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Random Variables & Random Processes: Continuous Random Variable

So, welcome to lecture 2 on Random Processes and before starting this lecture 2, let us

revisit what we have done yesterday.

(Refer Slide Time: 00:36)

So, in the last lecture, what we have basically talked about is random variables and we

have said random variables are functions that provide mapping between sample space

and the set of real numbers that is the one important thing that we discussed yesterday.

We said that random variables are functions, they are neither random nor variables.

Secondly,  what  we  did  is  we  introduced  continuous  random  variables  and  discrete

random variables and we basically spend most of the lecture in studying about discrete

random variable.  And  for  discrete  random variable,  we  introduced  probability  mass

function  and we said  probability  mass  function  is  represented  like  this.  We use this

notation to represent probability mass function where X, the capital  X is the random

variable and the small x is the numerical value of that random variable. So, it is the value

that random variable takes, alright.



So, this is one big concept that we introduced yesterday, the concept of probability mass

function.  The third thing that  we did is  we introduced expectation operator. We said

expectation operator could be understood as an average value of the random variable and

we also introduced the concept of variance of a random variable.

So, basically these were the three important concepts that we covered in the last lecture.

So, let us see what I have got for you today.

(Refer Slide Time: 03:08)

So, in today’s lecture we will talk about the properties of variances, then we will talk

about the cumulative distribution function and we will then go to continuous random

variables. We yesterday we focused basically on discrete random variables and today we

will talk about continuous random variables and example of continuous random variables

we  will  look  at  two  important  random variables;  two  important  continuous  random

variable  that  is  uniform and Gaussian random variables.  So,  this  is  more or less the

outline for today’s lecture.



(Refer Slide Time: 03:48)

So, the first thing is that I will like to do today is to look at this slide again where we

defined this variance of a random variable variance of X. So, what we said is variance is

nothing, but it is the distance of the random variable from the mean. So, first thing that

we have to do is we have to calculate the distance of various numerical values of random

variable from its mean and then we have to do the square of it and then we have to

compute the expectation.

So, variance of a random variable  it  is  nothing, but it  is the expectation of a square

distances of the random variable where the distances we measure from mean and we also

said that variance of a random variable it is nothing, but it is the second moment. So, this

is the second moment of a random variable minus a square of the first moment of a

random variable. So, this is the interpretation of variance of a random variable that we

developed.



(Refer Slide Time: 04:53)

So, today we will like to finish this variance by talking about various properties that the

variance have. For example, the first property that variance of a random variable has is

that is strictly non-negative. The variance can be 0 or it should always be either 0 or it

should be greater than 0, but it can never be negative. And why is that? So, to understand

that  you just  have to  look at  this  expression where the variance is  calculated  as  the

expected value of a square of a quantity.

Now, the square of a quantity can never be negative and thus the average value of a

positive numbers is always positive it can be 0, but it can never be negative. So, that is

the first property of variance of a random variable. Let us look at this property. What is

the variance of a constant times a random variable? So, to think about this let us plug this

into the expression.

So, variance of a constant times a random variable is nothing, but it is the expected value

of alpha times x minus; so, why we have alpha times x because if you multiply a random

variable with alpha with the constant alpha, then its numeric value will also be multiplied

by alpha and the mean of the random variable will also be multiplied by alpha. Because

we are multiplying a random variable  with a constant,  then the mean of the random

variable  gets  multiplied  the  numerical  value  of  that  random variable  is  also  getting

multiplied with alpha and then we have to take it is square. This is from the definition of

variance of a random variable.



Now, if I do this more because alpha is a constant I can take this out, I get this and now

we have seen in the last lecture that expectation of a constant times a random variable is

nothing,  but  constant  times  the  expected  value  of  that  random available.  So,  this  is

constant and this is the random variable. So, expectation of a constant times a random

variable  we have seen is  nothing,  but it  is  the constant  times expected  value of that

random variable and as you can see this is nothing, but this is alpha square and this

quantity is variance of a random variable.

So, we have seen an important reason that is the variance of a constant time here random

variable is nothing, but it is the square of the constant times variance of X variance of

that random variable. Let us see now this property, the third property what is variance of

alpha X plus beta. So, we can plug again this into.

