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Good morning, welcome to a new lecture in Detection. And to today’s lecture what we

will do is first we will complete what we were discussing about waveform detection and

then we will start looking into performance of some signalling schemes. So, remember in

the last lecture what we have said is that we have this random process, which was infinite

dimensional random process and this infinite dimensional random process was projected

on the signal space;  signal space is  the space which is  formed by these orthonormal

functions.

And  when  infinite  dimensional  random  process  passes  through  this  signal  space  it

becomes a finite dimensional random process. And by looking at this finite dimensional

random process, we can do detection optimally that is whatever we lost how because of

this finite dimensional signal space was irrelevant what detection right. So, hence when

you go from waveforms to vectors, you lose out on something and whatever you lost out

is not important for your detection it was really irrelevant for the detection. So today

what we will do firstly, as we will form the optimum rules for waveform detection and

before doing that we have to revise some properties ok. So, that will help us in getting

started alright.



(Refer Slide Time: 01:51)

So, these properties we have looked in several times and those I will just state them and

if needed we will also look at their proof. So, if we have two signals a t and b t and a k

and b k are the coefficients of the signals along orthonormal functions, then if you want

to take the inner  product of these two signals,  this  inner  product is  say as the inner

product of the coefficients ok.

And these coefficients also are the elements of the vectors. So, if I want to think about

the inner product of the signals, this is the same thing as inner product of the coefficients,

this is same thing as inner product of the two vectors a and b alright so, that is the first

thing.
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Second is if you want to take the inner product of the signal with itself, this would be

same as taking the inner product of coefficients with itself  and this thing is same as

taking the inner product of vector with itself and so the energy of the signal is given by

this. This is same as energy in the coefficients and this is same as energy in the vector ok.

So, all these things are equivalent that is to say. Now, let us take the inner product of V t

with a j t what is V t? V t is the infinite dimensional random process that was falling on

the receiver, a j t is one of the signal from the signal set. So, we know that this V t can be

decomposed into two parts one is V 1 t and V 2 t in the last lecture we established that

this is really irrelevant for detection and this is only important for detection alright.

So, you can take the inner product of this with V 1 t and inner product of this with V 2 t

and this is really 0 right. This we have seen in the last lecture and thus thinking about

inner product of V t with a j t is same as taking the inner product of V 1 with a j or V 1 t

with a j t its 1 and the same thing ok.

So, these are the waveforms and these are the vectors corresponding to these waveforms

and we have already seen whether you take the inner product of the waveforms or the

wave form vectors corresponding to these waveforms its one and the same thing alright.
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So, let us look at some optimum decision rule in discrete time additive white Gaussian

noise channel. So, this we have seen before. So, for discrete time was covered, I am just

restating them so that you can see that the rules for continuous time AWGN channel are

same as the rules for discrete time AWGN channel ok. So, there we have seen that the

receiver decides for the hypothesis j and this hypothesis j is the one which maximizes

this thing, this we have seen in the lecture.
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Now, what happens in continuous time case? Again is exactly same so I will just mention

the changes;  the changes are that in case of vectors we are thinking about the inner

product of the vectors, but we have seen that this is same as taking the inner product of

wave forms right. We have derived that V 1 inner product with a j is same as V t inner

product with a j t ok. And we have seen that whether you want to think about the energy

of a vector, this is the same as thinking about the energy of the waveform.

So,  the  rules  for  continuous  time  AWGN channel  are  exactly  same as  the  rules  for

discrete time AWGN channel. So, in this case what we assumed is that these signals are

complex signals  and when is  the case,  when we consider  the signals  to  be complex

baseband signals right. So, we cannot transmit any signal which is complex. So, we can

only consider complex signals in base pen domain right, these signals are equivalent half

the pass band signals this we have seen.

So, whenever you are taking the real part of the signals and if the underlying signals the

complex, it means that they are complex baseband signals. How can you think about pass

band signals?
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For pass band signals exactly the same decision rule follows, but just simply instead of

having real part you do not have any real part because these signals are anyway real

signals.



So, what we can see is that these rules are exactly same. Let us look at something which

is slightly different, mathematically slightly different. So, let us consider the case for m l

detection. In m l detection what happens is you do not have this term because priors are

equa, if the priors are equal you really do not want to consider this term right.

