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Lecture – 06 

Signal Spaces: Bandwidth & Degree of Freedom 

 

In this lecture we will be talking about degrees of freedom and bandwidth. 
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So, let us first look at the outline of the lecture. In today’s lecture, we will first complete 

what is left from the orthogonal expansion. We will be talking about discrete time Fourier 

transforms and how they can be used to get what is known as T-spaced sinc weighted 

sinusoid expansion. We will look into what is this degree of freedom, then we will look at 

the bandwidth of signals and systems and then we will learn about channel capacity. So, 

let us first start by finishing this idea of orthogonal expansion. 
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So, first of all let us write the double sum expansion built using DTFT and this expression 

follows from what we derived in the case of double sum expansion that was built using 

Fourier series which is, 

𝑋(𝑓) = ∑ ∑ 𝑏𝑘,𝑚𝑒−𝑗
𝜋𝑘𝑓
𝑊 rect (

𝑓

2𝑊
− 𝑚)

𝑘𝑚

 

So, what we are saying in here is, again we use these as orthogonal functions to carry out 

a double sum expansion by using the ideas that we developed using DTFTs. So, let us 

assume that we have a signal and this is let us say the spectrum of the signal and if we 

again divide these spectrum into segments and we can have different segments and let us 

assume that each segment is of bandwidth 2W.  

So, while considering a segment at a time, we can obtain these coefficients for these 

segments. So, 𝑏𝑘,𝑚 is the coefficient of the mth segment of the signal whose spectrum is 

𝑋(𝑓) and using these 𝑏𝑘,𝑚’s and these orthogonal functions we can carry out a double sum 

expansion. So, this is exactly same as in the case of double sum expansion of Fourier 

series, only we now have a different orthogonal function, everything else remains same. 
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So, again you can think about this as 𝑋(𝑓) is expressed by using some coefficients 

multiplied by some orthogonal functions and because we are using double sum, the 

coefficients have two subscripts: this m subscript tells that these 𝑏𝑘,𝑚’s are the coefficients 

corresponding to the mth segment and similarly, 𝜙𝑘,𝑚 tells that this is the orthogonal 

function corresponding to the mth segment. 

We can get these 𝑏𝑘,𝑚’s by taking the inner product of 𝑋(𝑓)with these orthogonal 

functions 𝜙𝑘,𝑚’s,  and dividing by the energy of these functions. We can prove that the 

energy of these functions is 2W. Energy of the functions in the case of Fourier series was 

T and we know that because T is getting mapped to 2W, so the energy of these orthogonal 

functions can be thought as 2W. Let us again now try to do what we did in the case of 

Fourier series. So, let us start by taking the inverse Fourier transform of this expression. 
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Using the ideas from Fourier world, we know that the inverse Fourier transform of a 

rectangular function is a sinc function. Fourier transform of shifted rectangular function 

can be obtained by multiplying a sinc function with a rotating complex exponential and 

this complex exponential will contain this factor of 2mW corresponding to this frequency 

shift of m2W. And the inverse Fourier transform of this shifted rectangular function 

multiplied by this rotating complex exponential, can simply be obtained by changing this 

𝑡 to 𝑡 −
𝑘

2𝑊
. So, wherever you have 𝑡, there you just have to shift it by this factor of 

𝑘

2𝑊
. 
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So, we are starting with these functions and we have obtained the inverse Fourier transform 

of these orthogonal functions as 2𝑊 sinc(2𝑊𝑡 − 𝑘)𝑒𝑗2𝜋𝑚(2𝑊𝑡). And by just applying 

mind to what these 𝑏𝑘,𝑚’s could be, we can easily obtain them. For example, we have seen 

previously that 𝑏𝑘’s were the samples  
𝑥(𝑘𝑇𝑠)

