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In this lecture, we will be talking about Gram Schmidt orthogonalization procedure. But 

before that let us recap what we have learned in the first week.  
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So, we have introduced the big idea of 𝐿2 space (or 𝐿2 waveforms or 𝐿2 signals), and we 

have said that the class of all finite energy signal belongs to 𝐿2 space. So, we know that 

the energy of the signal can be computed by the integration of mod square of that function, 

and if this quantity is finite, we say that the signal has finite energy and if the signal has 

finite energy the signal is in 𝐿2 signal.  

Now, we prefer these 𝐿2 signals because 𝐿2 waveforms are vectors, and 𝐿2 waveforms 

always have Fourier series and Fourier transforms representation. So, this is the one big 

idea that we have learned.  
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Second, we have learnt about the inner product. So, inner product is same as the dot 

product. So, in case of vectors we prefer this dot product, in case of signals we do this 

inner product. What is inner product? If you want to compute the inner product of the two 

signals you have to multiply the signal with a conjugate of another signal and then you 

have to integrate it from - ∞ to + ∞, and this is the inner product of the two signals. 

Physically the dot product and inner product have the same meaning. 

In case of vectors we can compute the norm of a vector which is also the length of the 

vector and this could be obtained by square root of dot product of the vector with itself. In 

case of signals, we can also compute the norm of a signal by the square root of inner 

product of the signal with itself. This quantity is nothing but it is the energy of the signal, 

and hence norm of the signal is nothing but it is the square root of energy of the signal. So, 

we learn that length of the signal is nothing but square root of energy of that signal. 

Carrying this idea forward, we can talk about the angle between the two vectors and you 

must have learned this identity before that cos of the angle between two vectors is given 

by the inner product of the two vectors divided by the length of the vectors.  



(Refer Slide Time: 02:50) 

 

In case of signals, the picture remains exactly same. The cos of angle between the two 

signals is given by the inner product of the two signals. So, here we are computing the 

inner product of the two signals divided by the length of the signals. Remember this is the 

length of the signal because it is the square root of energy of the signals. 

In case of vectors, Cauchy Schwarz inequality can be easily derived from this expression, 

and it states that mod of the inner product of the two vectors is less than or equals to the 

product of the lengths of the vectors. In case of signals exactly same thing follows that is 

the mod of the inner product of the two signals is less than or equals to the product of the 

lengths of the signals.  

Now, using this analogy between signals and vectors, we have easily derived this 

inequality otherwise it would have given us tough time. So, that is why we prefer this 

analogy between signals and vectors: things becomes trivial and easy. Let us take this case 

forward and let us define what are known as orthogonal signals.  
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In case of vectors if you want to talk about the vectors, if the inner product of two vectors 

is zero then we call those vectors as orthogonal vectors or perpendicular vectors. In case 

of signals, again if the inner product of the two signals is zero, we call those two signals 

as orthogonal signals.  

In case of vectors we have unit vectors, unit vectors have the magnitude of one. In case of 

signals, we have these orthonormal functions (or orthonormal signals). Orthonormal 

functions (or signals) are first orthogonal functions (or signals) and secondly, they should 

also have unit energy. So, if the signals are orthogonal and they have unit energy then we 

call those signals as orthonormal signals, orthonormal functions or orthonormal 

waveforms.  

So, these are the three important ideas that we have learned in the last week.  



(Refer Slide Time: 05:33) 

 

So, we have also seen about the orthogonal expansion of a signal which is easier to think 

in terms of a 3D vector. A 3D vector can be understood as it is built using components in 

the x, y and z direction. Similarly, a signal can be considered as if it is built using 

orthogonal or orthonormal functions. So, these 𝑥𝑛(𝑡)’s are orthogonal or orthonormal 

functions. 

Again, if we want to think about how big is the component of this vector r in the x direction 

you can simply obtain this by dotting this vector r with the unit vector in the x direction. 

