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Good morning welcome to new lecture on Modulation and in today’s lecture we will talk

about issues of pulse shaping.

(Refer Slide Time: 00:33)

So, let us revisit the modulator and we have seen that in a modulator first we get binary

sequence and this binary sequence is converted to weighted train of impulses and then

this weighted train of impulse passes through a filter to get a weighted pulse train. And

today we will investigate what is the good value of this p t then pulse response of this

filter so, that we can avoid things like inter symbol interference.

So, this lecture will be dedicated to understand the good values of P t. So, in previous

lectures we have seen how the choice of P t influence the bandwidth occupancy and

today we will see that, if we want to avoid inter symbol interference you need to use

little bit more bandwidth than t theoretically possible and we will also understand in the

process what is this inter symbol interference ok.



(Refer Slide Time: 01:58)

So,  let  us get  started  and the first  thing that  we would see is  really  a recap of few

concepts that we have already seen before. And the first idea that we have seen in one of

the lectures in the first week is that this time limited pulses. 

So, this pulse is a time limited pulse, that means it has a duration only for 10 seconds and

then there is no amplitude in the pulse right. So, this is a time limited pulse, it can finds

itself to this duration. Now if you take a time limited pulse its spectrum would spend

from minus infinity to plus infinity; that means, the time limited pulses are always band

unlimited right, this we have seen before as well. And we had also seen previously that if

you try to band limit a pulse for example, this spectrum span from minus infinity to plus

infinity if I try to band limit this is spectrum, what would happen is that this pulse will

spread in time.
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Because band limited pulses are always time unlimited, you cannot have the best of both

words. So, for example, you cannot have a pulse which is time limited, at the same time

band width limited that is not possible. So, if we try to limit in bandwidth this pulse will

spell in time.

(Refer Slide Time: 03:19)

We can also understand this from Paley Weiner theorem, as we have already seen that the

physically realizable systems has to be causal systems because only causal systems are

physically realizable right and why are only causal systems are physically realizable?



Because causal systems are non anticipatory systems and physically realizable systems

would be non anticipatory systems. And then we have also seen that if the system is a

causal system is frequency response should satisfy Paley Weiner theorem.

That means that we have seen I think lecture 6 that if the frequency response has to

satisfy Paley Weiner theorem, it simply means that frequency response cannot be 0 for

continuous range of frequencies right. And if the frequency response cannot be 0 for a

continuous range of frequency, it simply means that the signal or the system has to be

band  unlimited  right.  So,  this  is  also  what  we  have  seen  that  physically  realizable

systems are band unlimited systems. So, this is like the problem right.

(Refer Slide Time: 04:34)

So, we get into kind of Blind alley and this blind alley is that these regularity authorities

like TRAI in India or FCC in USA they mandated the signals to be bandlimited signals

right  Why do we want  to  have  bandlimited  signal?  So,  that  your  signal  should  not

influence the signal of the another operator right. So, every operator is given a frequency

band  to  operate  and  the  signals  of  those  operator  should  be  confined  within  that

frequency band.

So, these regularity authorities of India mandates the signal to be band limited, but as

soon as you try to make signal band limited, these signals will become time unlimited.

So, if I want to see the signal in time domain there will be time unlimited and if they

become time unlimited what would happen? This pulse will interfere with this pulse and



this causes what is known as inter symbol interference. And we have to deal with this

issue of inter symbol interference. 

So, in this lecture today we will see and identify the pulse shapes that are approximately

time limited and band limited.  So, that these ISI effects or Inter Symbol Interference

effects are mitigated. So, in short what we have said so, far is that because of regulations,

you have the signals have to be band limited and as soon as you want to make them band

limited or approximately band limite, they also spell time and when they spell in time

they begin to interfere with other pulses and causing what is known as inter symbol

interference.
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So, to understand this issue clearly, let us look at the communication system. So, we have

here in the modulator and we have the bit stream; bit stream is converted to samples or a

weighted impulse train and then you pass it through a filter. Also at this point we have

frequency up converter, but we do not want to go to the pass band domain because the

space band signal has the complete information right. So, we have already seen what

happens  when you go from basement  to  pass  band domain,  we are  not  having  this

frequency up convertor or frequency down converter at this point because those issues

have been address separately right.

Here we just want to focus on baseband right. So, that is a modulator we have seen it

before and we have also seen the typical design of a receiver; receiver has a filter with an



impulse response r t followed by a sampler, which is sampling at an integer multiples of

T. So, this is typically the design of a communication system. And first we are assuming

all this filters and the channel and this filter to be linear time invariant system. 

(Refer Slide Time: 07:53)

And you must have see it from the course in signal sense systems, that if you have 3 LTI

systems with impulse response p t, h t and r t these 3 systems can be converted into one

system,  which  has  got  an  impulse  response  formed  by  the  convolution  are  these  3

impulse responses ok.

So, namely g t which is the impulse response of the equivalent system is simply p t

convolution h t convolution r t ok. So, if the systems are linear time invariant systems,

you can replace this  3 systems with one in a time invariant  system which is  got  an

impulse response the convolution of the impulse responses of these 3 systems. So, here

we are using the same idea that, we have these 3 systems this filter has got an impulse

response of p t channel also we are assuming to be linear time invariant system and then

we have a filter with an impulse response of r t at the receiver, these 3 systems can be

replaced by one filter which has got an impulse response p t convolution h t convolution

r t. So, this is typically the communication system. 
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Then a question that we are asking is, if let us say at the input of this filter we have got a

signal a t, where a t is given by this. So, its nothing, but it is a weighted impulse train. At

the output of the filter this filter let us assume that we have a signal q t, where q t is given

by input convolution g t. So, input is this, this is the input convolution with g t. So, this is

the output of this filter and we also assume that some noise has added in at the output.