2𝑊
. So, what these 𝑏𝑘,𝑚’s should be? 
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So, let us go back to that picture again. So, we are taking a segment of this signal’s 

spectrum, the segment exist for a duration of 2W. This is the mth segment. If we take the 

inverse Fourier transform of this mth segment, we would get a time domain signal which 

we call as 𝑥𝑚(𝑡). So, these 𝑏𝑘,𝑚’s are the samples corresponding to this 𝑥𝑚(𝑡). So, we 

take the samples of this 𝑥𝑚(𝑡) and divide it by 2W. So, this is just obtained by using our 

mind based on what these 𝑏𝑘’s were. 
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So, substituting this obtained value of 𝑏𝑘,𝑚 we get 

𝑋(𝑓) = ∑ ∑
𝑥𝑚(𝑘𝑇𝑠)

2𝑊
× 2𝑊 sinc (

𝑡

𝑇𝑠
− 𝑘) 𝑒

𝑗2𝜋𝑚
𝑡

𝑇𝑠

𝑘𝑚

 

So, we have actually done two things, first we have substituted the values of these 

coefficients and then we have also substituted 2W as 
1

𝑇𝑠
. 

So, now we get a double sum orthogonal expansion of the signal 𝑥(𝑡) using the ideas of 

DTFT. This goes, in the literature, by the name of T-spaced sinc weighted sinusoid 

expansion. So, these sinusoids are weighted by these sincs and these sincs are T spaced 

sincs and hence the name T-spaced sinc weighted sinusoid expansion. So, let us revise 

what we have done so far. 
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So, first we developed single sum orthogonal expansion. For example, we have looked 

into Fourier series. In Fourier series, we expand the signal in terms of these truncated 

sinusoids, then we have this DTFT which is time frequency dual of this Fourier series. If 

we take the inverse Fourier transform of this DTFT, we get to this sampling theorem. 
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And then we also looked into double sum orthogonal expansion. So, from the idea of 

Fourier series we ended up with this T-spaced truncated sinusoids and using the ideas of 

DTFT we obtain these T-spaced sinc weighted sinusoid expansions. 



So, these are the kind of orthogonal expansions that we use in practice. Let us look into 

the next concept. It is a very interesting concept, particularly for engineers because many 

rules of thumb are derived using this idea of degrees of freedom. 
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So, we assume that 𝑥(𝑡) is time limited to duration 𝑇0 and bandlimited to bandwidth of 

𝑊0. For example, we can assume that it spans from −𝑇0/2 to +𝑇0/2, then the number of 

coefficients that would be required to represent the signal 𝑥(𝑡) is known as the degree of 

freedom of the signal 𝑥(𝑡). So, let us look at the number of coefficients that would be 

required. 
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It follows very simply from the ideas of sampling theorem that we have just seen. So, if a 

signal is of duration 𝑇0 and if W is the bandwidth of the signal then we have already seen 

that we need to collect the samples of the signal at a duration of  
1

2𝑊
. Then the number of 

coefficients that would be sufficient for the representation of the signal, can be simply 

obtained by dividing the total duration by the period at which samples needed to be 

collected and this number would be 2𝑊0𝑇0. 

So, this is typically the degree of freedom of a signal and this factor 2 is popping up here 

because of the notations and the way in which we define the duration of a signal in time 

domain and in bandwidth domain. When we define the duration of a signal in bandwidth 

domain, we only define for the positive side of the spectrum, whereas when we define the 

duration of a signal in time domain, we take into consideration the total duration of the 

signal. We can also interpret this degree of freedom in another way. 
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So, if we have a signal 𝑥(𝑡) and we want to store this signal into an array and we have 

already said that this is important for signal processing ideas. We cannot store a continuous 

time signal. We need to convert this signal into sequences and so, the question is: what is 

the length of the array required to store this signal? And again the length will correspond 

to 2𝑊0𝑇0. 

The kind of numbers fill in here depends upon what kind of signal is 𝑥(𝑡). So, if 𝑥(𝑡) is a 

real valued signal these numbers are real numbers. So, for a real valued signal 𝑥(𝑡), which 

is time limited to a duration of 𝑇0 and bandwidth limited to a bandwidth of 𝑊0, the number 

of real numbers that we require is 2𝑊0𝑇0. If 𝑥(𝑡) is a complex valued signal, then the 

number of complex numbers that we require to represent the signal 𝑥(𝑡) is again 2𝑊0𝑇0. 