In the case of signals, if we want to find out the component of the projection of 𝑥(𝑡) in the 

direction of reference signal 𝑥𝑛(𝑡), you can simply obtain this by taking the inner product 

of the signal with the reference orthogonal or orthonormal function 𝑥𝑛(𝑡) and dividing by 

the energy of that orthogonal or orthonormal function. Of course, if this is orthonormal 

function then this quantity is going to be one.  

So, we can understand about this orthogonal expansion by using the analogies between 

vectors and signals, and if we make use of this analogy then this is really simple and it is 

like a five-finger problem.  



(Refer Slide Time: 07:23) 

 

And let us do a question based on this. So, I have the two signals 𝑥(𝑡) and 𝑦(𝑡) and what 

I am interested in here is finding out the angle between the two signals.  

Now, we have learnt that if I am interested in finding the angle between two signals, I can 

use this identity where I need to take the inner product of the signals involved. If they are 

real I do not need to take this conjugate and I have to divide it by the square root of energy 

of these two signals. So, I need to find out the inner product of the two signals involved 

and the energies of these signals involved.  
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So, first let us derive what is the energy of signal 𝑥(𝑡) and this can simply be obtained by 

carrying out this integration and this will turn out to be 2. Similarly, I can find the energy 

of the signal 𝑦(𝑡) and this will also be 2. Then what I need to find out is the inner product 

between these two signals.  
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So, if I want to find the inner product between the two signals, I can break this integration 

in certain regions. So, first I am considering the area of this product of these two signals 

in the limit going from 0 to 0.5 and then this product is 1, then I can consider the integration 

from 0.5 to 1 where the product is -1 and then I can go from 1 to 2 where the product is 1. 

So, I will get 1.  

So, cos of angle between 𝑥(𝑡) and 𝑦(𝑡) will turn out to be 1 / 2. So, angle will come out to 

be cos−1 (
1

2
) = 60°. So, using some simple ideas we have been able to talk about the angle 

between the two signals.  
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Let us now move on to the main theme of today’s lecture where we will learn about Gram 

Schmidt orthogonalization procedure and then we will see the transmitter and receiver 

structure. So, let us get started with this Gram Schmidt orthogonalization procedure.  
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So, what is the objective of this orthogonalization procedure? Let us assume that we have 

M energy signals which means, the energy of these signals is finite. We want to find N 

basis functions for the signal space representation of these M energy signals. So, I want to 

convert these signals into vectors and I want to think about the signals in terms of basis 



functions. The number of basis functions that I have is N and we will find out that N ≤ M. 

Let us see how we do this orthogonalization procedure. 

(Refer Slide Time: 11:48) 

 

So, the first idea is let us start by picking a signal, I could have chosen any signal to start 

with, but let us start with this signal 𝑠1(𝑡). Remember these basis functions that we will 

obtain will not be unique but will depend upon the order in which you do this 

orthogonalization. Since we have started with 𝑠1(𝑡), we might get a different answer than 

what we would have got if we would have started with another signal 𝑠𝑀(𝑡). So, it really 

depends upon the order in which you are carrying out this orthogonalization procedure.  

However, the dimensionality (that means how many basis functions we need for the signal 

space representation) would not change. It would be invariant to the order in which we are 

carrying out this orthogonalization procedure. So, dimensionality is invariant to the order 

and also the inner product between the two signals would also be independent of the order 

in which you carry out this orthogonalization procedure. 

So, we have started by choosing the signal 𝑠1(𝑡) and we are trying to find out the first basis 

function and we have said the first basis function is nothing but 𝑠1(𝑡) divided by root of 

energy of signal 𝑠1(𝑡). So, 𝐸1 is the energy of 𝑠1(𝑡). Why we have divided it with the root 

of energy of signal 𝑠1(𝑡)? Because we want this basis function to be an orthonormal basis 

function and for orthonormal basis function the energy of 𝜙1(𝑡) should be 1.  



