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So we had looked that mainly couple of things, one is we said basically 
d

dt


 , which is also 

indirectly 
( )d Nd

dt dt


=  . Where ϕ is the flux linkage, is actually e. If we are looking at only the 

induced EMF, which is there in the inductance. So, I can write the same thing as, 
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
= = =   

If I am assuming that the inductance is a constant. If there is no movement in the electromechanical 

system, what we considered earlier. So, we considered basically a system somewhat like this.  

We had looked at a core which is actually C-shaped. And we also took one more maybe rod kind 

of structure which will be attracted by this electromagnet, if sufficient current flows through this. 

So, let us say I have a coil and if I have a sufficient current flowing through this. Then I am going 

to have the electromagnetic force that is created is going to be quite strong enough. And it will go 



against whatever is the spring action, I may have here. So, I am showing a spring which is attached 

to your frame. So, this is spring. 

So we said that when there is no movement, the entire electrical energy that I am feeding in which 

I may call actually as eidt  . I may call this as, ei is the power, so if I integrate it over dt or 

whatever is the time interval that I have. Then I may call this as the electrical energy input.  

 electrical energy inputeeidt dW id= =  =    

So, this is electrical energy input. So, this will essentially go towards increasing the magnetic field 

energy, if there is no mechanical movement imparted. So, I am going to say normally under general 

circumstances e f mdW dW dW= +  . Where this is the mechanical energy, this is the magnetic field 

energy, and this is the electrical energy. 

So, we are looking at electromechanical energy conversion system where electrical to mechanical 

energy conversion is taking place which is like a motor or an actuator in this particular case. So, if 

I am going to have no movement this will be equal to zero, if there is no movement. So, I will have 

e fdW dW=  . And that is what we wrote as rather than writing eidt  , I can write the same thing as

id  . Because dλ/dt, I can call that as e, because of which I can say edt is equal to dλ. So, I am 

writing this like this. So, we said  

 
(in the case where motion is absent)

       =Field energy

fdW id=    

So, we call this as the field energy. I am just recalling what we did in the last class.  
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And we said if we are actually plotting a graph between i and λ, we are probably going to plot it 

like this with non-linear characteristics. If I say that there is an iron core which is contributing to 

non-linearity between the relationship between i and λ or Nϕ.  

So, I am going to call this portion as energy or field energy which is Wf and I am going to call this 

portion as co-energy or Wf’. So, I may say that fW id=  , for a given position of the moving part. 

If I do not have any movement it is at a given position. Then I may say at a particular x value 

fW id=  and 'fW di=  . And energy has at least some kind of physical connotation whereas 

co-energy does not have any clear physical connotation.  

So, if I may say that it is the linear system which has linear characteristics between i and λ, I am 

going to have essentially whatever is this rectangle that represents directly λi. So, in this case this 

particular line divides this area under the rectangle exactly into two halves. So, I will have energy 

and co-energy to be equal to each other. So, whenever I consider a linear magnetization 

characteristics, I am going to have 'f fW W= . So only in linear system this is going to be true. So I 

can say in linear system I am going to have 'f fW W= . 

After this we started considering a small movement that is where we left off, actually in the last 

class. So, let us again look at system what we had considered. So, this is actually the iron core and 

I am going to have a current pass through this. So, the current is i. 



Student: What do you mean by linear system here?  

Professor: The linear system is where there is no saturation that has happened. It is still in the linear 

portion of the magnetization characteristic.  

So, if I look at i versus ϕ or λ versus i. I am going to have only a linear relationship between them. 

That will be true for lower values of i provided, neglect hysteresis. If you consider hysteresis it is 

not linear anymore. I hope you understand because hysteresis will always talk about some amount 

of remanent flux density. So, if there is a remanent flux, the linearity is lost. So, I will not have, 

when i is zero, the flux will not be zero. If there is a remanent flux. So, I cannot say it is exactly a 

linear relationship. After that also once the saturation creeps in, as you say if the i value is very 

large. At that point again it is nonlinear. So we are neglecting of course hysteresis property when 

we are talking about this.  

So, if I am looking at a system somewhat like this. And I have let us say a moving portion like this 

which is attached to a frame through a spring. And let us say I have a distance of maybe x1 at this 

point in time, rather I am calling the air gap length to be x1. And let us say I am passing sufficiently 

large enough current through this because of which the magnetic field created is strong enough to 

pull that moving part towards itself. Because of which may be the distance has reduced now from 

original value of x1 to a smaller value which is x2. So, the movement has taken in such a way taken 

place in such a way that from x1 the distance or the air gap has decreased to x2.  