(Refer Slide Time: 07:11)

So,  in  m  l  the  rule  is  simply  this  you  want  to  choose  j  for  which  this  quantity  is

maximum.  In case for vectors  we said that  this  is  same as  minimizing the distance,

maximizing this thing is same as minimizing the distance of V t from a j t.

But you cannot state this in this case, because this distance is infinity right because V t is

actually infinite dimensional signal alright. If you want to consider this distance,  this

distance would be infinity and thus it is mathematically imprecise to find out the j for

which this distance is minimum, because all these distances are actually infinity. So, you

cannot state that m l in case of waveforms is really minimum distance decoder. 

However, if you want to think about minimizing the distance then you have to think

about minimizing the distance of V 1 t from a j t; remember V 1 t is a signal which is

after  the  projection  of  V  t  on  the  signal  space.  So,  that  is  really  a  small  issue

mathematical interest case otherwise everything remains same ok. So, now let us look

into this successive transmission.
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So, in case of successive transmission now, we have these symbols and these symbols

are riding on these orthonormal functions and we also have orthonormal functions which

are T spaced orthonormal functions in this signal expansion. So, what we are doing is,

we are having bunch of n orthonormal functions.

(Refer Slide Time: 08:55)

So, let us assume that we have n orthonormal functions. So, we would be having the

cymbals which will be manipulating these orthonormal functions. For example, you may

have a symbol u 0 which might ride on phi 0 t and you might have u 1 which will write



on phi 1 t and you might have u k minus 1, which is writing on phi k minus 1 t or rather

phi n minus 1 t if you are having n orthonormal functions right. So, in this case k might

go from 0 to N minus 1.

So, you have symbols writing on these orthonormal functions, and then you have next set

of symbols, which will be writing on the orthonormal functions which are derived by t

spacing these orthonormal functions. So, in the next timeslot you would again be having

some other symbols which would be writing on the orthonormal functions which are T is

spaced orthonormal functions.

So,  this  is  in  general  the  equation  for  successive  transmission,  we  have  seen  such

equation before for example,  in lecture 5 when we have done double sum expansion

using for is series and DTFT actually this is the basic equation that we had there ok. So,

the  equation  is  simple  you  try  to  understand  that  you  have  bunch  of  orthonormal

functions, these functions are orthonormal to each other and when you T space these

orthonormal  functions  the  new set  of  orthonormal  functions  that  we derive  are  also

orthonormal to these basic set of orthonormal functions.

And this u k j denotes that these are the choices that we make from this signal set. So, we

have m signals and we make it  choice and accordingly we modulate  these T spaced

orthonormal functions. If number of orthonormal functions that we have is 1 then we are

in the regime of pulse amplitude modulation, if number of orthonormal functions that we

have is 2 if n is 2 we are in the regime of calm, if N is larger than 2 then we are talking

about orthogonal modulation schemes like FSK ok.

So,  this  is  equation  for  any  general  modulation  scheme.  So,  how  is  successive

transmission different from a 1 shot detection problem that we have been focusing so,

far?
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So, in one short detection problem what happened is we are transmitting a symbol we are

receiving  the  symbol  and then we are  bringing down the communication  system.  In

successive transmission what happens is, we are transmitting a sequence of symbols ok.

And  the  first  question  that  we  have  to  worry  about  is  whether  these  symbols  are

interfering with each other or can they possibly interfere.

The answer is no because we have already solved this problem. So, we have said if these

T spaced orthonormal functions are orthonormal to these basic orthonormal functions

then you can safely avoid inter symbol interference. So, this we have seen in lecture 25.

So, for avoiding inter symbol interference this equation must be satisfied. Once you have

satisfied in this equation then you cannot worry about inter symbol interference anymore.
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The second thing is that we are more interested in this  detection issue is  that,  if  we

observe these case embers  at  the same time are we any way better  off then by just

looking a symbol at a time. So, for example, if you are transmitting k symbols and if

your detector focuses on one symbol at a time, he has got some probability of error, but

what happens when he looks at the group of these k symbols at the same time is he

anyway doing better or is there some possibility of doing better from just observing one

signal or a symbol at a time.

So, we have these bunch of k symbols and as before we are assuming that this choices

that we make s from this signal side. So, the rule remains same, you want to choose the

hypothesis which minimizes the distance from the received vector. So, V is the received

vector and u j corresponds to the hypothesis, this equation is bit complicated and does let

us try to work this out.
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So, what we are saying is let us concentrate on a simple case when we have just two

symbols ok. So, we are considering a group of two symbols, let us try to understand this

issue. And to simplify this further let us assume that these symbols that we have can

draw values from a binary set. So, either you an can be minus a or plus a u 2 can be

minus a or plus a. Suppose we are receiving two numerical values, V 1 corresponding to

this  symbol  that  was  transmitted  and  V  2  corresponding  to  this  symbol  that  was

transmitted.