So, energy of 𝜙1(𝑡) can be obtained by carrying out this integration. We do not have mod 

in here because we are assuming that everything is real in this case, so all signals are real 

and the basis functions are also real. So, when we compute the energy of 𝜙1(𝑡) you can 

simply plug in this value in this integration. So, as we have done here, and what you have 

in the numerator is the energy of 𝑠1(𝑡). So, we have 𝐸1 in the numerator, in the 

denominator also we have 𝐸1. So, the energy of 𝜙1(𝑡) turns out to be unity or 1. Hence, 

the first thing is clear that, this 𝜙1(𝑡) basis function has a unit energy. Then 𝑠1(𝑡) can be 

obtained in terms of 𝜙1(𝑡) or rather 𝜙1(𝑡) in terms of 𝑠1(𝑡).  
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Let us move on, and let us try to obtain 𝜙2(𝑡), but before finding out 𝜙2(𝑡) let us 

understand this expression.  

So, what is the meaning of these terms 𝑠22 and 𝑠21? So, 𝑠22 is the projection of  𝑠2(𝑡) on 

𝜙2(𝑡) which explains this number 22. Similarly, 𝑠21 will be projection of 𝑠2(𝑡) on 𝜙1(𝑡). 

So, this explains this subscript. So, what do we mean with this after having understood the 

nomenclature?  



(Refer Slide Time: 16:14) 

 

So, let us consider two vectors first. So, if I have vectors 𝑠2 and 𝑠1. And let us assume that 

I have considered a unit vector in the direction of 𝑠1, and then there is a unit vector which 

is perpendicular to 𝑢1. And we have already learnt, in one of the previous lectures, that if 

you have a vector you can decompose this vector in terms of a parallel component. So, I 

have parallel and perpendicular components to vector 𝑢1. 

So, this I say that maybe I have some constant times a vector 𝑢1, and I have some constant 

times vector 𝑢2 because vector 𝑢2 is perpendicular to vector 𝑢1. So, I can think about a 

vector decomposition in terms of two unit vectors, where these two unit vectors are 

perpendicular to each other. And what remains is finding out these coefficients c and d. If 

you want to find c it is quite straightforward: c can be obtained by 𝑠2. 𝑢1 and d could be 

obtained by 𝑠2. 𝑢2.  

So, these vector operations are easy and we are using the same ideas, but for the case of 

signals. So, I am saying that a signal can be decomposed in terms of two orthonormal 

functions and 𝑠22 and 𝑠21 give me the projection of 𝑠2(𝑡) along those orthogonal or 

orthonormal functions.  

So, after having understood this basic idea of how we are writing out this expression, let 

us try now to find out 𝜙2(𝑡).  
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So, let us see if we have all the knowledge available to construct this 𝜙2(𝑡). In this 

equation, we already know 𝑠2(𝑡) because it must be given. We have already obtained 

𝜙1(𝑡) in terms of 𝑠1(𝑡); 𝑠21 is also calculated by taking the inner product of 𝑠2(𝑡) with 

𝜙1(𝑡). Only 𝑠22 is unknown. Now, 𝑠22 is also a function of 𝜙2(𝑡) and hence there is a 

chicken and egg problem: until and unless we know 𝑠22 we cannot find 𝜙2(𝑡), and until 

and unless we know 𝜙2(𝑡) we cannot find 𝑠22. So, instead of directly finding 𝜙2(𝑡) what 

we can do is, we can define an intermediate function 𝑔2(𝑡) which is the difference of 𝑠2(𝑡) 

and 𝑠21𝜙1(𝑡).  
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Now, let us first check whether 𝑔2(𝑡) is perpendicular or orthogonal to 𝜙1(𝑡)? We can 

check this out by finding out the inner product of 𝑔2(𝑡) with 𝜙1(𝑡), and if that inner 

product turns out to be zero, we will be sure that 𝑔2(𝑡) is perpendicular to 𝜙1(𝑡). 
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So, we are trying to compute the inner product of 𝑔2(𝑡) with 𝜙1(𝑡). So, here we can plug 

in the value of 𝑔2(𝑡) and multiply with 𝜙1(𝑡). Again there are no conjugates because 

everything is real and then we can work out this integration.  