So, if I tried to draw the two magnetization curves corresponding to these two points. This is i and 

this is let us say λ. So for x1 if I draw a magnetization characteristic like this, x2 considering the 

air gap is lower I should probably create a little bit higher flux or flux density hopefully. Because 

I am essentially looking at the distance decreasing, the air gap decreasing, the reluctance 

decreasing because of which I should have the flux increasing slightly.  

So, this corresponds to x = x1 whereas this corresponds to x=x2. And let me assume probably that 

the movement is taking place pretty slowly. How slowly is a matter of detail very clearly. But let 

us say I have an electrical time constant for this circuit which is L/ R, some L/R. So, if I am 

allowing the movement to take place slowly the current can reach steady state at every point in 

time. And considering that resistance of the circuit is a constant, the current can remain as a 



constant. What I mean is I am giving sufficient time, so that the current almost persists at a constant 

value, no matter what. 

That means the time constant of the circuit is going to be much smaller than the time taken for the 

movement. That is what I am assuming. So, let me take the case where the movement is slow. 

Which means the time taken for movement is actually greater than or much higher than the 

electrical time constant. So that I would not see really much of variation in the current at all. So, I 

am going to look at one particular current value coming up like this. Maybe I am just taking i equal 

to constant in this particular case. If it is an alternating current circuit, I have to look at irms to be a 

constant ultimately. Obviously in an alternating current circuit you cannot expect the current will 

be constant. From instant to instant. So, I am looking at maybe the RMS value of the current is a 

constant.  

So, under this situation I will have actually two different values of λ maybe this is of one λ value 

which is the final λ. Which I may call as λ2. And let me talk about another lambda value which is 

actually somewhere here which is actually λ1. Let me write these points or name these points as 

O, this is P, this is Q, this is R and this is S. So I am just naming the points as this.  

Now what actually I have input to the entire system is the electrical energy input what I have given 

as electrical energy input is the input to the entire system. So that will be from what we said earlier 

eidt . This is the electrical energy input. And after all edt we said is dλ. So, I have to integrate 

this as an electrical energy input going into system as λ1 to λ2  idλ. That is all. Please remember 

the same idλ happened to be the field energy provided there was no movement, now there is 

movement.  

So, I am writing the same thing now as the electrical energy input. Which actually I can specify as 

the area under this particular rectangle. Because I have to write this as actually 2 1 −  multiplied 

by whatever is the current  or I may say area of the rectangle which is actually PQRS or PQSR 

whatever. That is the area which is representing the electrical energy input during this particular 

duration of the movement complete movement that has taken place. 

We are essentially writing only the boundary curve. We are not writing in between curves. The 

curve which is corresponding to OP that represents the initial condition. And whatever is OQ, that 



represents the final condition. So, the flux linkage has changed from λ1 to λ2 while the movement 

has happened from x1 to x2. So, we are looking at the two end points and then we are trying to see 

how much of mechanical work has been done. So, we are taking stock of the situation after looking 

at the initial condition and the final condition. Last class we wrote e f mdW dW dW= + . We are going 

to look at how much is the change in field energy, how much is the change in the electrical energy 

or how much is the electrical energy input, and how much is the mechanical energy contribution. 

So, we are looking at every single thing in this equation.  

So, the electrical energy input we have accounted for as the area across that shaded portion. 

Whatever is the area of the shaded portion which is corresponding to eidt . That is electrical 

energy input. Let us try to look at whether there is any change in the field energy. We said field 

energy under a given situation is id . That is what we said. So, if I try to look at actually the 

field energy, in the first case I should have actually this as idλ, this entire area. That is what is idλ 

corresponding to the first condition where I have had the moving part a distance of x1.  

So I should say corresponding to or I can say initial field energy is actually OPR, this is the area. 

Please note that is OPR, that entire area enclosed by the magnetization characteristics 

corresponding to x1 and the lambda axis itself. Whereas if I look at what is the final field energy, 

that is going to be actually OQS. This is the area which is representing the final field energy.  