Now, if we are considering two possibilities of u 1 and u 2, then we have 4 combinations

possible  because  u  1  and  u  2  can  draw  values  from  binary  set.  So,  we  have  first

possibility when u 1 can be minus a, u 2 can be minus a we have a second possibility

when u 1 can be minus a u 2 can be plus a we have a third possibility when u 1 can be a

and u 2 can be minus a we have fourth possibility, when you an can be a and u 2 can be

plus  a.  So,  we  have  4  possibilities  and  each  of  this  possibility  corresponds  to  a

hypothesis. So, we call this as u 1 u 2 u 3 and u 4. So, these are 4 possible hypothesis;

and what is this minus a? This is the first element correspond to this hypothesis ok.

So, just trying to understand the notation. So, if I am considering K symbols at a time

and if these symbols are drawing values from a binary set,  then the total  number of

hypotheses that we run into is 2 to the power K alright. So, when we are transmitting a

group of symbols and when we are trying to detect a group of symbols at the same time



then the definition of our hypothesis changes right. So, each possible group corresponds

to a hypothesis and if you allow these symbols to take any value without any constraint

and  if  these  symbols  are  taking  values  from a  binary  set,  if  you are  considering  K

symbols at a time then you have 2 to the power K possible hypothesis.
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Now, what we do is, we calculate the distance square from each possible hypothesis for

example, let us say we consider first hypothesis and what I the first hypothesis in this

case its minus a and minus a. So, we have to calculate the distance square from this first

hypothesis and this will be V 1 plus a whole square plus V 2 plus a whole square. What

are  these  V 1  and  V 2?  These  are  the  received  numerical  values  right  we  will  be

receiving  two numerical  values  each numerical  value  corresponding to  a  transmitted

symbol. 

Similarly we can consider the second hypothesis and the second hypothesis is minus a

and a and we can calculate distance squire from this second hypothesis, which will be

this. And similarly you can calculate the distance square from third hypothesis you can

calculate the distance square from fourth hypothesis and what is your map rule then?
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Your map rule is simply trying to find out j for which this t square H of j is minimum.

So, this is your map rule. So, conceptually everything looks simple and similar there no

differences. Here we are considering the group of symbols as a vector, we are forming a

received vector by collecting the numerical values that we have got corresponding to

each symbol and then everything remains same we are calculating the distance of the

received vector from all possible hypotheses. We are trying to identify a hypothesis or

rather  choose  a  hypothesis  which  has  minimum  distance  or  distance  of  square,  if

distances minimum distance the square is also minimum.

So, that is what is happening here. Now you can also express this in another way for

example, I can talk about this norm square of V minus u j, u j is the vector corresponding

to the hypothesis j and V is the received vector and this is nothing, but its V 1 minus u j 1

mod square plus V 2 minus u j 2 mod square V k minus u j case mod square ok.

So, what we are saying? We are saying that the norm square of V minus u j where V is

the receipt vector and u j is the vector corresponding to hypothesis j, the norm square of

u minus u j is simply the sum of mod square of V 1 minus u j 1 plus mod square of V 2

minus  u  j  2  and  so  on  so  forth.  What  is  this  V  1?  V  1  is  the  numerical  value

corresponding to the first transmitted symbol and what is this u j 1? u j 1 is the first

element of the hypothesis ok. So, we now know that the norm square of V minus u j is



simply mod of V 1 minus u j 1 square plus mod of V 2 minus u j 2 square and so on so

forth.
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So, in short I can write that norm of V minus u j square is simply sum of mod of V i

minus u j i square, where I will go from 1 to k if you are considering k symbols at a time

alright.  So, what happens in one short detection? In one short detection what we are

trying to  do is,  we are trying to  minimize  this.  We are looking at  one element  of a

hypothesis at a time. So, we are just concentrating on one symbol at a time, not a group

of symbol and you want to find out the hypothesis or in this case rather the element of

the hypothesis which has the minimum distance ok.

So, what you are trying to do in short is, you are just trying to minimize this one term.

