
Introduction to Embedded System Design

Professor. Dhananjay V. Gadre

Netaji Subash University of Technology

Professor. Badri Subudhi

Indian Institute of Technology, Jammu

Lecture 13

MSP430 Architecture- Continued And Introduction to Lunchbox

Hello and welcome back to a new session. In this session we are going to talk about the MSP430

microcontroller, continuing from our previous lecture. This is part of the online course on

Introduction to Embedded System Design and as usual I am your instructor Dhananjay Gadre at

Netaji Subash University of Technology. Now in the last lecture on MSP430, we looked at the

MSP430 series map of the memory map and specifically the G2553 microcontroller we were

looking at that here.

(Refer Slide Time: 01:02)

Let us continue further.

(Refer Slide Time: 01:06)

The flash memory which in this case is 16 Kilobytes of flash memory is partitioned into

segments. A segment is the smallest amount of memory that this microcontroller can erase and

the flash memory is partitioned in two parts, as we discussed, one is the memory where you store

the code and the other is what is called as the information memory.

The differences between the two sections here, the code segment and the information segment is

the size of the segment. The information segment is 64 bytes segments and the main memory

where you store code is 512 bytes.

(Refer Slide Time: 01:51)

In our case the amount of memory that is available you have, in 2553 we have 16 kilobytes of

memory. We have already discussed what all we can do with this and I will repeat here that the

flash memory can be used to store code as well as constants and you can modify some of these

constants also. The interrupt vectors are stored in the flash memory part of the code code

memory in the very upper the is the uppermost part of the flash memory.

This is the where you are storing the interrupts and various interrupt vectors as well as the reset

vectors. We have seen that the reset vectors is at address let me write it down here, is at address

FFFE and FFFF. You see it takes two bytes because the addresses are 16 bits that is why you

have to store these two locations.

(Refer Slide Time: 03:08)

Here is the table which describes all the interrupt vectors. G2553 supports 32 interrupts and each

of the interrupt requires interrupt sub routine. Interrupt sub routine is going to be a program in

the flash memory and in this vector table you store the address of that location in the flash

memory and so each address is 16 bits and so for 32 interrupts it requires 64 memory locations

and this is the this is the description of that.

(Refer Slide Time: 03:48)

As you can see at the top of the location is reset vector and you have the other interrupts

associated with various peripherals of G2553. We will go in this details when we are using these

peripherals. So, I am not going through each one of them but as you can see from this table that it

has interrupts for timers as well as comparators, watch dog timer, the universal serial

communication interfaces and the EDCs and as well as ports.

(Refer Slide Time: 04:28)

Now the information part information memory of the flash memory is in the case of G2553 you

have 256 bytes here and it is starting from this address to this address. This is 256 bytes and the

information these 256 bytes are splits in four segments of 64 bytes each as I mentioned earlier

and these are used to store various information. You can store constants as well as the first

segment is used to store factory calibration data for the digital controlled oscillator. The

oscillator that uses the RC oscillators.

You want them to be accurate so each one of them is calibrated so that they provide your 16

megahertz or 8 Megahertz clock frequency and so that information is stored there and this

segment called segment of the information memory is protected at reset. You cannot reset after

reset you can overwrite this information because this is very critical information.

The next part of the memory is what we call as the bootstrap loader. Now I have mentioned in

the past that MSP430 microcontroller can be programmed in several ways. One of them is to use

this spy-bi-wire protocol and the other is through the J-Tag four J-Tag pins that we have on the

micro controller like MSP430 and the third method is through the boot loader which in

application programming method of uploading a code and in MSP430 jargon this is called

bootstrap loader.

(Refer Slide Time: 06:12)

And that bootstrap loader is located at this address as you see here. This is the location and in the

case of MSP430 microcontroller you do not have to write that program. The each and each every

MSP430 microcontroller specially the G series, they come with a preprogrammed bootstrap

loader.

All you have to do is in your microcontroller system provide an ecosystem which is compatible

with invoking the bootstrap loader mechanism and then you can upload any program from your

desktop computer into the memory of the microcontroller and later in this section we will discuss

about that but to mention here that about 1 kilobyte is flash memory is available and

preprogrammed with a Bootloader provided by Texas Instruments.

(Refer Slide Time: 07:14)

The RAM is used for storing variables as well as stacks and you have 512 bytes of S RAM

available on the G255 series. Here is the address. This is the starting address 0200 and the upper

limit of that address depends on exact chip number. In this case 512 bytes so from 0200 it will go

up to 212, 512 locations.

