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Modulation

Pulse Amplitude Modulation & Quadrature Amplitude Modulation (Part-2)

Good morning welcome to next lecture on Modulation. In the last lecture we started with

Pulse Amplitude Modulation and Quadrature Amplitude Modulation. And we looked into

some key aspects first we discussed about this M PAM where; M represents the number

symbols that you have in the modulation scheme.
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And we said that in M PAM we restrict the signals to be real signals and thus you can

arrange these signals only on the real line. And typically we have understood that the

distance between the 2 symbols at least should be greater than certain threshold that you

choose depending upon the standard deviation of the noise ok.
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 And  we  looked  into  another  modulation  of  scheme  which  is  quadrature  amplitude

modulation scheme. And there we have seen that in quadrature amplitude modulation

scheme you use the complex dimension. So, you can have the complex signals and once

you allow the complex signals and you use this quadrature amplitude modulation; the

one  straightaway  advantage  that  you  get  is  you  reduce  the  bandwidth  inflation  that

happens when you do the baseband to pass band conversion. More importantly we have

also seen that if we look at the average energy per symbol.

In QAM versus PAM in PAM the energy per symbol increases with M square whereas, in

QAM the energy per symbol increases with M and thus in QAM average energy per

symbol is much smaller than what you would require in PAM; and thus for higher M this

PAM should never be used we should go with QAM. So, as M increases energy per

symbol increases but what is the advantage of M? That we will see in this lecture why

we like to have a large M if at all that is required, but before answering this question let

us try to understand some other modulation schemes.
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And this is phase shift keying, phase shift keying is also QAM just the difference is, now

you can only arrange the symbols on a circle. So, in QAM we have seen that the standard

QAM modulation scheme uses a square grids whereas,  in phase shift  keying we use

circular grids. So, the symbol can only lie on a circle. Once the symbols are lying on a

circle we know that the energy of this symbol is same is not it. So, each symbol has the

same  amplitude  and  the  same  energy. The  only  difference  is  in  the  phase  of  these

symbols, the phase of these symbols vary and that is why the name phase shift keying

that is.

So, that is the idea behind phase shift keying, we also have a very popular 4 ary phase

shift key where you have 4 symbols. So, this ary also represents the number of symbols

that are there in a modulation scheme and this 4 ary phase shift keying is also known as

Quadrature Phase Shift Keying or QPSK where there are 4 phases alright.
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So, let us look at what happens if you allow the symbols only to lie on a circular grid as

against the square grid that is used in QAM. So, by using very preliminary geometry we

can see that if this distance is r or the radius of the circle is r, then we know that r sin

theta is d by 2 where, d we are assuming to be the distance between 2 symbols.

So, r sin theta can be given as d by 2. So, from this we get r as d by 2 sin theta and what

is theta? Theta is nothing, but it is 2 pi so the total phase is 2 pi divided by the number of

symbols M. So, that will give me this angle and for theta is half of this. So, we divide it

by 2 we get theta as pi by M where M is the number of symbols. So, we get the radius as

d by 2 sin pi by M symbol. Energy is r square right energy is just given by the radius.
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So, its r square so we just square this thing up and we get average energy per symbol

which is d square by 4 sin square pi by M. We can see that for large M sin square pi by

M can be approximated as pi square by M square of course, this is only true if M is

pretty large. We get average energy per symbol as approximately d square M square by 4

pi square. Important thing is average energy again grows with M square for very large

M. And, thus you must have understood; that PSK base system should also not be used

for large M right.
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So, this  is  how the average symbol energy varies  with M. So, this  is  how the PAM

average energy will scale as M square PSK also scales as M square for large values of M

for  small  values  of  M it  is  not scale  as M square.  QAM has much smaller  average

symbol  energy compared to  PAM and PSK of  course;  it  looks like  as  it  is  constant

because  for  PAM and PSK energy grows too  much.  So,  that  you do not  see  linear

increase in case of QAM.