And  if  you  continuously  use  your  one  short  detector  and  if  you  assume  that  these

elements  of these hypotheses are  statistically  independent,  we will  see what  happens

when they are statistically dependent, but let  us first concentrate what happens if the

elements are statistically independent.

So, if we are using one short detector, we are trying to find out the first element which

minimizes  this  distance or rather distance square,  then we concentrate  on the second

element of the hypothesis, we try to identify the second element of the hypothesis which

minimizes this distance is square. Then subsequently detector will look at each element

of the hypothesis and it would try to do its best to minimize the distance or distance



square  from  the  received  numerical  value  right.  So,  what  would  it  do  is,  when  it

minimizes this mod square for each element, it will also result in minimizing this term

ok.

This is the idea right that you have to carefully understand. So, what we are saying this is

some of these terms. One short detector focuses on one term at a time, tries to minimize

that term and then it looks at the second term tries to minimize this and so on so forth.

That means, it chooses one term minimizes it, choose the second term minimizes it and

so on so forth and it goes up to k terms look at the k term tries to minimize it. There is a

theorem rather a trivial theorem that if you do your best all the time, you must have done

your overall best.

So, if one short detector tries to look at the term, tries to minimize it, it will also make

sure that it  minimizes overall this quantity and thus what we have seen is, one short

detector  is  not  any way different  from a detector  which is  focusing on looking at  k

symbols at a time. So, this is rather the conclusion in the case of sequence detection or

symbol detection.
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So, what we are saying is, the big goal is to find out hypothesis which minimizes this and

we have seen that this problem is same as trying to minimize this. Once short detector

looks at a term tries to minimize it, it does its best to minimize one term it continue to do

its  best  to  minimize  k  terms  individually.  Once  it  would  minimize  all  k  terms



individually it will also make sure that it has overall minimize that stuff ok. So, one short

detection  is  not  any  way different  from sequence  detection,  if  the  symbols  that  are

transmitted are statistically independent.
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So, we can conclude that one shot detection is same as n symbols detection, but there is

one catch this will not be same, if symbols are statistically dependent. If symbols are

statistically dependent then one shot detection will not be same as n symbols detection, n

symbols are statistically dependent in error control codes.

So, we have seen some times back that in error control codes, we try to introduce a

structural redundancy or dependency so that you can correct errors. That means, one

symbol is a statistically dependent on another symbol and we try to make use of this

statistical  dependence,  to reduce error possibilities.  And except in that case one short

detection is same as n symbol detection 

So, let us see in case of ECC what happens, and let us take the example of error control

codes known as the repetition code. So, instead of sending 1 bit you are sending 3 bits.

So, in repeating 1 bit 3 times and so, if suppose in this case an error has happened. So, a

transmitter is transmitting 1 1 1, receiver because of some error has decoded this down to

1 0 1.



Now, receiver  gets  alarmed because it  knows that  an error has happened,  because it

knows that it should find either three 0’s or three 1’s, it cannot find 1 0 1 that is not a

possible sequence of symbols in repetition coder. So, repetition coder either transmits 1 1

1 or 0 0 0 because whatever bit it sees it repeats to spit 2 times, a transmits 3 same bits at

a time. And those there is some structural dependency, receiver can look at the sequence

in total and it knows that an error has happened. 

Receiver will not be able to look 1 bit at a time and tell whether an error has happened

that cannot be the case. So, receiver has to look in totality, it has to look at these 3 bits at

the same time and when it looks and the 3 bits at the same time it can tell you whether an

error has happened or an error has sent happened ok. 

So, let us now see that we have got 3 received numbers and these received numbers are

minus a plus e 1, minus a plus e 2, minus a plus e 3; e 1, e 2 and e 3 are the error

magnitudes  and  because  of  this  error  magnitudes  receiver  is  receiving  something

different from what is transmitted. So, when it is one receiver is transmitting minus a, but

it is receiving minus a plus e 1 because of this error and once this error magnitude is too

large, namely if it is larger than a then an error will happen ok.
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For example so, whatever we were transmitting is minus a and if the error magnitude is

larger than a, then your received number would lie to the right of this  perpendicular



bisector and then you would decide that a possible hypothesis is 0 because the received

number lies to the right of this perpendicular bisector and that will create an error.