So, taking 𝜙1(𝑡) here we get this integration and then multiplying 𝜙1(𝑡) we get this 

expression. And now by definition this quantity is 𝑠21 which is a constant. So, it could be 

pulled out of this integration and because 𝜙1(𝑡) is orthonormal so its energy will be 1. So, 

essentially what we have is 𝑠21 - 𝑠21 and this is zero. So, we have proved that 𝑔2(𝑡) is 

perpendicular or orthogonal to 𝜙1(𝑡).  
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So, now, after having understood that 𝑔2(𝑡) is perpendicular to 𝜙1(𝑡) because its inner 

product is zero, we can quickly define 𝜙2(𝑡) as 𝑔2(𝑡) divided by the length of 𝑔2(𝑡) and 

length of a function is the square root of energy of that function. We have this 𝑔2(𝑡) and 

we divide by the square root of energy of 𝑔2(𝑡). If we do this then we know for sure that 

𝜙2(𝑡) has a unit energy and it is an orthonormal function and that is why we are doing this 

scaling operation.  

Energy of 𝑔2(𝑡) could simply be obtained by finding out the integration of a square of 

𝑔2(𝑡). So, plugging in the value of 𝑔2(𝑡) here, then using the identity (𝑎 − 𝑏)2 = 𝑎2 +

𝑏2 − 2𝑎𝑏. So, this quantity is 𝐸2 which is the energy of the second signal in consideration. 

We already know how to work this integration out this even by look you should be able to 

tell that this should be nothing but 𝑠21
2  and this expression is 2𝑠21 ∫ 𝑠2(𝑡)𝜙1(𝑡)𝑑𝑡 , and 

you know that this is 𝑠21 by definition. So, this will turn out to be - 2𝑠21
2 . So, finally, we 

have 𝑠21
2 − 2𝑠21

2 = −𝑠21
2  and we can say that 𝜙2(𝑡) is nothing but 𝑔2(𝑡) divided 

by √𝐸2 −  𝑠21
2 . 
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So, we have obtained 𝜙2(𝑡), and similarly we can carry out this orthogonalization 

procedure and we can obtain other orthonormal functions as well. Let me just do one more.  
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So, we can start by computing 𝜙3(𝑡) which can be conveniently obtained as 𝑔3(𝑡) divided 

by the square root of energy of 𝑔3(𝑡). Let us assume my third signal is 𝑠3(𝑡), and if I 

subtract from this 𝑠3(𝑡) the projections of this 𝑠3(𝑡) in the directions of 𝜙1(𝑡) and 𝜙2(𝑡), 

then we will get 𝑔3(𝑡).  



Now, it should be clear from inspection that 𝑔3(𝑡) will be perpendicular to 𝜙1(𝑡) and it 

will be perpendicular to 𝜙2(𝑡). Why is this? Because we have already subtracted from 

𝑠3(𝑡) whatever projections it had along 𝜙1(𝑡) and 𝜙2(𝑡), that means, there should not be 

any energy left in 𝑠3(𝑡) along 𝜙1(𝑡) and 𝜙2(𝑡) directions and hence the inner product of 

𝑔3(𝑡) with 𝜙1(𝑡) should be zero and inner product of 𝑔3(𝑡) with 𝜙2(𝑡) should also be 

zero. You can work out the proof yourself. Here we are just presenting the intuitive idea 

behind why should this 𝑔3(𝑡) be perpendicular to 𝜙1(𝑡) and 𝜙2(𝑡). And we can generalize 

this procedure. 
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First, you can obtain 𝑔𝑖(𝑡) by subtracting (from the 𝑖𝑡ℎ signal) the projections of this 

𝑖𝑡ℎ signal on all previous basis functions, and from this 𝑔𝑖(𝑡) you can obtain this 𝜙𝑖(𝑡) by 

just dividing 𝑔𝑖(𝑡) with the proper scaling factor, and the proper scaling factor is nothing 

but the square root of energy of 𝑔𝑖(𝑡). And as we have worked out, this expression is also 

same as this quantity. 