But the thumb rule that we have developed now is that this QAM modulation scheme

should only be used for large values of M and that is why in this course would you focus

on QAM because it is only of practical use. This PSK and PAM does not work for large

values of M and that is why all modern communication systems have either use this

QAM or other modulation schemes, but PSK based or PAM based modulation schemes

are not very useful ok. let us try to focus now on PAM and QAM and let us forget this

PSK  based  modulation  schemes,  because  as  we  have  said  they  are  not  very  useful

modulation schemes.

And for this PAM we want now to talk about these degrees of freedoms which we have

introduced in lecture number 6 of this course. So, if you have forgotten about that please

relook at lecture number 6 we worked a lot on developing the basic so that we can work

freely when we are discussing the main stuff. 
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So, let me revise, that if I assume T 0 as the duration of the signal. So, I have a signal

continuous time waveform with a total duration of T 0, and if I assume B minimum as

the minimum bandwidth required. Then in the lecture 25 in Nyquist pulse shaping we

have seen that minimum bandwidth required is nothing, but it is R s by 2 where R s is the

symbol  rate  right.  If  you are  generating  the  symbols  at  the  rate  R s  then  minimum

bandwidth that you required is R s by 2 to avoid inter symbol interference. So, this is

absolute minimum bandwidth that we would require.

So, B minimum is one by 2 T the symbol rate is one by T T usually denotes in our course

is the symbol time. So, rate at you are spitting out the symbol or your transmitter  is

spitting out the symbol is 1 by T. So, from this we get T as 1 by 2 B minimum.

(Refer Slide Time: 08:04)

And So, if you look at the number of real numbers that are transmitted it will be the total

duration. So, we are having the total duration as T 0 and in PAM we are only generating

real  numbers,  you are  generating  real  numbers  at  every  T seconds  ok.  So,  the  total

number of real numbers that you would transmit would be T 0 by T and T is 1 by 2 B

minimum

So, from this we get number of real numbers that would be transmitted is 2 B minimum

times T 0 right is always very hard to talk about this B minimum B minimum. So, we

would  replace  B  minimum  with  B.  So,  B  you  should  understand  as  the  minimum

bandwidth that would be required in our modulation scheme all right. So, if we consider



a signal with the bandwidth B and with the duration of T 0 how many real numbers will

represent that signal we would have 2 B T 0 real numbers to represent that signal ok. So,

hence the degree of freedom of a signal is 2 B T 0 what is the degree of freedom degree

of freedom as we have introduced before is just the length of ary that you would require

to represent a continuous time signal.

(Refer Slide Time: 09:29)

So, let me introduce that again. So, if you have a continuous time signal we have said

several times that we can convert this into a vector or an ary where you have certain real

numbers filling in, and the length of this ary or vector that you need to have would be 2

B T 0 where B is the bandwidth of this continuous time signal and T 0 is the duration of

this continuous time signal. Of course we are only allowing real numbers to be filed in

this array and hence the number of real numbers that you would require 2 B T 0. 

And, hence the degree of freedom of this signal is 2 B T 0 degree of freedom is nothing,

but it is the number of real numbers that you would require, number of real numbers

correspond to real degrees of freedom and number of complex numbers that you would

require would correspond to complex degrees of freedom ok. So, you can have both real

degrees  of  freedom or  complex degrees  of  freedom is  very  simple  if  you allow the

complex numbers to be filled in actually you are talking about the complex degrees of

freedom. If you allow only real numbers to be filled in you are talking about real degrees

of freedom alright.
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So  now, what  happens  in  the  pass  band  PAM.  So,  we have  been  talking  about  the

baseband PAM. So, far in pass band PAM what would happen the minimum bandwidth

that  you  would  require  would  be  2  times  one  by  2  T;  because  in  double  sideband

modulation scheme bandwidth inflates with a factor of 2. And hence B is 1 by T is not it.

So, number of real numbers in case of passband PAM would be T 0 by T and T is 1 by B

ok.