So,  error  magnitude  or  a  large  error  magnitude  can  create  errors.  So,  there  are  two

strategies basically to decode these possible sequence of symbols in case of ECCs in two

ways, one is what is known as hard decision. So, you look at a bit at a time. So, you

ignore these two bits, you take a decision on a bits and you take is what is known as a

hard decision that is you cannot change your decision ok.

So, we are looking at a 1 bit at a time we are taking a hard decision we might be deciding

for this bit and in this case we have decided that this is 1. You look down this bit at a

time you take a decision for this bit, you look down this bit at a time you take a decision

for this bit and then after this you look at what you have got and now, because you know

that you should be getting three 1’s or three 0’s by looking at this 1 0 1 you decide that

the possible transmitted sequence of symbols is 1 1 1.

So, by looking at this you have you can make two guesses, that is what you have to

guess. You know that either you can have three 0’s or three 1’s, by looking at this you

better decide for three 1’s because ones are in majority right you better guess that the

possible transmitted sequence of symbols is 1 1 1. What is the probability of error in this

case?
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So, we have already seen that an error happens, when the magnitude of error is larger

than a, that will slip down your received symbol to the error plane to 1 in which it should

not be lying. So, probability of bit error is simply obtained by integrating the p d f of

noise. So, noise as usual we assume to have a standard deviation of N naught by 2 mean

to be 0 and we are just investigating the situation when this error or noise amplitudes

become larger than a.

That means, you have to integrate this p d f from a to infinity. And let us assume N

naught to be 2 and a to be 1 to get some numbers, you can easily see that this  will

integrate down to. So, Q of a minus mean is 0 the standard deviation is 1 and a is 1. So,

this will boil down to Q of 1 and Q of 1 is 0.1587; that means, about 16 percent of the

time a receiver might make an error alright.
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But now, you can make use of this structural redundancy and you can use majority rule

which says that you can always correct an error if only 1 bit is an error. For example, in

this case if you use the majority rule. So, here only 1 bit is an error and you can always

correct this to 1 1 1, because you decide spaced in the majority if you see more ones, you

decide that possible transmitted signal set as 1 1 1. An error will only happen if 2 bits or

3 bits are in error, if 1 bit is an error that will not create errors actually.
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So, let us see what is the probability of error in this hard decision decoding right so when

will  ever  happen,  when  either  the  2  bits  are  in  error.  So,  this  corresponds  to  the

possibility of 2 bits in error. So, if 2 bits in error this possibility is given by P square and

1 bit is correct. So, that is 1 minus P and you have 3 see 2 possible choices ok.

Because  you  want  that  any  2  bits  out  of  the  3  bits  can  be  in  error.  So,  this  term

corresponds to the probability of error when the 2 bits are in error and to this we need to

add the possibility of 3 bits to be an error and this possibility or probability is simply

given by P cube where p is P b e ok. Working this out what we have got is probability of

error in hard decision decoding is 0.067.

So, what it is doing is, its looking at this group of 3 bits, it is trying to use the structural

redundancy that is inbuilt and using that structural redundancy it is trying to correct the

code or the received symbols ok. And so, it will be able to correct until and unless in this

case for example, 2 or 3 bits are in error and this probability is 0.067. So, it has reduce

the probability of error which was around 0.16 to 0.067. So, that is some saving.

Now, let us see what happens. So, this was in hard decision decoding, let us see what

happens when you are looking at the group of 3 symbols at a time. So, now, we are not

doing hard decision decoding, we are doing something which we call as soft decision

decoding. Soft decision decoding is more optimum than the hard decision decoding and

this we will see. So, when we look at 3 symbols at a time probability of error occurs



when the distance of the received vector from the hypothesis 1. So, this corresponds to

situation when hypothesis 1 is transmitted let us look at this.
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So, when hypothesis 1 is transmitted, you are transmitting three 1’s and when you have

three 1’s you have 3 minus a; and let us say the numerical values that we have is V 1 V 2

V 3. So, what is the distance of squire from this hypothesis 1? The distance is square

from this hypothesis 1 is V 1 plus a square plus V 2 plus a square plus V 3 plus a square

ok.

We are assuming everything to be real. So, there is no need of more and so and so forth.

So, this distance square corresponds to the case when hypothesis 1 is transmitted. So, this

situation corresponds to the case when hypothesis 1 is transmitted and this is the distance

of square when hypothesis 1 is transmitted. Similarly this is the case when hypothesis 0

is  transmitted  and  this  corresponds  to  the  distance  of  square  when  hypothesis  0  is

transmitted. And probability of error will occur when this distance square is larger than

this distance square.

