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In this lecture we will be talking about Fourier series and related expansions.  
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We will first talk about the Fourier series and from Fourier series we will learn about T-

spaced truncated sinusoids expansion, then we will talk about discrete time Fourier 

transforms and from discrete-time Fourier transforms, we will learn about T-spaced sinc 

weighted sinusoid expansions and then, we will also learn in this lecture about sampling 

theorem. 

So, this is the outline of the lecture, but let us first recap what we have learnt in the last 

lecture. 
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We have started with the idea of Gram Schmidt orthogonalization procedure. Using this 

procedure, we can convert signals into vectors by finding out the basis functions and we 

have to find the coefficients of these signals along those basis functions. Then we have 

also studied about the transmitter design. 
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So, transmitter converts sequences to waveforms. If we have a sequence, we multiply each 

element of the sequence with orthonormal basis function and sum up all the products of 

this multiplier. So, from this we get a signal. 
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Similarly, we have looked into the receiver design. If we are receiving a waveform, we 

pass this waveform through what is known as correlator and at the output of the correlator, 

we have the projection of this waveform along this orthonormal basis functions. So, then 

we can obtain a sequence corresponding to the received waveform. 
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We have also said that instead of this correlator, which is made up of a multiplier and 

integrator, we can have a matched filter which is a filter whose impulse response is 

matched to orthonormal basis functions. So, we need to use a bank of matched filters or a 



bank of correlators. From theoretical point of view, they are similar. However, there are 

some practical differences. 
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Then we have looked at the full blown receiver implementation where the receiver first 

produces the sequence corresponding to the received waveform and then, it does the inner 

product of this received sequence with the sequence of the signal set that it has. We have 

said if these signals are not of equal energy and they do not occur with equal probability, 

then normally you also have to add some bias. 

So, whichever produces the largest output, receiver assumes that is the transmitted signal. 

For example, if I have the maximum output from this branch, then the receiver would 

select 𝑠1 as the transmitted signal. So, this happens in a receiver implementation. Why do 

we add this bias? These things will become clear when we will go into the regime of 

detection. At this point, it is important to appreciate that at the receiver as well as the 

transmitter the important operations that happen is the inner product. 

So, in today’s lecture we will be talking about other forms of orthogonal expansions and 

these forms of orthogonal expansions can be arrived by using the principles of Fourier 

series or Fourier transforms. So, let us start with Fourier series. 
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I would be just revising what you have learnt and maybe adding some flavor to Fourier 

series based on what is important in the context of digital communication. 

So, what you must have read in Fourier series that if you have a signal 𝑥(𝑡) which is 

periodic with period T, then you can express this signal by using this expression. So, 

here 𝑎𝑘 's are known as the Fourier series coefficients and 𝜔0 = 2𝜋/𝑇. We can find out 

this 𝑎𝑘 by carrying out this integration. We will also understand later on how this is related 

to orthogonal expansion. 

(Refer Slide Time: 07:13). 

 



If 𝑥(𝑡) is periodic signal with period T, then this signal is useless signal from the point of 

view of communication because periodic signal repeats itself after a time duration of T 

seconds and if the signal repeats itself, then there is no information contained in that signal. 

So, such signals periodic signals are not important from the point of view of 

communication. 

So, we would define Fourier series in a slightly different way than what you have studied 

in signals and systems. What we will be saying is: suppose I have a periodic signal, I am 

not interested in this part of the signal because this part of the signal has the same 

information as this part. So, I am interested in trying to find out the expression for a signal 

only contained in one time period. For example, I call this one part of the signal as 𝑥(𝑡). 

So, when I am saying 𝑥(𝑡), from now onwards it would mean that this is the signal that is 

present only in one time period which goes from −T / 2 to + T / 2. 