So, number of real numbers that you would have in passband PAM would be T 0 times

B, thus if you consider a passband PAM signal with a time bandwidth product of B T 0

time bandwidth product means that the underlying signal is of bandwidth B and duration

T 0 that is the time bandwidth product of the signal. If you are talking about a time

bandwidth product of B T 0, then you need to have B T 0 real numbers representing that

signal ok. And these degrees of freedom are important this will become clear eventually

wise that in passband QAM. Now, we are talking about the QAM and let us see what

changes passband the bandwidth is always 1 by T.
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So, remember in the baseband bandwidth required is 1 by 2 T, but if you are talking

about the passband the bandwidth scales with a factor of 2. So, thus the bandwidth that

you would have is 1 by T, but now what happens is QAM is a complex signal that is

different. So, now we are not talking about the real degrees of freedom we are talking

about the complex degrees of freedom because the underlying signal QAM is a complex

signal. So, total duration of the signal is T 0 the symbols are generated at a rate of T. So,

total number of complex signals that you would have is T 0 times B.

So, in a time bandwidth product of B T 0 you would have B T 0 complex numbers

generated or 1 complex number is 2 real numbers. So, if I say that I have B T 0 complex

degrees of freedom, its simply means that I have 2 B T 0 real degrees of freedom. So,

that is what happens this is important that in QAM passband in a time bandwidth product

of B T 0 again I end up with 2 B T 0 real degrees of freedom. So, QAM at passband is

same as PAM at baseband in PAM at baseband also we had this 2 B T 0 real degrees of

freedom I will summarize this in a while, but let us first cover this QAM at baseband.
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In  QAM  at  baseband  you  can  use  the  simple  idea,  let  us  assume  that  I  have  the

bandwidth of B I can divide this bandwidth of B in M segments. So, bandwidth of each

segment is B by M. Now, this is a passband signal even though I am considering as a

baseband signal, but if I consider the total baseband bandwidth is B and then I consider

different segments each segment can be thought also as a passband signal is not it.

So, this is the idea that we are using bandwidth of each segment is B by M and in B by

M T 0 time bandwidth product. So, if the bandwidth of 1 segment is B by M and the total

duration is T 0 I can have 2 B by M T 0 real numbers or 2 B by M T 0 real degrees of

freedom. Thus, by using the same idea if I consider time bandwidth product of the signal

as B T 0 I can have 2 B T 0 real numbers or 2 B T 0 real degrees of freedom.
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Let us summarize the comparison between PAM and QAM. So, if I consider a signal

with a time bandwidth product of B T 0. Let us see how many real numbers can represent

that signal faithfully in case of PAM at baseband we have seen that we require 2 B T 0

real numbers PAM at passband we require B T 0 real numbers, QAM at baseband we

require 2 B T 0 real number QAM at passband we require 2 B T 0 real numbers ok. So,

as you can see that the QAM does not reduce in the degrees of freedom it has when you

go from baseband to passband ok

So, once we have understood this then we can talk clearly about a spectral efficiency of a

modulation scheme. Spectral efficiency is really important because there you want to see

how many bits you can have over a channel what is the bit rate that a channel offers.

And, to understand that spectral efficiency clearly you need to understand the degrees of

freedom that a modulation scheme offers and the time bandwidth product tells me about

the degrees of freedom; this will be clear when we talk about the spectral efficiency ok.
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So, first let us see spectral efficiency, in a simpler way in the way that you can probably

appreciate quite easily. So, the spectral efficiency depends upon the rate and what is the

rate? Rate is number of bits that a transmitter spits out per second ok. So, that is the bit

rate or simply the rate. So, we are using the letter R to represent the bit rate number of

bits per second and I can understand this number bits per second as number of bits per

symbol  and  then  number  of  symbols  per  second and  number  of  bits  per  symbol  is

nothing, but it is log 2 M if M is the number of symbols the number of bits would be log

2 M we have already seen M is 2 to the power b. So, log 2 M is b where b is the number

of bits per symbol.