(Refer Slide Time: 08:00)

So, if we have to solve, what is variance of alpha X plus beta, we can work this out. So,

now, the numerical value changes to alpha X plus beta, right. So, instead of X you would

have this thing. And how does the expected value of this quantity be? So, we have seen

in the last lecture that the expected value of alpha X plus beta is nothing, but alpha times

expected value of X plus beta. So, the expected value of this quantity is this. So, we have

taken a numerical value. So, this is of the form X and this is of the form E to X. So, you

take a numerical value which is in this case alpha plus beta and then you take expected

value of this quantity which is alpha times expected value of X plus beta you subtract the



numerical value from the expected value as we have done and then you square this and

calculate the expectation.

So, this I can write as and as you can see from this expression that I can cancel beta with

beta and then I have alpha X minus alpha E X square I can again take out alpha and this

is nothing, but it is alpha square times variance of X,. So, what we have done is we can

derive this expression that a variance of a constant times random variable plus a constant

is nothing, but alpha square times variance of that random variable.

What is interesting to see is that if you shift a random variable if you add a constant to a

random variable, then the variance is not changed. So, you have got the same variance as

in this case. And what is the difference? You have some constant added to a random

variable  alpha  X.  So,  if  you add  a  constant  to  a  random variable,  then  its  variance

remains unchanged. And why is this? Because when we are adding a constant what is

happening to the random variable. So, you had some numerical values. When you add a

constant, these numerical values shift by beta. So, the numerical value shift by beta, but

the distance of these values from the mean will not change, right. These values numerical

values have changed the mean will also have shifted by the same amount beta and thus

the distance of these numerical values from the mean would not change and thus the

square of the distance will also not change and thus the variance remains unchanged, ok.
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Let us now do an example. Yesterday’s lecture we introduced the notion of geometric

random variable and today, we are visiting another important random variable which is

Bernoulli random variable, ok. So, Bernoulli random variable is a random variable that

either takes a value 1 or 0 and where 1 happens with a probability of p, ok. So, it takes

either 1 or 0 and it takes 1 value 1, where it 1 happens with a probability of p and so, you

see  that  this  Bernoulli  random variable  models  data  transmission  because  when  we

transmits data, we transmit mostly in the form of 1 and 0’s and the 1 happens with a

certain probability and the 0 happens with a certain probability.

So, let us not worry about that at this moment. Let us focus on this random variable and

let us say that is random variable takes two values 1 or 0. So, it takes either a value 1 or 0

and it takes a value 1 with a probability p. So, it will take a 0 with a probability 1 minus

p and this question is what is the expected value of this random variable. So, expected

value of this random variable we can use this. So, here it is simple X takes only two

numerical values and the one is 0, it takes one with a probability of p and it takes 0 with

the probability of 1 minus p. So, the expected value of this random variable is nothing,

but p, easy. Is it not?

So, now let us calculate the second moment of this random variable which is this and

when you are calculating the second moment of this random variable, you have to put x

square. So, you have to put 1 square, it happens in the probability p then you take 0

square which happens with a probability 1 minus p and the second moment also turns out

to be p, good. Then let us see what is the variance. Variance is the second moment minus

square of the first moment. So, we have p square sorry, we have p minus p square and

this is nothing by p times 1 minus p. So, this  is the variance of a Bernoulli  random

variable,.
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Let us now introduce a new concept of cumulative distribution function and cumulative

distribution function is a simple distribution function. So, till now we were talking about

probability  mass  function.  What  was  probability  mass  function?  Probability  mass

function was, what is the probability that a random variable X takes in a value small x,

ok. So, we were talking about probability mass function. Now, we are talking about a

second function a different function; this is known as cumulative distribution function in

short this is also known as CDF – Cumulative Distribution Function.

Now, cumulative distribution function tells  me or worries about basically what is the

probability that a random variable X takes in a value which is less than or equals to x ok.

So, this is the definition of the cumulative distribution function. So, we worry not about

what is the probability that X takes a value x, but we worry about what is the probability

that X takes a value less than or equals to x, alright. So, it is simple and this is a notation

that we will use to denote CDF or Cumulative Distribution Function.