Now, this signal 𝑥(𝑡) can be obtained by multiplying 𝑥𝑝(𝑡) where p denotes that this is a 

periodic signal. So, 𝑥𝑝(𝑡) is the total periodic signal. I multiply this periodic signal with 

suitable gate i.e. a rectangular function. 
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So, rectangular function 𝑟𝑒𝑐𝑡(𝑡/𝑇) is 1 for −𝑇/2 ≤ 𝑡 ≤ +𝑇/2 and it is 0 otherwise. 
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Let me draw the picture of rectangular function. It has a value 1 for time duration between 

−T / 2 to + T / 2 and everywhere else this will be 0. So, once I multiply 𝑥𝑝(𝑡) with this 

rectangular function, it will only give me the signal contained in this time duration or in 

just one period where the period spans from −T / 2 to + T / 2. So, 𝑥(𝑡) =

𝑥𝑝(𝑡)𝑟𝑒𝑐𝑡(𝑡/𝑇). Thus I can obtain the Fourier series for this 𝑥(𝑡) where 𝑥(𝑡) is now an 

aperiodic signal. So, I can write the Fourier series expansion for 𝑥(𝑡) as 

𝑥(𝑡) = ∑ 𝑎𝑘𝑒𝑗𝑘𝜔0𝑡𝑟𝑒𝑐𝑡(𝑡/𝑇)

∞

𝑘=−∞

 

Sometimes I may not write that the limit of k is from - ∞ to + ∞ and then, you should 

understand it as that k takes all possible values. 
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So, what I am saying is because the communication engineers are only interested in 

aperiodic signals and if I have an aperiodic signal which is limited to the time duration of 

T, I can obtain the Fourier series for this signal by using this expression for all values of 

k. Also, 𝑎𝑘 can be obtained as before. The expression of 𝑎𝑘 would not change. Let us now 

try to understand this from the orthogonal expansion idea that we have just seen. 
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So, I can write 𝑥(𝑡) = ∑ 𝑎𝑘𝜙𝑘(𝑡)𝑘 , if 𝜙𝑘(𝑡)′s are orthogonal functions and 𝑎𝑘′s are the 

coefficients of these orthogonal functions. Now, the Fourier series looks exactly similar to 



this. So, if I consider 𝜙𝑘(𝑡) = 𝑒𝑗𝑘𝜔0𝑡𝑟𝑒𝑐𝑡(𝑡/𝑇), these two expressions look exactly same. 

The only thing that now I have to prove is that this 𝜙𝑘(𝑡) or the set corresponding to 𝜙𝑘(𝑡) 

is an orthogonal set, where k belongs to set of integers. 
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If we prove that this is an orthogonal set for k belonging to set of integers, then we can say 

that Fourier series is nothing but the orthogonal expansion of a signal. And how do we 

prove that something is orthogonal? We take the inner product. So, if I take inner product 

of 𝜙𝑘(𝑡) with let us say another signal from the set which I call as 𝜙𝑚(𝑡) and if I can prove 

that the inner product of these two signals is 0 if k ≠ m, then we can say that these signals 

are orthogonal signals. Of course, if k = m, then this is the inner product of the signal with 

itself and it will not be 0, but it will correspond to the energy of the signal. So, 𝜙𝑘(𝑡) =

𝑒𝑗𝑘𝜔0𝑡𝑟𝑒𝑐𝑡(𝑡/𝑇). If I take the inner product of 𝜙𝑘(𝑡) with 𝜙𝑚(𝑡), first I have to have 

𝜙𝑘(𝑡), multiplying this with conjugate of 𝜙𝑚(𝑡)dt. So,  

< 𝜙𝑘(𝑡), 𝜙𝑚(𝑡) >= ∫ 𝑒𝑗𝑘𝜔0𝑡𝑟𝑒𝑐𝑡(𝑡/𝑇)𝑒−𝑗𝑚𝜔0𝑡𝑟𝑒𝑐𝑡(𝑡/𝑇)
+∞

−∞

𝑑𝑡 
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I can absorb 𝑟𝑒𝑐𝑡(𝑡/𝑇) in the limit of integration and the integration goes now from −T / 

2 to + T / 2. We start thinking about this by considering the easy case first. So, we have 