But there is a mathematical intricacy that we have avoided so far in this discussion and 

this mathematical intricacy is that the time limited signals can never be frequency limited 

signal or bandwidth limited signal. We have seen this in signals and systems that if you 

squeeze a signal in time domain, then the signal is spread out in frequency domain. If you 

spread a signal in time domain, then the signal gets squished in frequency domain. This is 

because time and frequency are reciprocal spaces. So, making a signal time limited would 

make it bandwidth unlimited. Thus, this assumption that the signal is time limited and 

bandwidth limited at the same time does not hold. 
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Moreover, we can see that practical signals will always be time limited. If we want to 

transmit a signal, then duration of the signal has to be finite. We cannot transmit a signal 

spanning from - ∞ to + ∞ and also we can see that these practical signals will be band 

unlimited and this follows from this Paley-Weiner condition which says that, for the 

practical realizability of the signals or systems,  

∫
|𝑙𝑛|𝐻(𝜔)||𝑑𝜔

1 + 𝜔2

+∞

−∞

< ∞ 

So, Paley-Weiner theorem says that this complicated integration should be finite for 

practically realizable signals or systems. 
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In another word, it says that if 𝐻(𝜔) = 0 for 1 < 𝜔 < 2 then |𝑙𝑛|𝐻(𝜔)|| → ∞ in this 

frequency range and hence this integration would become infinite. Hence if 𝐻(𝜔) = 0 for 

a continuous range of frequencies then this integration would become ∞ and Paley-Weiner 

condition would not hold. Thus, for Paley-Wiener condition to hold, 𝐻(𝜔) cannot be 0 for 

a continuous range of frequencies and thus a signal can never be band limited. So, what 

we are saying is all practical signals need to be band unlimited and time limited. 

So, then how can we talk about this degree of freedom which was a nice idea that we can 

represent the signal by using these number of coefficients? And the idea is simple. When 

we are saying that this can be represented using these many coefficients, we assume that 

whatever we are losing out does not matter for us. So, from practical sense you would lose 

out energy when you do this conversion, but the loss in the energy is of no practical 

consideration and from engineering sense this number makes sense. So, what are the 

examples of the signals that can be approximated as band limited signal? 

No signals or no systems will be band limited ideally, but we will investigate what are the 

good examples of signals or systems which can be approximated to be band limited signals 

or systems. 
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But before all of this, let us talk about these two kinds of signals/systems: the baseband 

signals/systems and the passband signals/systems. So, mathematically we can say a 

basement signal/system is a system whose spectrum is mostly concentrated at around dc 

and a passband signal/system is a system whose spectrum is mostly concentrated at around 

certain frequency 𝑓𝑐. This is easy to understand pictorially. 
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So, this is the spectrum of the basement signal or a system where most of the energy is 

concentrated at around dc or is confined in this range. For passband, most of the energy 



will be concentrated at around a higher frequency 𝑓𝑐 and these two kinds of signals and 

systems are important. 

(Refer Slide Time: 22:21) 

 

We have already seen this picture of attenuation versus frequency profile of various kinds 

of channels and here you see that optical fiber has a low attenuation for very high 

frequencies. So, optical fiber is a passband channel. Coaxial cable is also a passband 

channel. Twisted pair can be used both as passband or baseband channel. So, you can 

transmit digital data directly over twisted pair and that is what is used in Ethernet LANs 

or you can use discrete multi-tone modulation where you transmit the signal in form of 

passband signals. 
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Wireless communication is mostly passband because we know that if you can operate 

communication over higher frequencies, antenna size reduces. And so, there is an incentive 

to have communication systems at higher frequencies, so you can reduce the antenna size. 

And because we now want to make our devices smaller and smaller, passband 

communication is preferred in wireless systems. 