Let us work out for this case. So, on this axis y axis let us assume that I have PMF and

on x axis I have a numerical values that use random variable takes. So, if I have to draw

the CDF for this case so, let us just first put the point 2 here, 6 here and 10 here. So, what

is the probability that this random variable takes a value less than 2? Let us say at this

point very nearer to 2, what is the probability that this random available takes a value let



us say 1.9? The probability is 0, because this random variable takes only these three

values 2, 6 or 10. It does not take any other numerical value.

So, probability of a random variable taking a value less than 2 is 0 like. So, I can draw a

0. What is the probability that this random variable takes a value 2 or less than 2? It

cannot take any value less than 2, but at 2 the probability is 1 by 4. So, I goes up to 1 by

4, let us say this is 1 by 4, ok. What is the probability that this random variable takes a

value less than 2.1 is also 1 by 4 because it can then only have a value 2; it does not have

any numerical value between 2 and 6.

So, the probability between 2 and 6 remains constant and at 6 what we are saying is F x

of 6 is what is the probability that this random variable takes a value less than or equals

to 6. And so, for here we say that what is the probability that this random variable takes a

value 6 or it takes a value 2 because they are it cannot take any other numerical values.

So, these are the only two numerical values that it can take. It can take either 6 or it can

take 2. So, probability of a random variable taking a value less than or equals to 6 is this

and this is half plus 1 by 4 which is 3 by 4.

So, the probability at 6 at point 6 you have to add half to this. So, they shoots up at 6,

then  it  again  becomes  constant  till  10  and  at  10  it  shoots  up  again  and  it  remains

constant. What is the probability? So, this point is 3 by 4 and this point is 1. So, after 10;

this point, after 10 it has a probability 1. So, from this example what we have seen is that

the cumulative distribution function of a discrete  random variable;  so,  we have been

thinking about a discrete random variable. So, this is a discrete random variable and what

we see is cumulative distribution function of a discrete random variable is a staircase. It

looks like a staircase, ok.

So,  if  you  see  a  CDF  function  a  cumulative  distribution  function  and  cumulative

distribution  function looks like a  staircase,  then you better  guess that  it  is  a discrete

random variable.  Because discrete random variable takes only a countable number of

elements and at each numerical value it has a finite probability and at that point it this

probability at. So, the amount of discontinuity that you see here is the probability that the

random variable takes a numerical value 6. So, amount of discontinuity would be same

as this PMF at 6. So, we have almost finished everything about discrete random variable

and then we will like to talk about continuous random variables, ok.
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So, now, let us start looking at continuous random variables and let us see what they are.

So, for example, if I have a random variable which is a continuous random variable and I

ask a question what is the probability that this random variable takes a value between the

limits  a and b,  ok.  So, we are thinking about what is  the probability  of this  random

variable taking a value between a and b and if this probability is given by this expression.

So, what is first let me introduce what is this f X of x. So, again just see that we have

used a capital letter X to denote the random variable and the small x again represents the

numerical value that that random variable takes and f X of x is defined as probability

density function.

So, this f X of x is a probability density function and we will see what it means in a short

while. But, let us see if I can calculate the probability of a random variable taking a value

between limits a and b as integration of this probability density function then this random

variable X is known as or is a continuous random variable, alright. So, let us see what

this all means. So, let us take an example of a probability density function.
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So, on x-axis I have the numerical values that random variable can take and I have on y-

axis some probability density function and let us mark the limits from a and b. So, if I

look at this integration formulation, to calculate the probability that this random variable

takes a value between a and b just what I have to do is I have to integrate this and get this

area. So, this area tells me the probability that a random variable takes a value between a

and b, right.

So, let us define this probability density a bit more. The first question is this property

density function is not probability itself; it is not probability, ok. It is not probability it is

a probability density function and how can we interpret this. So, let us go back to that

integration  and try  to  calculate  the  probability  that  a  random variable  takes  a  value

between X and x plus delta, ok. This is a very small quantity and now, I am interested in

finding what is the probability that the random variable lies between x and x plus delta.