So, number of bits per symbol is log 2 M number of symbols per second is R s that is the

symbol rate. So, we are using the notation R s to talk about that. So, bit rate is nothing,

but it is log 2 M times symbol rate. Symbol rate is also known as baud rate its important

term that we use in digital communication context baud rate is also known as symbol rate

or symbol rate is also known as baud rate. So, this is an important expression relating the

bit rate to symbol rate.
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Now, we know that bit rate is log 2 M times symbol rate; what is the symbol rate  for

baseband PAM? 
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We have seen that in baseband PAM B is 1 by 2 T and this is 1 by 2 R s. so R s is 2 times

B. So, if you have the bandwidth available to as B the symbol rate that you can have is 2

times b. So, the maximum symbol rate that you can have is 2 times the bandwidth that

the channel offers ok. You cannot have a higher symbol rate than twice the bandwidth

available. So, in baseband PAM R s is 2 times b. So, rate becomes log 2 M times 2 B in



passband PAM R s is B because for passband B is 1 by T. So, R s becomes B. So, for

passband PAM R s becomes B bit rate becomes log 2 M times B for QAM R s is B bit

rate becomes log 2 M times B for QAM at passband R s is B and this r becomes log 2 M

times B.
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Now, once you have defined for the bit rate, you can talk about the spectral efficiency.

The spectral efficiency is nothing, but it is the bit rate divided by the bandwidth that is it

that is the spectral efficiency the unit will be number bits per second per Hertz; number

bits per second because this is a bit rate divided by the bandwidth the unit of bandwidth

is Hertz. 

So, the unit of a spectral efficiency is number of bits per second per hertz and two most

practical case that we need to consider is PAM at baseband and QAM at passband. PAM

at baseband you already have calculated the bit rate divided by a bandwidth.
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So, once I have bit rate, log 2 M times 2 B the spectral efficiency is R by b. So, the

spectral  efficiency would be 2 times log 2 M. So, this is the spectral  efficiency of a

baseband PAM 2 times log 2 M. Similarly, for passband QAM you can have the spectral

efficiency of log 2 M of course, for passband PAM the spectral efficiency would reduce

by a factor of 2 for baseband QAM the spectral efficiency would be same as log 2 M. 

Important point is as you increase M the spectral efficiency improves; that means, you

can pack in more bits per second over that channel. But also the symbol energy increases

we have seen as M increases e s increases. And that means, there is a trade off between

the symbol energy and the spectral efficiency, if you want to have higher bit rates over

the channel what you want to do is you need to have the modulation schemes with higher

M.  And  once  you  do  that  you  need  to  pump  in  more  symbol  energy  as  well  and

increasing M would be important in bandwidth constrained channel.

So,  we have seen in lecture  one that  the communication  channels  are  of basically  2

kinds; certain channels are bandwidth constrained channel; that means, the bandwidth is

the  more  precious  resource  for  those  channel.  For  example,  telephone  channels  are

bandwidth  constrained  channel  you  can  always  pump  in  more  power  in  telephone

channels that is not the primary concern. But over telephone channel what we wanted to

have always is more and more bit rates that is the primary source and thus for bandwidth

constrained channel you want to have a larger M; because that will increase the spectral



efficiency of your scheme,  though it  will  punish you by making you to invest  more

symbol energy ok.

(Refer Slide Time: 22:05)

Let us now try to look at the definition of a spectral efficiency, from another context and

this definition is also useful we will get to the same numbers, but we will define it in a

different way that is it.  So, spectral  efficiency can also be defined as number of bits

divided by number of complex degrees of freedom, this is an important idea and this is

useful particularly in the context of error control coding where we want to talk about the

spectral efficiency in terms of degrees of freedom.

So, we have seen it several times that if I have a time bandwidth product of BT I can

have 2 BT real degrees of freedom or I can have BT complex degrees of freedom this

you can refer to lecture 6. Or, if you want to look at this very rigorously you can look at

Landau Pollak theorem which states or make these things more rigorous alright.
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The idea is that number of complex degrees of freedom is nothing, but it is the time

bandwidth  product.  And  there  various  ways  in  which  I  can  understand  this  time

bandwidth product which is the number of complex degrees of freedom. The degrees of

freedom are  also  known as  dimensions  of  a  signal  they  are  interchangeable  words;

sometimes  you talk  about  dimension,  sometimes  you talk about  degrees  of freedom,

complex degrees of freedom or complex dimensions are one and the same thing.