Also we know from electrical world, that the quality factor of electrical circuits is given 

by 𝑄 = 𝜔0/𝐵 and because this quality factor is rather a constant quantity, it lives with 

between 100s to few 100s. So, we can approximately treat this as constant and hence 

bandwidth is proportional to 𝜔0, where 𝜔0 is the frequency of operation. So, as the 

frequency of operation increases, bandwidth of the system also increases and that is the 

second reason why we prefer this passband communication because it has the possibility 

to offer higher bandwidth. 



(Refer Slide Time: 24:48) 

 

We have not yet talked about this bandwidth concisely, so let us look into what is this 

bandwidth and the definition of bandwidth is quite easy if the signal in consideration is 

band limited signal. For example, if the spectrum of a signal or mod of a spectrum of a 

signal is like this we know that it is a band limited signal or it is a good approximation 

towards band limited signal. So, how do we define bandwidth? One idea is just to look at 

the positive side of the spectrum and then the bandwidth will be B. If you look at both 

positive and negative side of the spectrum, then the bandwidth will be 2B. We call the 

former as one sided bandwidth and the latter as two sided bandwidth. 
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And we know for real valued signals, because |𝐻(𝑓)| is symmetric, one sided bandwidth 

is always going to be half of two sided bandwidth. 
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However, for complex valued signals, |𝐻(𝑓)|is not symmetric. So, |𝐻(𝑓)| might look 

something like this. Now in this case our good old rule that one sided bandwidth is half 

the two sided bandwidth does not hold. So, in literature, the definition of one sided 

bandwidth, in the case of complex valued signals is obtained by looking at the total 

support; that means, we consider both positive side of the spectrum and negative side of 

the spectrum. So, we get the total support as 𝐵1 + 𝐵2 and divide this by 2. So, this is the 

definition of one sided bandwidth in case of complex valued signals. But if nothing more 

has been specified about the bandwidth, whether the bandwidth is one sided or two sided 

bandwidth, we consider the bandwidth as one sided bandwidth. 
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Another definition of bandwidth for complex valued signals can flow from the idea of 

equivalence between the real passband signal and complex baseband signal. We will see 

later on that a real passband signal has an equivalent representation in baseband domain 

and this representation of a real passband signal in baseband domain is normally complex. 

The complex valued signals arise because of this equivalence between passband and 

baseband signals because no signal can exist in reality as a complex signal. 

So, whenever we are saying complex valued signals, it is an analytical signal which models 

the behavior of a real passband signal. So, for the bandwidth of this real passband signal, 

we can look at only the positive side of frequencies if we are talking about the one sided 

bandwidth. For the complex baseband signal, the bandwidth should be considered by 

looking at both side of the spectrum. Thus from the equivalence point of view between the 

real passband signals and complex baseband signal, the bandwidth of a complex baseband 

signal can be considered as the total bandwidth. Let us now try to define bandwidth for 

band unlimited signals. 
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So, when we are thinking about band unlimited signals, there are various definitions of 

bandwidth that we can think about. We will take all these four definitions one by one. So, 

we have fractional containment bandwidth, equivalent rectangular bandwidth, 3 dB 

bandwidth and peak to first null bandwidth. 
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So, let us start with the idea of fractional containment bandwidth which says that we are 

interested in the range of frequencies for which a fraction of energy is contained. Suppose 



we have a rectangular pulse so, we denote this as rect (𝑡/𝑇) and and it takes an amplitude 

1 between – T/2 to + T/2. 

If we take its Fourier transform, we get a sinc pulse and the expression for the sinc pulse 

is 𝑇 sinc(𝑓𝑇). If we are interested in the energy of this pulses, we can use Parseval's 

theorem to either think about the energy in terms of a time domain signal 𝑥(𝑡) or in terms 

of frequency domain signal 𝑋(𝑓). 
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Now, we can define bandwidth as B for which this equality follows. If we carry out this 

integration between -B to +B, we get certain energy and this energy should be some 

fraction times the total energy. Here, 𝑎 is a fraction whose value will go from 0 to 1 and 

for this equality whatever the value of B we get, that is the bandwidth. 

