signals from the
desktop or laptop computer could be translated and converted into UART and such a device
which converts from one protocol into another has a name and it is called a bridge. A bridge is
simply a mechanism to go from one side of the river to other side likewise | would say we need a
device which is USB to UART Bridge.

Now there are several mechanisms to achieve this bridge functionality and we have used IC
called CH340. This is commonly available bridge integrated circuit. On one side its talks to the
connects to the USB and on the other side it has the UART functions and apart from that it has to

control signals.

One is called request to send and Data DTR signals and these are used to connect to certain pins
of the MSP430 G2553 series microcontroller. In this Spy-bi-wire mode only for control and then
because you are MSP430 microcontroller operates at 3.3 volts or up to 3.6 volts and not 5 volts,
we have taken the 5 volts available on the USB passed it through this low drop out voltage
regulator to provide 3.3 volts supply voltage not only to the micro controller the target

microcontroller but also to the bridge.

Apart from that you have 32.768 kilohertz crystal which is used to generate the bitrate what is
called as board rate for UART communication. You have a user LED, you have one user switch,
you have a reset switch other than that rest of the available pins are accessible through headed

pins as we will see in the next slide.

(Refer Slide Time: 26:15)

MSP430 Lunchbo

Based on MSP430G2553 MCU

On-board LED and push button for
experimentation

Programmable via TI Code Composer Studio

Here is the photograph of the MSP430 lunch box and let me show you this is the microcontroller
MSP430 G2553. Here is the reset switch. Here is the user switch. We have the power on LED
here and a power on LED is very important component to have whether you are designing a

evaluation kit or your own instrument because that is the only way to convey to the user that the

power to the system is on if it was not there and if the system is not working the user would be
confused is it working because the power has not been applied or whether it is not working

because the system is faulty.

So, power on indicator is a good way for that. You also have this crystal which is required this
crystal is required by this CH340 USB to UART bridge. You also have 32 kilohertz crystal as
you saw in the previous slide. This is used by MSP430 for UART communication. The available
pins that MSP430 offers you are available on these header pins and you have this is the user LED
here. This is the User switch that you can that is connected to certain pins of the resident

microcontroller and here are some jumpers you have to engage in certain way as mentioned here.

If you want to put the MSP430 kit into programming mode which means you want to download
code then this jumpers have to be engaged. These are shorting jumper with which you can
connect two neighboring pins. You have to engage them in certain way and if you want to use
the same USB interface for serial communication in your program through your program during
runtime then you change the setting of these jumpers and this mentioned here and here. And this

is a transistor which is required for some level inversion.

(Refer Slide Time: 28:15)

MSP430G2553

REXXELSEESRE]

SEEAAE S S S

16 KB FLASH
512 BYTE RAM

16 GPIOs

8 CHANNEL ADC

2 TIMER A3

8 CHANNEL COMPARATOR A+

This is the microcontroller that we are using. It has all these features which we have gone

through before.

(Refer Slide Time: 28:21)

Lunchbox Schematic

POWER SUPPLY USER INTERFACE PERIPHERALS

B %3

RYS/TEST
EXTENSION HEADERS

This is the schematic | encourage you to go through this schematic it has been annotated nicely.
Here is the power supply. Here is the user peripherals which is switch and LED. Here is a USB
to UART Bridge. Here is your MSP430 and here you have extension headers.

(Refer Slide Time: 28:40)

Lunchbox Board Layout

ydsu (&

Ty xoqyounT @g¢

N
o
O
o

This is the layout and as | mentioned repeatedly that this layout is available on my blog website
which we have shared on the GIT website. You can download this and you can print your own

printed circuit board and solder all the things yourself and you can make this evaluation kit

yourself.

(Refer Slide Time: 29:01)

Lunchbox Development
Process

Lunchbox on a Breadboard/Zero Board
Inhouse PCB
Manufactured PCB

If you do not have it you can even temporarily put together all the components on a bread board
or a 0 board. You can have a in-house you can make you own PCB or you can get a

manufactured PCB from outside.

(Refer Slide Time: 29:16)

Lunchbox on BreadBoard

And so this is the evaluation the lunch box fabricated on a bread board.

(Refer Slide Time: 29:22)

This is in-house that in my lab we used earlier.

(Refer Slide Time: 29:27)

Manufactured Lunchbox

MSP430 LunchBox

5c’
i
o
cd
O -
24
£
£3
2o
i}
"

Eu

And this is the manufactured lunch box. | hope that you have access to one of these three lunch
boxes to be able to continue having extensive hands on sessions in future. | will see you very

soon. Thank very much.