So, using this idea of orthogonalization you can obtain various basis functions for the 

orthogonal expansion of a signal. The basis functions that we have calculated are 

orthonormal basis functions. So, let us make this more concrete with one example.  
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So, let us consider two signals, 𝑠1(𝑡) and 𝑠2(𝑡) as given here, and we want to find the 

signal space representation for these two signals. So, let us start by defining 𝜙1(𝑡). 
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So, 𝜙1(𝑡) can be easily obtained by dividing 𝑠1(𝑡) by the square root of energy of 𝑠1(𝑡) 

or rather dividing it by the length of 𝑠1(𝑡). Energy can be simply obtained by taking the 

inner product of the signal with itself and you know that instead of running out this 

integration from - ∞ to + ∞ you can simply run this integration between 0 to T / 3 because 



everywhere else the product would be zero and in this limit the product would be 1. So, 

we can easily obtain energy of 𝑠1(𝑡) as T / 3. 

So, once this energy is known we can easily obtain this 𝜙1(𝑡) by dividing 𝑠1(𝑡) by the 

proper scaling factor and the scaling factor is root of energy. So, 𝑠1(𝑡) divided by √𝑇/3 

and we can also draw this. So, if 𝑠1(𝑡) is known, then 𝜙1(𝑡) is exactly the same thing only 

the magnitude changes and instead of 1 it becomes√3/𝑇. Let us now go to the second step 

i.e. finding 𝜙2(𝑡). 
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So, once we know this 𝑠2(𝑡) and 𝜙1(𝑡), we can first obtain  𝑠21 which is the projection of 

this 𝑠2(𝑡) on 𝜙1(𝑡). So, you can work it out yourself and find out that 𝑠21 = √𝑇/3. Now, 

we can also find out the signal 𝑠21𝜙1(𝑡). So, you just have to multiply 𝜙1(𝑡) with 𝑠21 =

√𝑇/3 and the product is nothing but simply 1. 
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And thus, you can easily obtain 𝑔2(𝑡) which is nothing but the difference between these 

two signals. Here, 𝑠2(𝑡) is already known and 𝑠21𝜙1(𝑡) we have already obtained. If we 

take the difference between these two signals, 𝑔2(𝑡) can simply be obtained like this. So, 

finding 𝑔2(𝑡) is easy.  
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If we know 𝑔2(𝑡), we can find 𝜙2(𝑡) by dividing 𝑔2(𝑡) by the length of 𝑔2(𝑡). Length of 

𝑔2(𝑡) again is nothing but the root of energy of 𝑔2(𝑡). You can simply obtain that this is 

again √𝑇/3. So, 𝜙2(𝑡) is same as 𝑔2(𝑡) only we need to change the amplitude.  
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Now, what remains is we have yet to find 𝑠22, but that should also be trivial because we 

have been able to find out 𝜙2(𝑡) and 𝑠22 is nothing but it is the projection of 𝑠2(𝑡) in the 

direction of 𝜙2(𝑡). So, I can write 𝑠2(𝑡) = 𝑠21𝜙1(𝑡)+𝑠22𝜙2(𝑡) and 𝑠22 again can be 

simply obtained by carrying out this integration. It is trivial and I leave it to you to do this 

and again it comes out in with the same form that this is √𝑇/3. So, finally, the expression 

for 𝑠2(𝑡) is as shown above.  