Now, thinking about this total energy directly is little bit inconvenient, but these two are 

equivalent expressions from Parseval’s theorem. Now this is easier integration to do 

because 𝑥(𝑡) is a rectangular function which is 1 only between – T/2 to + T/2. So, we can 

simply go from – T/2 to + T/2, have 1 in here and this would easily integrate to T. 
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That means we can think about the bandwidth by solving for this expression and now let 

us try to simplify this bit more before we resort to computer to solve it, we cannot solve it 

by hands. It should be solved using computers but let us simplify this little bit further by 

thinking about that |𝑋(𝑓)| is a symmetric function.  

So, rather than carrying out this integration, it would be simpler to just carry out the 

integration between 0 to B and just multiply with 2. So, from this we have to solve for this 

expression. Substituting the value of |𝑋(𝑓)|, we see that T cancels with one T and finally, 

we have to solve for this expression. 
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Now we can even simplify this further by changing the units of the universe. So, we can 

define a new universe in which we have changed the time scale. So, in the new universe, 

the time scale can be obtained by dividing the time by T. So, this 𝑇0 is the time scale in 

old universe and this is the time scale that we choose in a new universe. Thus, the pulse 

which was of a duration T in the old universe becomes a pulse of duration 1. So, we can 

simply replace this T with 1 and we can rather solve this equation because now T is 1 in 

the new universe and now we can find the value of 𝐵𝑛. Since we have changed the time 

scale in the new universe so the bandwidth will also change in the new universe. 
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Since time and bandwidth follow a reciprocal relation, so bandwidth in the new universe 

would be T times the bandwidth in the old universe. So, bandwidth in old universe is 𝐵𝑛/𝑇. 

So, we can get the value of 𝐵𝑛, which is the bandwidth in the new universe, and find out 

the bandwidth in the old universe, in which we were interested, by just dividing this 

bandwidth in the new universe by T. These are certain tricks that we can use. We could 

have solved this equation directly in computer. 

Let me put out some values of bandwidth for values of 𝑎. So, if we choose 𝑎 = 0.99, that 

means we want 99 % of energy to be confined, the bandwidth turns out to be 10.2/T and 

if we choose 𝑎 = 0.9, the bandwidth that we need to have is 0.85/T. So, based on what 

fraction of energy containment we want to have, the bandwidth requirement varies. Of 

course, bandwidth should be a function of T. 
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Let us take the second definition of bandwidth which is equivalent rectangular or noise 

equivalent bandwidth. Idea behind this definition is that if we have been given a particular 

|𝐻(𝑓| then we can find the equivalent bandwidth of the system by thinking about putting 

a rectangular cap around |𝐻(𝑓)| where the rectangular cap is centered around the peak 

value of |𝐻(𝑓)|. This rectangular cap takes a total support of 2B. The bandwidth is defined 

as the value of B for which the energy contained in this rectangular cap is the same as the 

energy contained in 𝐻(𝑓). 
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So, the rectangular cap goes from - B to + B and the height of this rectangular cap is same 

as 𝐻𝑚𝑎𝑥. For simplicity, let us assume that the peak value of this |𝐻(𝑓)| happens at f = 0, 

so the magnitude of this is nothing, but  |𝐻(0)| and the energy thus would be ∫|𝐻(0)|2𝑑𝑓. 