Case 1: k = m. When k = m, we have 𝑒0𝑡 which is 1. So, going from −T / 2 to + T / 2, 

we have T. So, when k = m, the inner product of 𝜙𝑘(𝑡) with 𝜙𝑚(𝑡) is T. Now, let us 

investigate the second case, Case 2: k ≠ m. 
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Let us assume that k - m is another integer, n. So, this will become 𝑒𝑗𝑛𝜔0𝑡𝑑𝑡. Now, instead 

of thinking this in terms of complex exponential, we use Euler’s theorem and break it into 

sinusoids. So, I can write this as (cos n𝜔0t + j sin n𝜔0t) dt. Now, the fundamental periods 



of both these signals cos n𝜔0t and sin n𝜔0t is T/n. So, in this limit of integration, this cos 

and sin will make n cycles. 
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In this time duration T period, these sinusoids will complete integer number of cycles. For 

example, this sine will make integer number of cycles. In this case this integer number is 

2, but what we have to appreciate is, if a sinusoid function makes or completes an integer 

number of cycles in the period of integration, then the area under this function is always 

going to be 0 because the positive part will always cancel out the negative part. So, if I am 

integrating a sinusoid function and if that sinusoid function completes integer number of 

cycles in that period of integration, then the integration of that sinusoid function would be 

0. So, we can now understand that this integration would give us 0. 
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We can summarize that if I am carrying out the inner product of 𝜙𝑘(𝑡) with 𝜙𝑚(𝑡), that 

means I am interested in carrying out this integration, then this will be 0 when k ≠ m and 

when k = m, this is going to be T and hence, we can say that the set 𝜙𝑘(𝑡) where k belongs 

to set of integer is an orthogonal set. 
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Let us carry out the inner product of 𝑥(𝑡) with 𝜙𝑚(𝑡) and this gives us 



∑ 𝑎𝑘 ∫ 𝑒𝑗(𝑘−𝑚)𝜔0𝑡𝑑𝑡
+𝑇/2

−𝑇/2𝑘

 

I can absorb these rectangular functions again in the limit. We have already said this is non 

zero only when k = m. 
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So, we can write this as ∑ 𝑎𝑘𝑇𝛿(𝑘 − 𝑚)𝑘  where 𝛿 is an impulse function. So, this will 

mean that this is only non zero when k = m. When k = m, it is 1 and it is multiplied by T 

and when k ≠ m, this will give you 0. So, I have only 𝑎𝑚𝑇 left because this will make all 

coefficients other than the coefficient 𝑎𝑚 to be 0. Thus, < 𝑥(𝑡), 𝜙𝑚(𝑡) >= 𝑎𝑚𝑇 and from 

this we have 

 𝑎𝑚 =
1

𝑇
< 𝑥(𝑡), 𝜙𝑚(𝑡) >=

1

𝑇
∫ 𝑥(𝑡)𝑒−𝑗𝑚𝜔0𝑡𝑟𝑒𝑐𝑡(𝑡/𝑇)

+∞

−∞

𝑑𝑡 

So, we have learnt about the Fourier series and let us now recap the major ideas that we 

have developed. 
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So, what we are saying is we can express a signal 𝑥(𝑡) in terms of orthogonal functions 

𝜙𝑘(𝑡). We have proven that this is a set of orthogonal functions if k belongs to the set of 

integers and these orthogonal functions are this and in literature this is also referred to as 

truncated sinusoid. This is a sinusoid and this truncates the sinusoid to one time period. 

So, these 𝜙𝑘(𝑡)’s are also referred to as truncated sinusoids. You can obtain the 𝑎𝑘’s just 

by carrying out the inner product of 𝑥(𝑡) with 𝜙𝑘(𝑡) and dividing it with the energy of 

𝜙𝑘(𝑡) and that is T. So, now we have seen that this Fourier series is the orthogonal 

expansion of a signal. Is this of any use? Let us see it now. So, in practice, the signals in 

which we are interested will be of a pretty long duration. 
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Let us say this signal expands a pretty long duration and we say this as 𝑇𝐿. Now, if you 

have to wait to process the signal or if you have to wait to receive the signal for a time 

duration of 𝑇𝐿, then only you can calculate these 𝑎𝑘′s and then only you can transmit this 

𝑎𝑘′s. This will create lot of delays in the communication system. So, one idea is that if you 

have a signal instead of waiting for the entire reception of the signal, you can break the 

signal into segments. So, I can take a segment of these signals. For example, in voice 

applications, the duration of this segment is typically chosen to be 20 ms and then, I find 

the coefficients corresponding to a segment of a signal. So, this is a segment 1, 2, 3 and so 

on. 