So,  time  bandwidth  product  in  certain  books  is  also  written  as  number  of  complex

dimensions. And it would be same as number of real dimensions by 2 because number of

real dimensions is 2 times time bandwidth product. So, time bandwidth product would be

half of the number of real dimensions ok. Now, let us look at this.
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So spectral efficiency, to calculate first thing that I need to calculate is number of bits;

number of bits would be R times R is the bit rate number of bits would be R times the

total duration. So, this is R and this is the total duration T. So, number of bits would be

this divided by B T would give you the spectral efficiency 2 log 2 M. Now let us look at

the units 1 unit of course, we have seen is bits per second per hertz or I can write the

units is 2 log 2 M bits per complex degrees of freedom because PAM bandwidth product

is complex degrees of freedom or its sometimes written as 2 log 2 M bits per D where D

represents the complex dimensions or you can write this as 2 log 2 M bits per 2 D where

D represents real dimension.

So, it depends upon context to context and book to book. So, once you see d you have to

ask the question whether it is your complex dimension or it is a real dimension if the

underlying definition of d is real dimension then you would see the 2 d in here if you see

d as complex dimension then you would just have d. So, this definition of a spectral

efficiency is also useful and is used in several context ok. So, what we are doing in this

lecture is we are developing this ideas, we have looked again at this degrees of freedom,

complex dimensions, complex degrees of freedom how is it related to time bandwidth

product and things like that. And we are developing the notation of a spectral efficiency

for PAM and QAM and we have seen very interesting thing then as M increases the

spectral efficiency increases; that means, you can have more and more bits per second

per Hertz.
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Now, let us define signal to noise ratio, it is also an important metric and when we do

detection we will see that, the error performance is the very strong function of the signal

to noise ratio ok. And thus it is important to understand what is this; signal to noise ratio

is  signal  energy divided by noise energy or we can talk about  the signal  energy per

dimension noise energy per dimension and things like that. This will become clear, but

first let us start by revising some basics. 
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And the basic is how do we define the energy and power of a discrete time signal, you

can refer to book open ham if you have forgotten how the energy and power of a discrete

time signal is defined. Energy of a discrete time signal is defined like this, it is same as

how we define the energy of a continuous time signal; just integration is replaced by

summation that is the only difference when you go from continuous time to discrete

time.

And for the power we divide by the number of samples that you are considering. And

this is the power of a signal, now one thing that you need to know is when we are talking

about per degree of freedom; that means, per sample if you are talking about per sample

then N is 1. And the energy and power per degree of freedom is same ok. In discrete time

signal we do normalization to get a discrete time signal the time duration of the sample is

considered to be unity when we are talking about degree of freedom we invariably mean

that  we have got the discrete  time signal probably derived from the continuous time

signal. So, that is one thing that we have to keep in mind. The second thing is what we

have discussed about white Gaussian noise.
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We have seen that, if you have a white Gaussian noise N t, passed through a correlator

correlator is fed with this orthonormal function, at the output of the correlator you get a

Gaussian random variable denoted by N. And when we talk about the expected value of

N square we get N 0 by 2 all this we have done in lecture 17 of this course. So, expected



value of N square is N 0 by 2, where N 0 by 2 is the power spectral density; that means,

the power per degree of freedom of noise is N 0 by 2 or you can say it as energy per

degree of freedom of noise is N 0 by 2. Let me draw a diagram and maybe it will become

then more clear. So, if I have a white Gaussian noise what this power spectral density? It

is constant. 
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Now, from this power spectral  density you are taking a chunk of this power out this

power is available only where this spectrum of this orthonormal function is. And so the

power  that  you  get  out  from this  random variable  corresponds  to  the  power  that  is

available per degree of freedom ok. And power is same as energy when we are talking

about  degrees  of  freedom.  So,  these 2 things  you have to  remember  that  power per

degree of freedom of noise is N 0 by 2 energy per degree freedom of noise is also N 0 by