(Refer Slide Time: 07:54)

Apart from the flash, the information flash and the RAM, you also have memory used by the

peripheral resisters of the CPU and you can see them here. There are 3 types of resistors. Some

of the resistors require 16 bit access so they are available here word access. Some of the

peripherals require 8 bit storage and so those resistors are accessible through this and then there

are special function resistors which we will come to shortly.

(Refer Slide Time: 08:38)

This is the various 16 bit word storage peripheral resistors as you can see they deal with ADCs,

they deal with timer 1 and timer 0 as well as flash memory. You can control access to the flash

memory by writing into these resistors and you can also write to the control the watch dog timer

at this location.

(Refer Slide Time: 09:05)

Then you have the peripheral modules for 8 Bit peripherals which is here and by reading and

writing 8 bit data into this information you can control such peripherals.

(Refer Slide Time: 09:21)

Here is a list as you can see there are much more than what you saw in the world accessible

peripherals. This is the USCI that is Universal Serial Communication Interface. The second

module you have some ADC devices, you have the comparator. The clock system can be

controlled various low power modes by writing into this and the ports P3 and P2 can be

accessed.

(Refer Slide Time: 09:48)

And similarly Port 1 and other special function resistors related to the interrupt control are

accessible through this byte access special function resistors. Well I meant byte accessed

peripheral resistors.

(Refer Slide Time: 10:02)

Then we have special function resistors, these deals with various enabling of interrupts and

allowing interrupts to function and flag resistors related to them. The storage is 16 locations that

is 16 bytes. Now we have reached a stage where we are ready to talk about the CPU in MSP430.

This CPU of MSP430 is RISC architecture and as recommended by the risk specifications which

were brought forward in early 80’s. RISC wanted all the CPU to have large number of resistors

so that local variables could be stored within the CPU rather than having to go in the external

memory such as the RAM for fetching them which slows down the execution

(Refer Slide Time: 11:09)

And in keeping with that recommendation MSP430 has 16 general purpose resistors. They have

labeled from R0 here to R15. Each of these resistors can store 16 bit of data. These resistor feed

16 bit ALU as you see here. The ALU can perform various mathematical and logical operations

like add, subtract and AND/OR operations and the result of these operations can be observed

through these flags but these flags are accessible though one of these general purpose resistors

that we will see. So, we have in all 16 resistors. Let us see the function of these resistors.

(Refer Slide Time: 11:52)

There are 4 special function resistors which means that out of this 16, 4 are taken off because

they have dedicated function. One of the resistors is the program counter which means that the

content of this resistor will tell you which memory location in flash the microcontroller CPU is

fetching the current instruction from. The second resistor is for stack pointer which tells you that

where is the stack located in the RAM.

It is your responsibility to ensure that the stack pointer is pointing in the right memory of the

RAM and the third is the status resistor which indicates the various flags that we just saw

whether the result of a particular CPU operation of AND (12.36) whether the result is 0 or

whether there is a overflow. All those flags will be available in this status resistor and there is

interesting concept called the constant generator.

In many programs you require certain constants and this constant generator offers you that

flexibility without having to store them in your program and then apart from that you are left

with twelve general purpose resistors which the CPU utilizes. Now since we are not going to

program MSP430 in our course in assembly language program, we do not really worry about

how this general purpose resistor are going to be used.

It is depended on the C compiler or whichever compiler that we use to optimally use these

resistors but to know that they exist is great consolation that our program is going to be compiled

efficiently.

(Refer Slide Time: 13:33)

So, let us see which special resistors we have. We have a program counter and since the program

counter deals with reading the next instruction. The instruction are all 16 bits wide whereas our

memories are arranged in terms of bytes and therefore the least significant bit here is set to 0

because we want to store all our instructions at even byte addresses even addresses.

So, our first instruction if it is if it is at 0 the next will be 2 and then next will be at 4 and this can

be ensured by ensuring the least significant bit is set to 0 and therefore out of potential 64

kilobyte memory space we can actually store how many instructions? We can store half of them

32768 total instruction you can store.

Of course, the actual number of instruction that you store will depend on the available memory.

The flash memory that you have but this kind of limits the maximum number of instruction that

you can have. Instructions themselves can be one word which means 2 bytes or two words or

three words that is the depends on the exact instruction.

(Refer Slide Time: 14:55)

Then the second resistor we have is a stack pointer. A stack pointer is a special resistor which

points to the stack and stack is that memory area where you are going to store your return

address and you call a subroutine or where the CPU stores the return address in case an (instruct)

interrupt subroutine gets called.