So, why is this? Because we have transmitted this hypothesis 1. So, given that we have

transmitted this hypothesis 1, this distance square should have been smaller than this

distance square, because my detector would anyway choose the hypothesis for which it

has got the minimum distance or distance of square. If this distance square is larger than

this distance square then detector would choose hypothesis 0.



And this will create an error situation because we have transmitted hypothesis 1, that is

the premises we have transmitted hypothesis 1 then what is the probability of error to

take  place.  And that  would happen when detector  choose hypothesis  0  and it  would

choose hypothesis 0, when this distance square is a smaller than this distance square,

alright. So, let us expand this and see to what this condition translates to.
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So, just expanding terms assuming everything to be real; so I will not read it out you can

stop the video and work out these automatic yourself. So, this simply translates to the

condition that e 1 plus e 2 plus e 3 should be greater than 3 a for error to happen. And

was this e 1 e 2 and e 3 these are the error magnitudes corresponding to the symbol 1

symbol 2 and symbol 3. So, nitration remains same.

So, what I am saying is that if we start from this basic equation cancelled some terms,

reduce this  equation,  you can simply find that this  condition simply translates  to the

condition when some of these errors; that means, e 1 plus e 2 plus e 3 should be larger

than 3 a for error to happen. And to simplify stuff let us define error as e which is sum of

e 1 plus e 2 plus e 3. If you are summing the bunch of independent Gaussian random

variables each error corresponds to a Gaussian random variable,  these errors are also

independent error happening in one symbol is complete independent of error that will

take place in second symbol.



So, these corresponds to independent Gaussian random variable. So, e is also a Gaussian

random variable; what is the variance of e? So, variance of e is just 3 times variance of

each error right. So, if we assume that e 1 e 2 and e 3 has a variance of N naught by 2

this is what fear always assumed, then the variance of e is simply 3 times n naught by 2

right.  Variance is add if the underlying random variables are independent.  And if we

assume n naught as 2 then the variance of e is simply 3 what is the mean of e at 0? And

hence we can model e as a Gaussian random variable with variance of 3 and mean as 0 is

not it.

(Refer Slide Time: 40:35)

Now, to estimate the probability of error, you need to find out what is the probability of

error when the error magnitudes becomes larger than 3. So, it goes from 3 to infinity;

however, you have to substitute the new variance new variance is 3. So, I have to have 3

in here 3 in here and what is this integration? So, this is Q of 3 minus mean is 0 divided

by standard deviation which is root of 3. So, this is simply Q of root of 3 which is

0.0416, let me look at what was the result in hard decision decoding. So, let me write

down this here.

So, this was in hard decision and this is in soft decisions and you have got that when

your are considering 3 bits altogether, you have been able to reduce errors. When you

consider 1 bit at a time and then you use the structural redundancy of the code to reduce

errors you could reduce it to a number like 0.067, it is also small error probabilities. If



you consider that you have dropped this down from 0.15 to 0.067 there is lot of good to

even a smaller number 0.416.

Hence we sort of have got this idea that looking at the 3 bits at the same time it is much

better when the bits and the symbols are statistically dependent and this is the idea. We

will  talk  more  about  soft  decision  decoding and hard  decision  decoding later  in  the

course and this time I am just trying to establish the fact that, if you are transmitting n

symbols and you want to look down these n symbols at the same time its only useful

when  these  symbols  are  statistically  dependent.  If  these  symbols  are  statistically

independent whether you minimize the distance for each symbol or you minimize the

distance for n symbols at the same time its one and the same thing. If you do your best

each time you would be able to do your best collectively. 

But  when  these  symbols  are  statistically  independent,  we  can  use  this  statistical

dependence to look down this collection of symbols at the same time and we can reduce

the probability of errors. So, with this we have come to the conclusion of this lecture, and

in this lecture we have looked into the rules for detection of waveforms and then finally,

we have  looked into  detecting  n successive  symbols.  We have seen that  detecting  n

successive  symbols  is  no  different  from  detecting  our  symbol  at  a  time,  when  the

symbols are statistically independent. 

However, when these symbols are statistically dependent it is a good idea to look at these

symbols collectively and we have seen a strategy which reduces the probability of errors

when the symbols are looked at the same time holistically. So, in the next lecture we will

start by looking into the performance of m l signalling schemes and we will start with

binary signalling schemes.

Thank you.