So, if I pull out a segment let me call this as 𝑥1(𝑡). This segment 𝑥1(𝑡) can also be thought 

as it is constructed from the periodic signal 𝑥1𝑝(𝑡). So, 𝑥1𝑝(𝑡) is a periodic signal. If you 

multiply this periodic signal with a gate, we can get this segment. Now, similarly I can 

think about the second segment which again I think in the same lines as if it is constructed 

out from the second periodic signal and by multiplying this second periodic signal with a 

gate, but now this gate would be shifted by T units because this second segment is T spaced 

from the first segment. So, you need to choose a gate which is non zero in this duration, 

so, in a duration between T/2 to 3T/2. 
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I can think about the mth segment from the mth periodic signal and multiply this with the 

gate, send it spaced by mT units. So, 𝑥(𝑡) is built up of these segments. The total signal is 

composed of these segments where m takes in all possible values, then I can substitute the 

value of 𝑥𝑚(𝑡) and I can get the expression of 𝑥(𝑡) and each periodic signal can use 

Fourier series representation. So, if it is a periodic signal I can think about this periodic 

signal by the Fourier series expansion. 

First I had only 𝑎𝑘’s, but now there is an additional subscript m and this m tells me that 

these are the coefficients corresponding to mth periodic signal. So, each periodic signal 

will have different k coefficients. So, to tell about for which periodic signal these 

coefficients belong, we need to have this additional subscript. 
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. 

So, plugging in this value of 𝑥𝑚(𝑡) in this expression, we get 

𝑥(𝑡) = ∑ ∑ 𝑎𝑘,𝑚𝑒𝑗𝑘𝜔0𝑡𝑟𝑒𝑐𝑡 (
𝑡

𝑇
− 𝑚)

𝑘𝑚

 

and this is known as T-spaced truncated sinusoid expansion. So, first of all these sinusoids 

are truncated by this gate function, but these sinusoids are also T-spaced truncated. So, 

this gate that has truncated the sinusoids is T-spaced. 
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We have just finished learning about T-spaced truncated sinusoid expansion where we 

have been able to express a signal as a double sum of orthogonal expansion. These 

orthogonal functions are T-spaced truncated sinusoids and this 𝑎𝑘,𝑚, can be simply 

obtained by taking the inner product of 𝑥(𝑡) with these orthogonal functions and dividing 

by the energy of these orthogonal functions which is T. Ok, let us now learn about discrete 

time Fourier transforms or DTFT. 
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Discrete time Fourier transform is time frequency dual of continuous time Fourier series 

that we have just seen. So, we know that continuous time Fourier series expression can be 

conveniently obtained, as we have already seen, by having the Fourier series coefficients 

multiplied by truncated sinusoids. 

So, this is the expression of continuous time Fourier series and we can obtain the 

expression of discrete time Fourier transform by using this idea of time-frequency duality 

and what is that? So, because of this property of time-frequency duality I can replace t by 

f, T by 2W and 𝑒𝑗  by 𝑒−𝑗. By carrying out these replacements, I can go from continuous 

time Fourier series to discrete time Fourier transform. Also we can see that because 𝜔0 =

2𝜋/𝑇 and we have already said that T should be mapped to 2W. So, 𝜔0 = 𝜋/𝑊. So, let 

us see what would be the expression of discrete time Fourier transform. 
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So, first let me write again the expression of continuous time Fourier series and let us now 

carry out the replacements. So, changing t to f, we go from a time domain signal to 

frequency domain signal. The 𝑎𝑘’s are replaced by 𝑏𝑘’s. Let us assume that for DTFS or 