2 ok.
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So signal to noise ratio we can define now more specifically as signal energy in one real

dimension.  And  noise  energy  in  one  real  dimension  or  degrees  of  freedom

interchangeably. Or if you want to consider complex dimension then you should consider

the signal energy in one complex dimension divided by noise energy in one complex

dimension  we  have  to  be  fair.  If  for  signal  you  are  considering  real  consider  the

dimension also for noise as real, if you are considering for signal a complex dimension

also consider for the noise the complex dimension just be consistent.

Using these ideas let us see; what is the signal to noise ratio for baseband PAM, signal

energy in one real dimension is E S right. You are representing one signal while just one

number and that number corresponds to the energy of the signal was the noise energy in

one real dimension N 0 by 2. So, signal to noise ratio becomes 2 E S by N 0 ok.
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 Let us now see for QAM, but QAM is a complex signal;  that means,  it  occupies a

complex dimension. So, the energy of QAM E S is in complex dimension. So, for noise

also we have to consider the noise energy in complex dimension. So, noise energy in

complex dimension is nothing, but the sum of noise energy into real dimension complex

dimensions to real dimension the variances of noise at this also we have covered; if the

noise random variables are independent, then the variances of the noise N ok.

So, the variance of this noise in one dimensions is N 0 by 2 the variance of the noise in

another dimension is N 0 by 2, the total noise variance would add and it would become

N 0. So, when we are defining the signal to noise ratio of QAM passband it would be E S

where  this  E S is  the  energy in  complex  dimension divided  by the  noise  energy in

complex dimension which is also N 0 ok. So, this is the signal to noise ratio of QAM.
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Let us now see, can we have some other ways to talk about the signal to noise ratio. So,

one way is we know that number of bits per symbol is log 2 M. And from this we get the

energy per bit. So, if you are investing E S energy in a symbol per bit energy would be

obtained  by dividing  the  total  symbol  energy by number  of  bits,  that  you have  and

number of bits in a symbol is log 2 m. So, bit energy is E S divided by log 2 M ok.

So for example, if you have 2 bits in a symbol, you get the energy of a symbol as E S per

bit energy that you need to spend is E S by 2. The total  number of bits, so E S is a

symbol energy divided by the number of bits which is log 2 M. So, we get bit energy as

E S by log 2 M. Let us look at this signal to noise ratio for baseband PAM again, we have

obtained signal to noise ratio is 2 E S by N 0 E S is E b times log 2 M and we have

already seen that the spectral efficiency of baseband PAM rho is 2 log 2 M.

So, we can write signal to noise ratio is rho times E b by N 0. E b by N 0 is also known

as E b N o right. So, instead of saying E b by N 0 all the times its more convenient to say

it as E b N o. So, signal to noise ratio is rho times E b N o E b N o is signal to noise ratio

divided by rho and in digital communication systems we talk more about E b N o. This is

more interesting, because it takes into account the spectral efficiency of the modulation

schemes  some  modulation  schemes  has  a  higher  spectral  efficiency  than  the  other

modulation  schemes.  And  thus  to  be  fair  to  those  modulation  schemes  rather  than

comparing  modulation  schemes  based  on  SNR  a  signal  to  noise  ratio  it  is  more



convenient to compare modulation schemes based on E b N o’s. So, that is also another

metric that is used E b N o is SNR by rho right.
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Let us see what happens for QAM at passband. So, SNR we have said is E S by N 0. E S

is E b times log 2 M and for QAM log 2 M is rho. So, again for SNR at QAM we get

SNR is rho times E b N o or E b N o is SNR divided by rho. Thus we have got the same

relationship between SNR and E b N o for QAM and PAM all right.

(Refer Slide Time: 35:33)



Let us derive another relationship, so power of the symbol is E S by T energy divided by

the total duration that is the power. And T is for PAM at baseband T is one by 2 B, B is

the band with that is required. So, power symbol is E S times 2 B so E S is P S by 2 B.