So, if I want to do get the difference in field energy, in that case I have to minus whatever is the 

final field energy. So, I can say dWf will be whatever is the area which is OQS minus OPR. So, 

these two areas whatever is the difference that is going to be my difference in the field energy. So, 

I can say from here this is actually area of PQRS, equal to this is area of OQS minus OPR plus 

dWm which is the mechanical energy.  

So, I should be able to write the mechanical energy finally as that is. So, from this equation I should 

be able to write area PQRS + area OPRmdW = . Because this minus when I get it to the other side 

it will becomes plus. So that is this entire area. Are you getting my point? This entire area is 

actually area OPQRS + area OPR - area OQS. That is what it means. 



So, if I look at the entire area, I am getting this entire area as the total area which is enclosed by 

the summation of these two, minus whatever is the area that is actually taken up only by this 

portion. Anyway, I can say basically this area I have to minus until this portion. Which means I 

am going to get only area OPQ.   So, this is area OPQ.  
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Let me try to probably redraw the figure in the next thing. What we have done is first we showed 

one curve like this, we showed one more curve like this. And we showed this i to be the same i. 

And we showed that this particular area that is this rectangular area gives me whatever is the 

electrical energy and this particular area whatever we have got this area is going to give me 

whatever is the field energy originally that was present.  

So, I have added those two. But the final field energy present is only this area. If I am talking about 

this as the area. So this particular area that is which is enclosed by the two curves. So, if I may call 

this as OPQ. This is essentially representing whatever is my actual value of mechanical energy 

that have been outputted by the system. So, the mechanical energy output that has come out of the 

system. Then the movement has taken place from x1 to x2 corresponds to this area.  

Now we will have to check what is really this area. We said basically this portion is Wf, this entire 

portion is Wf. whereas this is Wf’. That is what we said earlier. So, if I look at what was Wf 

originally when the curve was in P or the operating point was in P. This was all Wf and this is all 



Wf’. Whereas now if I am looking at only this the portion above this curve Wf and below that is 

Wf’. So, this essentially gives in the increase in the co-energy.  

Although co-energy does not have any physical significance, then the system moved from x1 to x2. 

Whatever was the increase that happened in the co energy which is Wf’ that is represented by the 

shaded area. So, the shaded area actually represents increase in co-energy of the system.  

So, I can say basically this is dWf’. The two together actually I am getting the electrical energy 

input. That is all I am saying.  So, my electrical energy input it is going towards two tasks.  Rather 

I should say three tasks. One is resistance loss, definitely there will be resistance loss, whether I 

like it or not. The second task it is doing is to increase the field energy. Apart from that whatever 

is left over it is going towards mechanical energy conversion.  

Student: For case(a) and case(b), is the electrical energy input same? 

Professor: We do not know whether it is the same input.  That is a big question mark. Because we 

considered actually, the lambda is changing from zero to particular lambda value and we integrated 

the whole thing and we said area under that curve. Between the lambda axis and this was you know 

your field energy. But now we do not know how much is the electrical input. We are saying ok 

that is some electrical energy input. We have not quantified anything. We have roughly said from 

λ1 to λ2 the flux linkages have changed.  

We do not know whether the quantity is the same in the previous case and this case. In the previous 

case, we considered there was no movement. We considered only one particular magnetization 

characteristics. Where as in this particular case we have considered two magnetization 

characteristics. One at length x1. And the other one at air gap length of x2. And we considered x2 

is smaller. That is the reason why we considered that curve above the previous curve.  

Assuming that the reluctance is smaller because of which the flux should be hopefully larger. So 

this essentially tells me, I hope your question is somewhat clarified, if not completely. We are not 

violating energy conservation principle, very clearly. In the last case we did not consider any 

movement. So, the mechanical energy was zero. In this case the mechanical energy is a non-zero 

quantity and we are trying to quantify it. In the process of quantification, we looked at different 



areas as per our definition. And then we ultimately arrived at the fact that we are getting the 

difference in the co-energy or increasing in the co-energy is equal to the mechanical work done.  

If we are doing it slowly, automatically the current will remain as a constant RMS value. Current 

is not really controlled by you completely unless you are varying some resistance or something. 

We are telling right now that the resistance is a constant. The inductance is changing clearly for 

every change in inductance there will be a transient, no doubt. But we are doing it so slowly that 

the transients are not so visible. Because the time constant happens to be really really small as 

compared to whatever is the movement the rate movement.  