DTFT, the coefficients are 𝑏𝑘, then changing j to - j, k remains k, 𝜔0 gets mapped to 𝜋/𝑊, 

t is mapped to f, rectangular function remains rectangular function, t is mapped to f and 

capital T is mapped to 2W and this is the expression of discrete time Fourier transform. 
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So, let us first understand the obscurity when we are saying that T is getting mapped to 

2W and why there is a factor 2 here. So, for example when I say that a signal is limited to 

T duration in time, it can mean that signal exist from −T / 2 to + T / 2 and the total 

duration of the signal is T. However, when we say signal is limited to W Hz in frequency, 

other way to say this is signal is band limited to W, it means that the signal occupies W 

Hz only in the positive side of the spectrum. 

So, W only denotes the occupancy of the signal in the positive side of the spectrum and 

the total support of the signal is 2W and hence, when you say that signal is limited to T 

duration in time, it denotes that the total duration of the signal is T in time, but when you 

say that the signal is limited to W Hz in frequency, it means that the total duration of the 

signal is 2W in frequency including positive and negative side of the spectrum. Hence 

because of these notations, T is getting mapped to 2W. 
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So, we have said that in discrete time Fourier transform, you have an expression like this 

and remember that this expression is valid for a signal which is bandlimited to W. So let 

us start taking the inverse Fourier transform of this DTFT expression. So, 𝑋(𝑓) will 

become 𝑥(𝑡), and then, we have to take the inverse Fourier transform of this. So, let us 

first try to see what is the inverse Fourier transform of this expression using the properties 

of signals and systems. 
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You must know these relationships, for example, the inverse Fourier transform of a 

rectangular pulse is a sinc pulse and if I multiply this rectangular pulse with a rotating 

complex exponential, then the independent variable in another domain gets shifted by a 

certain quantity. For example, in this case, this would be shifted by k/2W. So when you 

multiply a function with a rotating complex exponential then the variable in another 

domain gets shifted. 

So, here the variable t will get shifted by a factor of k/2W. So, we have been trying to 

obtain the inverse Fourier transform of this expression and now I can complete it like this. 

So, this is a set of orthogonal functions using the same approach as we have used in the 

case of Fourier series. This is actually truncated which is a set of orthogonal functions. 

Now, if this is a set of orthogonal function can we say something about the set of these 

signals where the set is obtained by changing the value of k’s and remember that k belongs 

to the set of integers. 
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Let me first write Parseval's theorem. So, Parseval's theorem states that 

∫ 𝑥(𝑡)𝑦∗(𝑡)
+∞

−∞

𝑑𝑡 = ∫ 𝑋(𝑓)𝑌∗(𝑓)
+∞

−∞

𝑑𝑓 

This is the inner product of the signals in time domain on LHS and this is the inner product 

of the signals in frequency domain on RHS. Here 𝑋(𝑓) is the Fourier transform of 𝑥(𝑡) 

and 𝑌(𝑓) is the Fourier transform of 𝑦(𝑡). So, when you are transforming the signals from 

time domain to frequency domain, the inner product between the signals do not change. 

Inner product is preserved. If inner product is preserved, it will also imply that 

orthogonality will remain preserved. 
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So, 𝜙𝑘(𝑓) was the set of orthogonal signals used for orthogonal expansion in the case of 

DTFT. If we take the inverse Fourier transform of these functions, we get a set 2W 

sinc(2Wt – k) and because 𝜙𝑘(𝑓) is an orthogonal set, so this set of functions is also 

orthogonal set because of Parseval's theorem. This is because when you go from time 

domain to frequency domain or frequency domain to time domain, the inner product 

remains preserved and thus the orthogonality of the functions also remain preserved. 
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So, let us now rewrite the expression for inverse Fourier transform of DTFT. Let us 

substitute t as 𝑚𝑇𝑠 and see what happens. So, this 𝑥(𝑡) becomes 

𝑥(𝑡) = ∑ 𝑏𝑘2𝑊sinc(2𝑊𝑡 − 𝑘)

𝑘

 