So this is the location, this is the RAM location in which you store your return address. Again

just like the program counter, the insignificant bit is set to 0 so that it is able to write 16 bit

numbers which refer to the address of your program the return address and therefore this bit is 0

the rest of the bits are available to you and of course it your responsibility to initialize the stack

pointer appropriately.

(Refer Slide Time: 15:44)

The third resistor is a status resistor and the status resistor consists of various flags and we will

see the details of it. It also has access to the interrupt mask so that you can enable disable

interrupts and it has some special flags which allow you to turn the CPU off or turn the oscillator

off and so on and we will see these operations subsequently in our exercises.

(Refer Slide Time: 16:10)

We have overflow flag which is set to 1 when the result is an overflow as a result of

mathematical operations when you are dealing with sine bit numbers. We have these two system

clock generator bits where you can turn on and turn off the main clock or the other clocks. We

have the oscillator clocks and so on and here is the general purpose interruptible and then these

are the 3 flags apart from the overflow flag which is the negative flag which means that when the

result the most significant bit of your number that you are looking at if it is 1 this is negative flag

you have the 0 flag.

When you do any mathematical operation or logical operations it results in 0 in all the bits and a

carry flag when there is carry from the most significant bit into the outside that. So these are the

flags that are available.

(Refer Slide Time: 17:09)

The constant generator resistors resistor is able to provide 6 commonly used commonly used

values using R2 and R3 and no special instruction is required to access those constant values and

we look at a program so that we illustrate this concept.

(Refer Slide Time: 17:31)

The rest of the general purpose resistors can store 16 bit values and you have 12 resistors to do

that as you see here from R4 to R15 and there is no dedicated function associated with these

resistors. These will depend on if you are going to program in assembly language then it is your

responsibility to use them judiciously. If you are going to use a high level language compiler

then it is compiler responsibility to use these resistors as it may deem fit.

Now, since we are not going to program MSP430 in assembly language programming but we

still want to have a feel of the kind of instructions that are available as I mentioned MSP430 is

RISC architecture which means the number of instructions expected is less compared to

corresponding CISC architecture.

It may have varieties of those basic instructions in the form of addressing modes so we will just

go through those names and we will see how much time some these instruction take and what is

the size of these instructions as I mentioned the instructions could be 1 word or 2 words or 3

words and then eventually we will see how we are going to be experimenting with MSP430

microcontroller in our course by looking at the design of the MSP430 lunchbox.

(Refer Slide Time: 18:53)

So, the instructions are they can have double operands here such that you want to add the value

of as an example R4 and R5. Here the sum of R4 and R5 which are general purpose resistor is

stored in resistor R5 here. This is the destination.

You can have a single operand instruction where apart from the instruction the opcode you have

a operand here you are saying call subroutine which is located at an address whose address is

located at a flash address whose the address which is stored in a resister R8 and you could have

another instruction such as a jump instruction where it is unconditional jump with a relative

which means compare to current location you can jump forward or you can jump backward.

(Refer Slide Time: 19:46)

These are the 7 addressing modes which on the basic operation you can the addressing mode

specifies how do we get the operands and so we have a resistor mode in which 2 resistor or 1

resistor is used to specify the operand. You have indexed mode which means one the resistor is

used as an address to go into a memory location to fetch the operand. You have symbolic mode

which is referring to the labels that you would use in a program jump here or call that subroutine

at that location.

You have absolute mode where you are specifying the entire value. You have indirect resistor

mode which means you are going to use resistor in a indirect mode. You can do an auto

increment on those resistor values and you could use an immediate value such as you want to

initialize the resistor with some number. These are 7 addressing modes that operate on the basic

instructions and create variety for you.

(Refer Slide Time: 20:48)

And this is the addressing the source and destination bits that specify each of these modes as you

can see. We are not going to again go into the details of this because as an embedded system

designer we would worry about other issues.

(Refer Slide Time: 21:08)

Now we are we have reached a point where we are now ready to jump into experimenting with

MSP430 microcontroller and for that as you see as I have mentioned you mentioned here several

times we have designed microcontroller evaluation kit called as MSP430 lunchbox. Now let me

also briefly mention that this is not the only evaluation kit that you have. That Texas instruments

makes several, several wonderful evaluation kit and the most popular is called MSP430 launch

pad that is that is their official evaluation kit.

This kit is priced very, very competitively and if you get your hands on it you will realize that on

this kit there are actually two microcontrollers. One of the microcontroller is the one that you are

going to use which we call as the target microcontroller and there is a control microcontroller

which controls this target microcontroller and helps you download program into it or to emulate

it or to debug it and so it is a extremely competitive and extremely versatile piece of hardware.