So, what I mean is, let us say my x point is here and let us take a small interval delta. So,

x plus x plus delta is this line. So, what I am asking is what is the probability that a

random variable takes a value on this line and to calculate that if I use that expression

here I have to change the limit going from x to x plus delta instead of minus infinity to

plus infinity or instead of a and b because I am interested in finding the probability of a

random variable taking values between x and x plus delta. So, the limit has to go from x

to x plus delta.
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And, if I work this out, what let me write this again and because delta is a very small

quantity let me assume that this probability density function is constant in this limit and

if it is constant I can pull this out and what I will have is probability density function

evaluated at x times delta, alright.

So, I can think of this probability density function in this way. So, what I am saying is

probability  density  function  is  the  probability  of  a  random  variable  taking  a  value

between x and x plus delta divided by delta. So, if I am interested in the units of this

quantity the unit of this quantity is probability per unit length. So, this is how we can

interpret this probability density function. Probability density function is not probability,

but it is probability per unit length. Now, because it is probability per unit length and not

probability itself the probability density function can be greater than 1, ok.

So, let us see what other properties this probability density function would satisfy.
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So, let me write that expression again, so that is extremely clear what we are talking

about. So, if you look at this expression and if you reason out because the probabilities

can never be negative themselves. So, this probability density function is also always

positive,  right  because  probabilities  can  never  be  negative  the  probability  density

function can also never be negative. It is always a non negative; it is always greater or

equals to 0.

Now, the next property: so, this is one property of the probability density function that is

always non-negative  quantity  let  us try  to  see what  is  this  expression.  So,  what  this

integration tells me that I am finding the probability of random variable X to take a value

between  minus  infinity  and  plus  infinity,  alright.  So,  I  am interested  in  finding  the

probability, what is the probability that this random variable takes a value between minus

infinity to plus infinity and as you can see that this probability will be 1, right.

So, we can conclude from this that the integration of probability density function from

minus infinity to plus infinity is always 1. So, that is the second property of a probability

density function.
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Let me ask a third question. What is the probability that a continuous random variables.

So, we are just focusing on continuous random variables at this moment what is the

probability that this continuous random variable takes a particular or a specific numerical

value, right. Now, we are not asking the question what is the probability that a random

variable lies between X and x plus delta, but we are trying to investigate what is the

probability that these random variable takes a specific value x and to calculate that the

limit will now go from X to x and as you can see that this is a integration at one point

there is no width in that area. So, this integration will turn out to be 0.

And, this might surprise you that in the case of a continuous random variable we do not

talk  generally  about  the  probability  of  a  specific  numerical  value  because  that  is

probability is always 0. In discrete random variable on the other hand, the probability

mass function that we introduced in the last lecture was talking about probability of a

random variable taking a specific numerical value x that is the probability mass function.

But,  this  expression will  have no meaning here because the probability  of a random

variable  taking  a  specific  numerical  value  will  always  be  0,  until  and  unless  their

singularities and other things sitting in the probability density function and which we

normally do not have.
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So,  like  in  the  discrete  case  we  can  also  define  CDF  in  continuous  case  which  is

cumulative distribution function and the cumulative distribution function is defined same

as before. So, cumulative distribution functions tells me what is the probability that a

random variable takes a value less than or equals to x and if you want to evaluate this

you just have to put it into the integration that we have seen before. So, this is nothing,

but this, right. So, this gives us an expression of CDF in terms of probability density

function probability density function is also known as PDF in short Probability Density

Function.

So, this expression relates cumulative distribution function with respect to probability

density  function and you can go back and forth.  So,  if  you have to  find probability

density  function  in  terms  of  cumulative  distribution  function  you  just  have  to

differentiate it with respect to x, ok.
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So, let us revise all properties that we have seen. So, we have introduced continuous

random variable  in  which we are talking  about  the probability  of  a  random variable

taking  the  values  between  a  and b and this  probability  can  be  obtained  in  terms  of

probability density function. We have said that the probability density function is not

probability, but in  this  case it  is  probability  per unit  length.  We have set  probability

density function is always non-negative because probabilities are non-negative we have

seen that area and a probability density function from minus infinity to plus infinity is 1.

We have said we do not  talk  about  a  specific  probability  in  the  case  of  continuous

random variable because that probability is 0.