Here t becomes 𝑚𝑇𝑠 and as I have said, we want to map this 𝑇𝑠 to 1/2W. That means we 

this 𝑇𝑠 is also known as sampling period. We are choosing a sampling period same as 

1/2W and this follows from Nyquist sampling theorem. So, why is the sampling time like 

this we will see in a while, but let us just see that what happens if you choose the sampling 

time as 1/2W. So, if I choose 𝑇𝑠 as 1/2W, we can also see in here, this 2W cancels with 

this 2W. 
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And the expression that we get is 

𝑥(𝑚𝑇𝑠) = ∑ 𝑏𝑘2𝑊sinc(𝑚 − 𝑘)

𝑘

 

The definition that is normally used in the courses on communication system is 

sinc 𝜃 =
sin 𝜋𝜃

𝜋𝜃
 



This is also known as normalized sinc function. So, this is known as the normalized 

definition for sinc function. In that case, 

sinc(𝑚 − 𝑘) =
sin[𝜋(𝑚 − 𝑘)]

𝜋(𝑚 − 𝑘)
 

Let us now substitute this m - k as n, m is an integer, k is an integer and this n is also an 

integer. 
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We can use L’Hospital rules and obtain that if n = 0, then 
sin 𝜋𝑛

𝜋𝑛
 will be 1 and if n ≠ 0, then 

this is going to be 0. So, we see that when m ≠ k, this term will vanish and there will be 

no contributions in the summation of the coefficients other than when k = m. Hence, we 

can simplify the summation to just one term where the contribution will be only from 𝑏𝑚 

because all other coefficients will become 0 because of this multiplication by sinc. So, 

𝑥(𝑚𝑇𝑠) = 𝑏𝑚2𝑊 ⟹ 𝑏𝑚 =
𝑥(𝑚𝑇𝑠)

2𝑊
 

So, now let us substitute this value of 𝑏𝑚 in the original expression. 
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So, we have said that 

𝑥(𝑡) = ∑ 𝑏𝑘2𝑊sinc(2𝑊𝑡 − 𝑘)

𝑘

 

and substituting 

𝑏𝑘 =
𝑥(𝑘𝑇𝑠)

2𝑊
 

the expression that we get is  

𝑥(𝑡) = ∑
𝑥(𝑘𝑇𝑠)

2𝑊
2𝑊sinc(2𝑊𝑡 − 𝑘)

𝑘

 

and we can also substitute this 2W= 1/𝑇𝑠. So, we get the resultant expression as 

𝑥(𝑡) = ∑ 𝑥(𝑘𝑇𝑠)sinc (
𝑡

𝑇𝑠
− 𝑘)

𝑘

 

and this is a very celebrated expression. It goes by the name of sampling theorem. So, let 

me write this expression again. 
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Now, let us try to understand what this expression means. For example, let me assume that 

I have a signal𝑥(𝑡). These 𝑥(𝑘𝑇𝑠) are the samples of this function collected at an interval 

of  𝑇𝑠. So, I can go from samples to the signal by putting sinc caps around the samples. For 

example, let us assume that I have got certain samples. 
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And if I start putting this sinc caps around these samples and I sum up everything then I 

hope to get a continuous function. This function is 𝑥(𝑡), these black lines are the samples 

and these red functions are the sinc caps. 



So, this expression states that if you put the sinc caps around the samples, you get the 

waveform and this is a very important result and it goes by the name of sampling theorem. 

When we will see the random processes and noise, we will see that you can express noise 

again exactly in the same way. If you start putting the sinc caps around random variables, 

then you get two random processes. There also we use this idea of sinc expansion of a 

signal. 
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When we will go to the regime of modulation, there also we see that you can start thinking 

about the waveforms by putting these sinc caps around these samples of the waveform. 

So, this equation is pretty useful and we will use lot of it in random processes and 

modulation. So, next we will be trying to understand double sum orthogonal expansion 

using DTFT which is exactly same thing as we have done in the case of Fourier series. So, 

we will see about this double sum expansion in the next lecture. 

Thank you. 