Let us now try to wind up this issue. So, we started with 𝑠1(𝑡) and 𝑠2(𝑡), we easily derived 

the expressions for 𝜙1(𝑡) and 𝜙2(𝑡) and we have defined 𝑠1(𝑡) and 𝑠2(𝑡). Now, very 

conveniently we can draw the signal space representation of these two signals.  
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So, we can assume that we have two vectors 𝜙1(𝑡) and 𝜙2(𝑡). These vectors are 

perpendicular vectors. They are orthonormal vectors, so they have to be orthogonal, so 

they have to be perpendicular. And these vectors come out with unit energy and 𝑠1(𝑡) is 

this vector. So, see that this only has a component of 𝜙1(𝑡) and this has got this value 

along 𝜙1(𝑡). So, I have to consider a point along 𝜙1(𝑡) with this value, and 𝑠2(𝑡) contains 

both 𝜙1(𝑡) and 𝜙2(𝑡) and it has the value along 𝜙1(𝑡) of root t by 3 and also along 𝜙2(𝑡) 

of root t by 3. So, this is this vector.  

Now, what you can see very clearly from here is that now we can talk about the angle 

between these two vectors and you can easily obtain the distance between these two 

vectors. So, we have been able to convert the signals into a vector space, and this is the 

idea of signal space representation. If I would have had more signals and again nothing 

changes conceptually. You just have to do more algebra and you can convert the set of 

time signals into a convenient vector space or signal space representation.  

Now, let us move to this transmitter and receiver structure because it makes use of the 

ideas that we have just developed while going through this signal space. So, the transmitter 

and receiver structure, follows directly from the ideas of signal space. We want to 

maximize what we have learnt and thus it is a good idea to introduce this already.  

The second important point that you can note is when we confront our self with noise and 

other non-idealities, these will not change the receiver and transmitter architectures or 



structures. So, it is a good idea to think about these transmitters and receivers structures, 

already from today because they form the substratum of what is digital communication. 

So, let us proceed by first looking into the transmitter design.  
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So, transmitter design solves a simple problem it converts these sequences to waveforms. 

So, we have a sequence and as I have already said a sequence can be understood as a bunch 

of numbers. So, I have a bunch of numbers here, these numbers can be real numbers or 

these numbers can be quantized real numbers. We call these quantized real numbers as 

symbols.  

So, I take in a number and let us first focus on what the subscripts of this number denote. 

So, here i denotes that this is a sequence corresponding to signal 𝑠𝑖(𝑡) and 1 denotes that 

is the first number of the sequence. So, I have this number 𝑠𝑖1, I multiply this number with 

𝜙1(𝑡) and what I get here is 𝑠𝑖1𝜙1(𝑡).  

So, at the output of these multipliers, I will be going to get similar products and this 

summer collects all such products and we get 𝑠𝑖(𝑡). So, 𝑠𝑖(𝑡) would be the sum of these 

products where j spans from 1 to N. And this is exactly what we have said that if you want 

to think about a waveform, a waveform is nothing but it is a linear combination of 

orthonormal functions. And 𝜙1(𝑡), 𝜙2(𝑡) and 𝜙𝑁(𝑡) are orthonormal functions.  



So, what is the transmitter design? You have a bunch of numbers, you multiply these bunch 

of numbers with orthonormal functions, you collect all products by using a summer and 

you get to a waveform. So, this is as easy as it can get.  
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Let us now move to the receiver design. So, the receiver solves the problem of converting 

a waveform into a sequence. So, I have a waveform which I call as 𝑟𝑖(𝑡). I pass this 

waveform through a multiplier. Again this multiplier is fed with orthonormal 

function 𝜙1(𝑡). So, at the output of the multiplier I am going to have 𝑟𝑖(𝑡)𝜙1(𝑡). And then 

I pass it through an integrator which integrates this product from - ∞ to + ∞. I get the inner 

product of 𝑟𝑖(𝑡) with 𝜙1(𝑡), and it gives me the coefficient of projection of 𝑟𝑖(𝑡) on 𝜙1(𝑡) 

and I call this as 𝑟𝑖1. 