You are keeping the voltage constant your current remains as a constant because you are allowing 

it to reach steady state at every point. The reluctance is changing, the inductance is changing. But 

transient wise it will change, you are allowing at every point the current to reach steady state as 

simple as that. So that is why we said right in the beginning. If you are considering a slower 

movement the mechanical time constant generally is much higher than the electrical time constant. 

You can consider either way. Here even if we consider AC current, we are looking at the RMS 

value. If you actually considered DC current, you have to again consider the time constant there 

too. 

So I am passing a current let us say it reaches the value of say V/R. At the point you are actually 

trying to move when you are moving you are going to see a variation in the current instantaneously. 

But you allow it to settle again and again. I would say it is better to look at an AC current in this 

case because we are looking at the induced EMF, dλ/dt and so on and so forth. AC can reach a 

steady state. You call AC steady state as the steady state when you consider R+jωL as the 

impedance.  

You cannot talk about otherwise ωL. Please understand the phasor diagrams that you draw or for 

steady state. They are steady state. If you still have doubt, please put this into your head that what 

we are talking about as impedance as jωL or 1/jωC. All these things are in steady state. When you 

talk about transient that is Ri+Ldi/dt. When you write that, that is transient. At steady state the 

current should not change is your perception. That is not steady state. If the initial value at the 

beginning of the cycle and the final value at the end of the cycle are the same. You call that as the 

steady state.   



Steady state does not mean it is not a constant I mean it should be a constant. No, you have simple 

harmonic compilations. Do not you say it is steady state? It is oscillation, of course it is oscillation. 

But it is steady state please understand. So if I have an LC oscillation I would say reach steady 

state very clearly, as long as in the beginning of the cycle and end of cycle the values are the same. 

Is this clear. So sinusoidal excitation if I have there is nothing like a constant value, never ever. 

RMS values are constant, yes fine. Once it reaches steady state. We are having basically the flux 

is changing reluctance is also changing. So MMF can remain as a constant. You will look at it that 

way. Flux is changing it has gone from λ1 to λ2, please note that. 

So, I hope so that it will clarify matters if you please read through P C Sen or any other machines 

book again from electromechanical energy conversion principle. So, I would say 'f mdW dW=   in 

this particular case. Now this I can write as 'f mdW dW Fdx= = . Where 2 1dx x x= −  or 1 2x x− , 

whatever is the difference. So, from this I should be able to write constant
( , )
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f
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=


=


, I am 

writing a partial derivative because Wf is actually Wf’ rather is a function of both i as well as x. 

Very clearly I can write Wf’ as a function of i as well as x. But I am going to keep during this 

condition i as a constant. Which means it is slow movement. There is another case very clearly 

when I say there is slow movement there should be some other case with faster movement.  

So maybe I would consider that case as well, very fast movement which is case 2. Again, I will 

compare this in terms of time constant. The electrical time constant happens to be maybe 

comparable or even greater than the way the movement is taking place which is kind of very 

unrealistic. Because mechanical systems are normally very slow whereas the electrical systems 

time constants are generally much smaller generally. But let us probably take a system where it is 

a miniaturized machine. Very small miniaturized machine. Maybe the inner sphere and other 

things will be really small because of which the movement is taking place really fast.  

  



If the movement is taking place really fast, I cannot assume now that I am going to have i as a 

constant. Now the transient will definitely get into picture. So, I am looking at again let us say two 

graphs, one is may be like this and another one probably like this. I am just taking two graphs. 

Again let me say me one of them is at x1 the other one is at x2 and let us say I am initially at an 

operating point somewhere here. And i is not a constant.  

So, I am actually going to have rather flux as the constant. Please understand that generally the 

cause is i and the effect is λ, cause is i and effect is flux. And it takes a little while for the flux to 

show up that change in the current. If there is a change in the current, you are going to have a little 

bit of time lag before it shows up as a change in the flux. That is why we call it as hysteresis. 

Hysteresis means lagging behind the flux change always lags behind the current. So, it is going to 

take a little while. But I am doing the movement so fast, that the flux linkage is not even given a 

chance to change. The flux linkage is remaining as a constant, almost. I am not going to have any 

change in the flux linkage at all.  

Let us say I am just arbitrarily taking some operating point. And I am showing that the flux is 

basically remaining, or flux linkage is remaining as a constant. Whereas the current is very clearly 

changing from maybe originally it was i1 and here it is i2. There are two different points in the 

current. So, the current has changed. That means the difference in the inductance in one sense is 

manifested in this particular case because of which in the two cases, the currents happen to be 

different, they are not the same. You are not allowing the current to reach the steady state. You are 

doing it so fast that the flux linkage is really not able to follow the you know change in the position 

of anything it is not able to do anything basically. 