We have also said that you can think about the cumulative distribution functions in terms

of probability density function and you can also obtain the probability density function

from cumulative distribution function.
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Let us again talk about the concept of expectation and variance in the case of continuous

random variables we already discussed this in the case of discrete random variables. So,

this  is  what we have covered in the last  lecture,  we have already talked about these

things. So, we have already talked about the expectation of a discrete random variable

which we obtain like this. In the continuous case, it is exactly similar what changes is

that this probability mass function changes to probability density function that is the one

change and the summation is replaced by integration,  ok. So, it is exactly same with

these changes.

So, you can think about the expectation of a continuous random variable in terms of

probability  density  function  and you need to  replace  the summation  with integration

everything else remain same. So, expected value of a function of a random variable we

obtained in discrete case like this. It remains exactly same, but the changes are that this

probability mass function is replaced by probability density function, this summation is

replaced by integration the expression of the variance also remains unchanged that is

exactly same, ok.

Now, let us do one example.
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And so,  what  we  have  here  is  probability  density  function  of  a  continuous  random

variable and what we are interested in is finding the expectation of this random variable

and a variance of this  random variable.  So,  first  let  us see why is  this  a  probability

density  function  of  a  continuous  random variable  because  the  x  takes  all  numerical

values between a and b. So, the range of x is unaccountably infinite right. So, because it

takes all values between a and b and these values are real numbers, right. So, x is a

continuous random variable because its range is uncountable infinite and let us now see

what is the expected value of this x.

So, expected value of x is  nothing, but we can use the expression x into probability

density  function.  Now, what  you may worry is  that  this  probability  density  function

though it looks uniform, but we do not yet have a value what value does it take at this

point, right. But, you can easily obtain this if we use the property that integration of

probability density function from minus infinity to plus infinity is 1, alright. So, let us

assume that this is some constant K. So, K times minus infinity, but you see that it goes

only from a to b and from this you can obtain that K is 1 upon b minus a. So, what we

have got is even though this value was not given, but we can compute it to be like this.

Now, finding  the  expected  value  of  this  is  easy. So,  probability  density  function  is

constant is constant only in the limits a and b, after that it is all 0. So, we get this and you

can solve this up.
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So, we had this and this gets out to of the form b square minus a square by 2 and from

this we get b plus a by 2. So, expected value of uniformly distributed random variable we

have obtained it  as a plus b by 2 and it  is of no surprise because we have said that

expected value of a random variable can also be thought as a centre of gravity. And, if

you look at this structure the centre of gravity of this structure will fall at this point a plus

b by 2 think more about this. Let us now calculate the variance of this random variable.

So, variance of this random variable is the second moment of the random variable minus

the square of the first moment of the random variable. So, what is E X square again we

can use the definition in which; so, we have already calculate the value of probability

density function it is only constant in the limit a and b and this will become, ok. So, this

will be. So, from this we can calculate the variance.
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We already calculated the second moment. We have also calculated the first moment and

simplifying  this  expression what  we will  get  is  this,  ok.  So,  we have calculated  the

variance of a uniformly distributed random variable.

(Refer Slide Time: 41:20)

Let  us now talk about  another important  random variable  which is Gaussian random

variable. So, Gaussian random variable is a random variable which have a probability

density function of this form, and if you plot this probability density function this looks

like a bell curve. This is a bell curve and the peak of this density function is at m and this



fluctuation is proportional to sigma square and you can see and prove that expected value

of this random variable is m which is the mean and the variance of this random variable

is sigma square, ok.

So, this probability density function is completely specified in terms of the mean and its

variance. So, if you tell me the mean and a variance of a Gaussian random variable I can

write the expression of the probability density function it is completely specified the only

there are only two unknowns; this m and sigma square. So, once you have m and sigma

square  this  probability  density  function  is  completely  specified  and  this  is  a  very

important random variable which is the Gaussian random variable.

(Refer Slide Time: 43:41)

Let us now look at the special case of Gaussian random variable the special case is when

you plug in this m as 0. So, the mean we are assuming to be 0 and the variance if we

assume it to be 1, then what we get is the probability density function is. So, what we

have  done  is  just  put  m  as  0  and  sigma  square  as  one  and  we  have  got  a  simple

probability  density  function  and  this  random  variable  is  known  as  normal  random

variable, ok.