Unfortunately it is slightly more expensive than what is possible to make with microcontroller by

itself and this where we come into picture and we have designed this lunch box. As you see here

is our target microcontroller which is going to bre MSP430 G2553 in the in the dip format. Now

I have been mentioning this several times in the past that there are several ways of programming

MSP430 microcontroller.

One is through these Spy-bi-wire methods which incidentally is the method that official Texas

instruments MSP430 launch pad uses. The other method is by accessing the J tag interface pins

four of them. TDI TDU TMS and TCK. The third method is using what is called as the in

application programming what Texas instruments calls as a bootstrap loader and the advantage

of that is that you do not need any special mechanism to transfer program from your

development host which is the desktop or laptop computer into the memory of the

microcontroller.

All you need is knowledge of which signals to activate and a mechanism to connect the desktop

computer and microcontroller and today as you know one of the most common methods of

connecting anything to the desktop computer or laptop computer is through the USB.

Unfortunately the G2553 microcontroller does not have USB interface.

It has UART interface so you have to have a mechanism by which the USB signals from the

desktop or laptop computer could be translated and converted into UART and such a device

which converts from one protocol into another has a name and it is called a bridge. A bridge is

simply a mechanism to go from one side of the river to other side likewise I would say we need a

device which is USB to UART Bridge.

Now there are several mechanisms to achieve this bridge functionality and we have used IC

called CH340. This is commonly available bridge integrated circuit. On one side its talks to the

connects to the USB and on the other side it has the UART functions and apart from that it has to

control signals.

One is called request to send and Data DTR signals and these are used to connect to certain pins

of the MSP430 G2553 series microcontroller. In this Spy-bi-wire mode only for control and then

because you are MSP430 microcontroller operates at 3.3 volts or up to 3.6 volts and not 5 volts,

we have taken the 5 volts available on the USB passed it through this low drop out voltage

regulator to provide 3.3 volts supply voltage not only to the micro controller the target

microcontroller but also to the bridge.

Apart from that you have 32.768 kilohertz crystal which is used to generate the bitrate what is

called as board rate for UART communication. You have a user LED, you have one user switch,

you have a reset switch other than that rest of the available pins are accessible through headed

pins as we will see in the next slide.

(Refer Slide Time: 26:15)

Here is the photograph of the MSP430 lunch box and let me show you this is the microcontroller

MSP430 G2553. Here is the reset switch. Here is the user switch. We have the power on LED

here and a power on LED is very important component to have whether you are designing a

evaluation kit or your own instrument because that is the only way to convey to the user that the

power to the system is on if it was not there and if the system is not working the user would be

confused is it working because the power has not been applied or whether it is not working

because the system is faulty.

So, power on indicator is a good way for that. You also have this crystal which is required this

crystal is required by this CH340 USB to UART bridge. You also have 32 kilohertz crystal as

you saw in the previous slide. This is used by MSP430 for UART communication. The available

pins that MSP430 offers you are available on these header pins and you have this is the user LED

here. This is the User switch that you can that is connected to certain pins of the resident

microcontroller and here are some jumpers you have to engage in certain way as mentioned here.

If you want to put the MSP430 kit into programming mode which means you want to download

code then this jumpers have to be engaged. These are shorting jumper with which you can

connect two neighboring pins. You have to engage them in certain way and if you want to use

the same USB interface for serial communication in your program through your program during

runtime then you change the setting of these jumpers and this mentioned here and here. And this

is a transistor which is required for some level inversion.

(Refer Slide Time: 28:15)

This is the microcontroller that we are using. It has all these features which we have gone

through before.

(Refer Slide Time: 28:21)

This is the schematic I encourage you to go through this schematic it has been annotated nicely.

Here is the power supply. Here is the user peripherals which is switch and LED. Here is a USB

to UART Bridge. Here is your MSP430 and here you have extension headers.

(Refer Slide Time: 28:40)

This is the layout and as I mentioned repeatedly that this layout is available on my blog website

which we have shared on the GIT website. You can download this and you can print your own

printed circuit board and solder all the things yourself and you can make this evaluation kit

yourself.

(Refer Slide Time: 29:01)

If you do not have it you can even temporarily put together all the components on a bread board

or a 0 board. You can have a in-house you can make you own PCB or you can get a

manufactured PCB from outside.

(Refer Slide Time: 29:16)

And so this is the evaluation the lunch box fabricated on a bread board.

(Refer Slide Time: 29:22)

This is in-house that in my lab we used earlier.

(Refer Slide Time: 29:27)

And this is the manufactured lunch box. I hope that you have access to one of these three lunch

boxes to be able to continue having extensive hands on sessions in future. I will see you very

soon. Thank very much.