Student: When the flux linkage is not changing quickly, is it related to electrical time constant of 

the circuit? 

Professor: The time constant and the lag between the current and the flux, roughly you can say that 

because the flux is manifestation of magnetism. The inductance what you are actually putting it 

fictitious quantity that is also manifestation of magnetism. That is why we write generally Ldi/dt 

as the voltage drop which is also equal to Ndϕ/dt. That is why we write  



 
d N

L N
di i

 
= =   

So, inductance actually is a construct of human beings or electrical engineers who want to depict 

the relationship between magnetism and electricity in the form of a circuit.  

We wanted to do KVL, KCL and KVL, KCL you cannot do, unless you represent the magnetic 

field also as a circuit quantity. So the circuit quantity that you are manifesting by means of actually 

equating 
d

L N
di


=  . 

So, Faraday's law came first probably and then the inductance was introduced that is how it was. 

So the inductance is basically the representation of the magnetism in circuit parameters. So, we 

have here this as λ. We already said that edW id=  . There is no change in λ. So, the electrical 

energy input is literally zero. Are you getting my point? We are really not getting any electrical 

energy input. So, I have now two quantities only. One is dWf the other one is the dWm that equal 

to zero. Which means I am going to have m fdW dW= − . Are we having a reduction in the field 

energy? Yes, very clearly. 

 Originally our field energy was OPQ. Now I am going to have maybe ORQ. So, I should say Wf 

at x1 is OPQ. Whereas Wf at x2 is ORQ. So, I am having a reduction in the field energy and the 

reduction is the field energy is this shaded area. This is what is the reduction in the field energy. 

Which is OPR. So, this should be actually equal to area OPR in the graph. 

So, I can say you know in a nutshell, if the movement is taking place very slowly the increase in 

the co-energy represents the work done. And if the movement is taking place fast then the reduction 

taking place in the field energy that represents the work done. Mechanical energy or work done. 

So, I should be able to write in this case also 
fW

x




 , where I am going to have 

fW

x


−


of course. 

This is the function of λ and x of course. This will be actually the force with lambda as a constant, 

lambda as a constant. Force (  as a constant)
fW

x


− = 

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So, let me write these two expressions once again. Let me write that constant
'( , )

| Force
f

i
W i x

x
=


=


. 

This is for slow movement. If I consider fast movement under that condition, I am going to have 

constant
( , )

| Force
fW x

x
 =

 
− =


.  

Student: How can the current decrease when lambda is remaining as constant in fast movement 

case?  

Professor: So you are saying basically that in the constant case here lambda is remaining as a 

constant agreed. Reluctance essentially decreasing. So reluctance multiplied by the flux which is 

actually also decreasing. So, the current is decreasing as well, is not it? The current is decreasing 

originally i1 is the higher value i2 is the smaller value. It is very much fine. Why should it increase? 

Lambda multiplied by the reluctance. Reluctance has decreased lambda has remained the same. 

So, lambda multiplied by reluctance is MMF. MMF has decreased. MMF has decreased. In the 

first case MMF has remained probably the same whatever. But here MMF very clearly have 

decreased.  

  



So, we have basically seen that we are having an expression for the force that is developed in a 

translational system. What we have to study is about rotational system. Because all our machines 

are rotating machines. We look at it eventually. But before that whatever we have specified as λ,

N Li = = , provided we consider L to be a constant.  

If we consider L to be a constant probably. It is not going to have variable permeability even at a 

particular point. Then I can directly equate N Li = = . Because we wrote like this, 
d di

N L
dt dt


=

. From which we wrote 
d

N L
di


= . This 

d

di


we are considering this way only because we are 

assuming that, that ϕ and i do not have a linear variation with each other. If I assume, they are 

having an initial I mean they are having continuously linear variation. Rather than writing 
d

di


, I 

should be able to directly write that as Nϕ/i, directly.  

So, if I am considering a linear system I should probably be holding onto this expression. Rather 

than writing this in terms of calculus. So now we will look at the linear system, where we are going 

to look at all the quantities in terms of linearized magnetization characteristics where we are going 

to assume  or N Li Li=  = . Thank you.  