So, normal random variable is just nothing, but it is a special case of Gaussian random

variable when you assume mean to be 0 and sigma square to be 1. So, there are various

ways in which we can analyze this expression in better ways means we can simplify this



expression further and we will use those all simplifications when we talk about detection

and estimation of deteriorate, but I will like to talk about this at that point in time.

(Refer Slide Time: 45:03)

Let us come to the last concept of this lecture in which what we are given is we are given

a linear function of a Gaussian random variable. So, X is a Gaussian random variable and

let us take this special case of Gaussian random variable. Let us assume for simplicity X

to be normal  random variable;  that  means,  it  is  Gaussian  with the mean of 0 and a

variance of 1. So, let us assume a normal random variable X and let us assume Y and Y

is  a  linear  function  of  this  normal  random variable  X.  So,  the  question  that  we are

investigating is if X is Gaussian distributed or let us say normal distributed, what is the

distribution of Y? So, this is what we have to investigate.
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So, the question is if we have a linear function. So, Y is a linear function of a normal

random variable X. So, we have to find the distribution of Y and a useful strategy to

think about such situations is to try to think in terms of CDF first and then from CDF we

know we can get PDF, right. So, if I have to find the CDF of y the CDF of y; that means,

I am trying to find what is the probability that this random variable Y takes in a value

less than small y, ok. So, that is the meaning by definition that is the meaning of the CDF

of a random variable. So, we are thinking about what is the probability that this random

variable Y takes in a value less than small y.

And, if you see this let us write it this equation in terms of numerical values and from

this you get this; so, a simple transformation. So, if we are interested in probability that Y

takes in the value smaller than this y, this is this probability is same as the probability

that a random variable X takes in a value which is smaller than y minus b by a, ok. So,

from this transformation and we know we can easily find this probability because we

have been given the distribution of X because X is known to us it is a normal random

variable.

So, let us it write this probability and the variance is 1. So, I do not have any sigma

square here. It will go from minus infinity to y minus b by a and this is e to the power

minus x square by 2 into dx, alright. So, this is the probability that a random variable X



takes in a value less than y minus b by a. So, we have to integrate from minus infinity to

y minus b by a, this is in bracket.
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So, let me write this again what I have written is I have said that the probability that

random variable Y takes in a value less than y is nothing, but is and you know how can

you get from this expression how can you get PDF, we know we can we have to simply

differentiate this with respect to y. So, probability density function; so, we use small f to

denote that is probability density function. So, from going from here to here you just

have to differentiate. So, here you can differentiate the CDF to get the probability density

function of y.

So,  I  just  have  to  differentiate  this  expression  which  will  give  me.  So,  this  is  the

probability density function of y, we have obtained this and look something interesting

has happened here. The interesting thing is that the probability density function of y is a

still Gaussian. So, y is a still a Gaussian random variable, ok. However, the mean of y

has changed. So, mean has changed to b. So, if we write mean of Y the mean of Y is b

and the variance of Y has now become a square, ok. So, the variance and mean of Y has

changed, but the Y has still remained a Gaussian random variable.
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And,  this  is  an  important  conclusion  that  any linear  function  of  a  Gaussian  random

variable  is  a Gaussian random variable.  So,  what  we have said is  we have define a

random variable Y which is a linear function of a random variable X: X was assumed to

be normal distributed random variable, Y we found out is a still a Gaussian distributed.

So, X is Gaussian distributed, Y is Gaussian distributed what has happened is the mean

of Y in this case is b and the variance of Y is a square. This is very important conclusion

that any linear function of a Gaussian random variable is a Gaussian random variable

with a modified mean and variance. So, how does this mean and variance modifies, we

will see in the next lectures.
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So, this concludes the lecture for today and what we have essentially covered in this

lecture is we have discussed the property of variances and we have also introduced the

notion  of  cumulative  distribution  function.  We have  introduced  what  are  known  as

continuous random variables and they are little bit tricky to handle then discrete random

variables.  We have also introduced two special  kind of  continuous  random variables

which is  the uniform random variable  and a Gaussian random variable  and we have

proved an important property with respect to Gaussian random variable that is a linear

function of a Gaussian random variable is a Gaussian random variable. We will see more

about this in the next lecture.

Thank you.