This is the energy that would be contained in the rectangular cap and the total energy that 

would be contained in 𝐻(𝑓) can be evaluated using this expression. And because this 

quantity is independent of frequency, we can pull this out and from here, we can find the 

bandwidth. Let us try to do this for a sinc function because we did the previous examples 

with sinc. 
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Let us again consider a sinc pulse. So, we have been using the same pulse for the 

comparison between the two definitions. And so, if we pluck this into this expression, 

again as we said finding this out directly will be very difficult. So, let us think this in term 

of this divided by 2𝐻(0). Here the peak value is 𝐻(0) = 𝑇. So, this is 2𝑇2 and this, as we 

evaluated in the previous case, is nothing but T. So, this will evaluate to T and the 

bandwidth with this definition turns out to be 1 / 2T. So, this is the equivalent rectangular 

bandwidth or noise equivalent bandwidth. 
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Now, let us look at the third definition that is 3 dB bandwidth. 3 dB bandwidth is defined 

as the range of frequencies for which |𝐻(𝑓)| = |𝐻(𝑓)|𝑚𝑎𝑥/√2 . This is the most 

commonly used definition of bandwidth that is adopted in measurement instruments or the 

function generators. 
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So, let us try to understand this 3 dB bandwidth with a common example from electrical 

circuit world. So, here we have the example of RC circuit. So, you must have seen that the 

frequency response of an RC circuit is given by 1/(1 + 𝑗2𝜋𝑅𝐶𝑓). If we find the mod of 

this frequency response, it can be easily obtained by this expression. Now what is the 

maximum value of this |𝐻(𝑓)|? This will have the maximum value when this denominator 

achieves the smallest value and this will be the case when f = 0 and hence the maximum 

value of |𝐻(𝑓)| is 1. 
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So, we want B for which |𝐻(𝐵)| = 1/√2. Now substituting |𝐻(𝐵)| in this expression we 

can find out the value of B. From this we can find that 𝐵 = 1/2𝜋𝑅𝐶 which is the 3 dB 

bandwidth for an RC circuit. There is a last definition that we have to look into and that is 

the peak to first null bandwidth. 
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So, we have plotted the |𝐻(𝑓)|of our good old sinc pulse, and for this definition of 

bandwidth, we have to take the difference between the first null and the peak position. And 

this difference is very conveniently obtained as 1/T. So, if we consider the bandwidth of 

the sinc pulse based on this idea of peak to first null bandwidth, the bandwidth of the sinc 

pulse becomes 1/ T. 

So, there are different definitions of bandwidth that we have considered and not 

surprisingly, these different definitions of bandwidth have given us different results and 

thus the choice of definition of bandwidth depends upon its context. 



(Refer Slide Time: 46:54) 

 

Lastly, we have to look at the capacity which illustrates why this bandwidth is so 

important. So, if you look at the capacity of a communication system which is in bits per 

second. So, how fast your internet can be, depends upon this factor. This capacity is 

𝐵 log2(1 + SNR), where B is the bandwidth of the communication system and SNR 

represents signal to noise ratio, i.e., signal power divided by noise power and this 

expression came from Shannon’s celebrated work on communication system.  

Essentially, it says that you can increase the capacity by either increasing the bandwidth 

of the communication system or by increasing the signal power. So for a higher capacity, 

we want to have a larger bandwidth and this bandwidth is thus very important. 
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Let us look at what are the typical numbers for bandwidth and signal to noise ratio for a 

telephone system. So, the bandwidth of a telephone system is restricted to this 4 kHz, 

signal to noise ratio is typically around 30 dB and thus you can find that the capacity of a 

telephone system is around 40 kbps. 

So when communication system started, people were trying to make communication 

systems which can achieve this theoretical value of capacity. This is a theoretical value of 

capacity meaning that this is the best that you can have. A communication systems capacity 

is upper bounded by this value of C. So, when you are designing a communication system 

your objective is to reach to this value of upper bound of the capacity that is given by the 

Shannon’s equation. 

So, with this we have completed this unit and this lecture. In this lecture today, we have 

learnt about what is the bandwidth, degree of freedom and we have also seen T-spaced 

sinc weighted sinusoid expansion. In the next unit, we will start by looking into noise 

because as you can see that the capacity and the performance of a system depends upon 

this noise power and hence it is very important to understand what noise is and what are 

the typical values of noise power. So, we will start with this in unit 2 from next lectures. 

Thank you. 