So, for PAM and baseband signal to noise ratio is 2 E S by N 0 E S can be substituted as

P S by 2 B from that we get this.

So, signal to noise ratio is P S by N 0 times B P S is signal power or average signal

power, and what is this N 0 times B it is the noise average power. This we have seen that

if you pass a noise with the filter with the band with B the output noise power is N 0

times B. So, signal to noise ratio can also be understood as average signal power divided

by average noise power; maybe this is more convenient to use it in this way ok. When

you do not have this factor of 2, let see whether we get the same expression for signal to

noise ratio also for QAM.
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For QAM, the average symbol power is E S by T it is the same thing as for PAM, but for

QAM this T is 1 by B. So, from this we get E S is P S by B and now substituting this

average symbol energy in terms of average symbol power, we get the SNR for QAM also

exactly the same as we got for PAM. So, average SNR for QAM is also average signal

power divided by average noise power. So, with this we have come to the conclusions of

this PAM in QAM still we have to do their error performance calculation, but this we

will do after we have finished with detection.  And there we will compare a how this



QAM and PAM and BSK performs in terms of bit errors, but. So, far what we have been

seeing in this modulation is how allowing the complex signals helps us in reducing the

bandwidth inflation.

That is the one thing that we have seen in context of QAM. Then we have seen the

impact of increasing M increasing M invariably increases the average symbol energy that

is required and this grows with M square in case of PAM this grows as M in case of

QAM. And this for very large M also grows as M square in case of consolation schemes

using circular grids. For example,  BSK based modulation schemes and thus from the

context of this average symbol energy, the com looks to be most favourable modulation

scheme at least for large values of M and that is the cases ok

 The second thing that we have started looking into is the spectral efficiency of these

modulation schemes. And there we have seen that the spectral efficiency increases as log

2 M for both PAM and QAM. And thus, if you want to pack in more bit rates per channel

you need to use large M and that is what we do for bandwidth constrained channels ok

where the bandwidth is a more sacred resource then the power. And telephone channels

are  the  examples  of  that  we have  also  looked  into  how can  we  define  the  spectral

efficiency in terms of in terms of bits per compacts dimension.

And  that  is  also  sometimes  a  useful  definition;  and  finally,  we  have  developed  the

expression for relationship between SNR and E b N o and we have seen that E b N o is

SNR by spectral efficiency and finally, we have seen that SNR can either be interpreted

as average signal energy in one real dimension divided by average noise energy in one

dimension or by average signal power divided by average noise power. Now, we have to

move  to  the  modulation  schemes,  which  will  be  more  useful  in  power  constrained

channels. So, communication channels are basically of 2 kinds.
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Either they are bandwidth constrained or they are power constrained, example of a power

constrained  channel  is  a  satellite  channel,  satellite  communication  systems  basically

work on batteries. And you want to use modulation schemes which minimises the use of

batteries. So, that the battery replacement does not happen to frequently you can imagine

that, the cost of replacing a battery of a satellite is really an expensive operation. And

therefore, for satellite channels we want to use modulation schemes which used as little

power is possible and you do not care about bandwidth at all, these schemes may make a

very bad use a bandwidth, but you want to have a schemes which use little power.

Where is in telephone channels which we have just seen you can pump in lot of power by

having a device at a central office or at a telephone exchange and you do not really worry

about power so much. Of course, if you use more power that creates nonlinearities and

other issues, but primarily you do not worry about using lot of power. What you want to

do is you want to extract more bit rates over that ok.