Similarly, I can pass this 𝑟𝑖(𝑡) through other orthonormal functions and I can get the 

coefficients of projections of this 𝑟𝑖(𝑡) on other orthonormal functions. In this way, what 

I get is a sequence and here the numbers in the sequence corresponds to the projection of 

𝑟𝑖(𝑡) or the received waveform on various orthonormal functions. So, again in this way 

using the simple design, I can convert a received waveform to a sequence.  

Let us now look something more on the slide. This block which consists of a multiplier 

and integrator is known as a correlator. So, in the receiver we have a bunch of correlators 

or we have a bank of correlators.  
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Let us now try to look into what is this matched filter? So, matched filter is same thing as 

correlator, however, from practical point of view, its implementation is different. So, 

correlator has a multiplier and has an integrator, on the other hand a matched filter has a 

filter (a linear time invariant filter) and a sampler. So, let us see what is the result or output 

of this block.  
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So, suppose I have a matched filter which has an impulse response like this. Let us try to 

investigate what is the output of this system.  



So, let us first concentrate on the output 𝑦(𝑡) at this point. So, 𝑦(𝑡) can be given by 

convolution of input with impulse response which you must know is this. So, this is 𝑦(𝑡) 

output of this filter, which is obtained simply by carrying out the convolution operation 

between the received waveform and impulse response of the filter. So, we replace t by t -

𝜏. 
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As I have said 𝑦(𝑡) is obtained by the convolution of the received waveform with impulse 

response of the filter, and because I already know that the impulse response of the filter 

takes in this form, so I can substitute this value of impulse response and I can get an 

expression of 𝑦(𝑡). Now, we have calculated 𝑦(𝑡) and the idea is suppose I sample this 

𝑦(𝑡) at T, I get 𝑟𝑖1. So, I want to look this 𝑦(𝑡) only at the time instants, where t = T. So, 

when t = T, then this becomes zero and I have ∫ 𝑟𝑖(𝜏)𝜙1(𝜏)𝑑𝜏. This is the inner product 

of this received waveform with this orthonormal function 𝜙1(𝑡) and this gives the 

coefficient of projection of 𝑟𝑖(𝑡) on 𝜙1(𝑡) which is 𝑟𝑖1.  

So, this system has the same output as this system and hence matched filter gives me 

exactly what a correlator gives. So, matched filter theoretically is same thing as the 

correlator.  



(Refer Slide Time: 44:58) 

 

So, now, we know that in a receiver you have this bunch of correlators. Each correlator 

chooses a multiplier where one of the multiplying factors is the orthonormal function. In 

the case of the matched filter, we choose various filters, and samplers, and the impulse 

response of these filters is matched to the orthonormal functions.  
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So, the question is which one should we prefer? Accurate analog multipliers are hard to 

build and that is why this matched filter design was preferred. It is easier to make filters 



rather than accurate analog multipliers. But for this matched filter there is an issue of 

physical realizability of the system. 

So, we you must have learned in the course in signals and systems that we can only realize 

systems which are causal systems. Causal system means the systems which are non-

anticipatory systems that means, these are the systems which cannot anticipate an input. 

So, if you want to realize a system it will definitely be a causal system. It will not be able 

to anticipate which input is going to come in future and such a system is known as causal 

system.  

One property of a causal system is that the impulse response of the causal system is zero 

for time t < 0. And why is this? Because if a system is causal system, it can only have the 

response to an impulse after an impulse is applied. Impulse response is the response of the 

system to an impulse. So, if a system is causal, it can only respond to an impulse after an 

impulse is applied, and impulse is applied at t = 0. Impulse signal is a signal which exist 

or has its effects at around t = 0.  