 So,  now the modulation  schemes that  we will  like to  focus will  be the modulation

schemes, which will be beneficial from the point of view power constraining channels

like  satellite  channels.  And  these  modulation  schemes  are  orthogonal  modulation

schemes we will start with this orthogonal modulation schemes in next lecture. But let us

try to understand this trade of between the power requirement and bandwidth from the

point of view of Shannon’s capacity formula which is quite useful and insightful.
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Shannon’s capacity formula, as you must have seen is C times B log 2 of 1 plus P by N 0

B.  So,  P is  the  power or  average  signal  power N 0 is  average  noise power ok.  So,

basically  it  is  a  SNR: Signal  to  Noise Ratio.  What  is  B? B is  the bandwidth of  the

channel C is the number of bits per second that you can transmit over that channel. So,

Shannon’s capacity formula says that if you have a transmitter which is operating at a bit

rate of R. 

And if this bit rare is less than C, where C is the channel capacity you can make bit error

rate very small arbitrarily small ok. So, the upper limit of ray that you can have over a

channel is governed by this C. And this graph compares very beautifully the relationship

between channel capacity and bandwidth as you increase bandwidth channel capacity

increases  of  course,  the  noise  power  also  increases.  And  thus  the  channel  capacity

saturates to a value of P times log 2 e divided by N 0 for very large values of B.

So, its simply says that having infinite bandwidth does not serve you too well because

then you also end up with signal to noise ratio of 0 which is not good. So, you can

increase the capacity by having large P, but not 2 infinity and this is the upper limit.
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Then we see that, the spectral efficiency we already have seen is rate divided by B. So,

its simply says that a spectral efficiency should be less than log 2 1 plus SNR this is this

ratio signal to noise ratio. So, what we are saying is spectral efficiency should be less

than log 2 1 plus SNR. And what is the spectral efficiency? Spectral efficiency is SNR

divided by E b N o. So, SNR divided by E b N o should be less than log 2 1 plus SNR

that simply means that E b N o should be greater than SNR divided by log 2 1 plus SNR

ok. This is useful relationship; that means, the minimum E b N o that you need to have is

dictated by this expression.
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Let us see it more clearly, so we have said that E b N o should be greater than SNR

divided by log 2 1 plus SNR. If we want to reduce bandwidth, what happens to SNR?

SNR increases because SNR is P by N 0 B, if you reduce bandwidth SNR increases if

SNR increases that means E b N o requirement increases; that means, you want to have a

larger E b N o. But reducing bandwidth also increases your spectral efficiency is not it. 

So, once we want to reduce bandwidth which we want to do in bandwidth constraint

channels the penalty that you have to pay as you need to have large E b N o. And M

QAM based modulation schemes are best to do that, because you can have a larger and

larger spectral efficiency by having larger M’s without increasing E S too much. And you

can pack more data over a given bandwidth ok.

So,  we have  seen  the  modulation  schemes  which  are  ideal  for  bandwidth  constraint

channels. The other strategy could be to have larger B’s larger B is allow for smaller

SNR, SNR reduces then from this expression you can see that E b N o requirement also

reduces.  However,  when  we are  having  large  bandwidth  the  spectral  efficiency  also

reduces.  And this  thing we want to  do over  power constraint  channels,  and the best

modulation  schemes for power constraint  channels  that  forms the substratum of next

lectures  are  the orthogonal  modulation  schemes.  Orthogonal  modulation  schemes are

best suited for power constraint channels like satellite channels.
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We were  see  that  orthogonal  modulation  schemes  are  capacity  reaching  modulation

schemes. Minimum E b N o that you would need is when bandwidth tends to infinity and

at that time by substituting, in this expression only you can find that the E b N o should

be larger than minus 1.59 d B and this is a golden number which you must remember. So,

golden  number  golden  rule  in  communication  systems  and  error  control  code.  That

means, if you do not care about bandwidth at all if you assume that the bandwidth that is

available to you is infinity, you can have a bit error rate arbitrarily small 10 in to 0 by

just affording an E b N o of greater than minus 1.59 dB that is the channels capacity ok. 

And we will see that orthogonal modulation schemes allows us to do so by assuming that

you have infinite bandwidth, you can reduce the E b N o requirement to as small as 1.59

d B. And still get a better rate of 10 to the power minus 9 or even smaller than that as

small, so that it could be considered as 0. So, we will look at this orthogonal modulation

scheme in the next lecture.

Thank you.
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