So, the response of the system can only come after t = 0 whatever that response is. It cannot 

proceed before an impulse is applied because it is a causal system or a non-anticipatory 

system. So, the impulse response of a causal system is zero for time t < 0, and this is also 

the condition for the physical realizability of a system. Now, we know what the impulse 

response of the filter is. This implies that 𝜙𝑁(𝑇 − 𝑡) = 0 for t < 0 because that is the 

condition for the system to be a causal system.  

Now, if we substitute τ = T - t, then t < 0 implies that τ > T. So, one way I in which I can 

write this expression is that this condition translates to the condition that 𝜙𝑁(𝜏) = 0 for τ 

> T. That means, you can only have orthonormal functions which live for a duration of T. 

So, it cannot live from - ∞ to + ∞. So, the physical realizability of matched filter put some 

restrictions on the kind of orthonormal functions that the system can deal with.  

Let us move ahead and let us see now the complete full blown receiver implementation. 

Maybe it is too farfetched because we have not yet studied noise and so on so forth, but let 

us see how the full blown receiver looks like and we will refine this when we study 

detection and other things.  
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So, the first part of the receiver is taking this received waveform and produce a sequence 

corresponding to that received waveform and then these sequences goes to this weighting 

matrix which computes the inner product between test sequence, the received sequence 

and the sequence available from the signal set.  

So, remember receiver knows the signal set and the sequences corresponding to that signal 

set, so this weighting matrix just computes the inner product between this received 

sequence and the sequence of the signal set. Of course, we are assuming everything to be 

real in this case, so there are no conjugates and so on so forth.  

Now, there is a mental exercise that you can do and think about that this operation wherein 

you are computing the inner product between the sequences is same thing as the operation 

where you calculate the inner product between the waveforms. That means, if I take the 

inner product between the two waveforms. this inner product is the same thing as inner 

product between the corresponding sequences. So, this is a simple exercise and I request 

you to do it yourself. 

So, this weighting matrix actually gives the inner product of the received waveform with 

all signals, assuming that there are M signals involved here. Now, based on these output, 

receiver selects the possible transmitted signal. So, it decides in the favor of the signal 

which has the largest output for this operation. Namely, for example, if 𝑟. 𝑠1 is largest out 

of all these inner product operations then the receiver selects 𝑠1 as the possible transmitted 



signal. So, this happens in the receiver implementation, it receives a waveform and from 

that received waveform it has to decide for the possible transmitted signal. 

Now, I have little bit simplified this picture and this picture will be true if I assume that all 

these signals happen with equal probability and these signals have equal energy. If this is 

not the case then what we need to add a bias here, and based on these outputs then the 

decision happens. So, this bias takes care if the signals are not equi-probable signals or 

these signals come up with different energies then this bias takes care of that.  

So, how to choose this bias and why we are choosing this bias - all these things will become 

clear when we do detection. At this point it is important to appreciate that the decision that 

happens in a receiver is basically motivated by a bunch of inner product operations.  
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One another issue of course, you can have implemented this receiver in a slightly different 

way. So, in the previous case we had these matched filters whose the impulse response 

were matched to orthonormal functions. In this case, we are matching the impulse response 

directly to the signals. This would directly give me the inner product between the received 

waveform and the signals.  

Now, once I directly get these inner products what you can appreciate is that there is no 

requirement of this weighting matrix and hence this architecture looks simpler. So, the 

question is which one should I prefer? Number of filters required here is N, and number 



of filters that are required in this case is M and because M >> N so this architecture would 

require more number of filters than this architecture. And hence this is a preferred design 

in most cases. Of course, here as well, we have to add bias if the signals are not of equal 

energy and they do not occur with equal probability before taking the decision.  
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So, with this we have come to the conclusions of today’s lecture. In this lecture we have 

studied about Gram Schmidt orthogonalization. We have studied about transmitter design, 

and we have looked into the receiver design as well and we have looked into two important 

receiver designs, one design we refer to as correlator and the other designing architecture 

is referred to as matched filter. So, in the next lecture, we will start thinking about other 

ways in which we can expand our signal. 

Thank you.  