So, we have the signal convolution with impulse response of the filter plus some noise

addition right.

We have seen that noise is additive, so, it simply adds at the receiver. Now you know that

till the t minus k T convolution with g t is simply g t minus k T ok. So, this is convolved

with this is not a function of time. So, a ks are constant with respect to time. So, this

simply becomes a k times g t minus k t summation for all possible values of k plus n t. 

And the question that we want to ask is if I sample this output let us say at i T say if we

sample this q t at i T we get q of i T and we want this q of i T to be same as a i why is this

so? Because at i T time instance we are transmitting a i the symbol with the value of a i

and at the receiver what we want to receive is a i faithfully ok. So, let me draw this.
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So, let us say at the input of this filter a t; a t is nothing, but it is a weighted impulse train.

So, let us 0 T 2 T and let us say i T and it has got the weight a 0, a 1, a 2 and a i. So, at i T

time instance we are sending an impulse with the weight a i and at the output of the filter

g t  after  sampler  what we want to receive is,  a i faithfully  right that  is  the job of a

communication system whatever you are transmitting at the output of a filter and the

sampler you want to receive faithfully that.

 So, that is the question that we are asking we want that q i T should be same as a i and

we are asking other question that for what g t for what impulse response this q i T is

same as a i.
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 And let  us  see  this.  So,  we have already said  that  q  t  is  a  k  times  g t  minus  k T

summation for all values of k and then there was some noise addition. Now we want to

sample this output at time instances with integer multiples of T. So, I get q i T is a k. So,

this t is replaced with i T and this t is also replaced with i T. So, this is the q i T this is the

values  of  the samples  of  this  output  q  t.  If  we look this  carefully  let  me first  do it

separately. 

(Refer Slide Time: 13:33)



So, what we are saying is q i T is summation a k g i T minus k T plus n t. K takes n all

values from minus infinity to plus infinity this is also i T. Now, let me assume that i is

same as k or k is same as i. So, that is a k times g of 0 and I can collect all other terms

other than when k is not same as i, so, this is q i T. 

So, this summation contains all terms going from minus infinity to plus infinity what I

am doing is, I am just pulling out the term corresponding to the situation when k is same

as i. So, that term is a k times g of 0 and all other terms are contained in the summation

except when k is same as i and then also we have n i T. So, this is what we have. So, q i

T is represented in this term plus this term and noise. So, what we wanted is q i T should

be same as a i.

So, this is the information that we want and this is inter symbol interference. So, this is

inter symbol interference and this term corresponds to the noise and we want that this

inter symbol interference to be 0. So, that is the objective because what we want is q i T

should  be  just  same  as  a  i  nothing  else  there  should  be  no  contribution  from  this

summation  this  summation  corresponds to  inter  symbol interference.  So,  what  is  the

question that is running on? The question is what is the value of g t? So, what is the value

of g t for which q i T is same as a i. So, that is the question that we are asking.

(Refer Slide Time: 16:18)

But we will ask this question making two assumptions, first assumption that we make

now is that noise is 0. We do not want to study at this moment impact of noise, we



assume that noise is 0. So, that we just handle inter symbol interference at this moment

ok. And this will be the case when the signal to noise ratio is very large and signal to

noise ratio is large in channels like telephone channels.

So, this is fairly a reasonable assumption to make. And if signal to noise ratio is pretty

large; that means, this noise power is a small or that simply means that noise can be

ignored. So, in the absence of noise most errors happens because of this inter symbol

interference and that is what we want to focus at this moment. 

(Refer Slide Time: 17:17)

The second thing that we are assuming is that this filter g t is a linear time invariant filter.

And before we have assume that this p t h t and r t all these are linear time invariant

systems. Can we have a filter which is not linear time invariant or can we have a system

which is a non-linear system? Could we have use the systems replacing these filters with

impulse  response  of  p  t  and  impulse  response  r  t  and the  channel  with  an  impulse

response of h t with non-linear systems, can then we not get q i T same as a i? Why we

are restricting our self to linear time invariant systems only? 

The answer is that if we assume non-linear systems, non-linear systems are not optimal

in the presence of noise ok. So, when we are restricting our self to linear systems actually

we  are  not  losing  out  anything  right.  Linear  systems  are  well  behaved  even  in  the

presence of noise and this is a good assumption to make first it makes analysis simple

and second is linear systems are well behaved and optimal in the presence of noise and



that is why we are asking this question that for what g t q i T is same is a i by assuming

all systems to be linear time invariant systems only ok.

So, these are the two assumptions that we have made. We have made that all systems or

channel is LTI system, the receiver filter is LTI system, the transmitter filter is an LTI

system as second assumption that we have made is that the noise is ignorable ok. So,

signal to noise ratio is pretty large ok.

(Refer Slide Time: 19:19)

So, let us go back and look at this question again. So, we have been asking this question

several times. So, we are saying q i T is this. So, now, we do not have any component

corresponding to noise and if you ask for what g t q i T is same as a i answer is pretty

simple if you look at this. What we want g of 0 to be g of 0 should be 1 right.

That means g t should be 1 for t equals to 0 and what we want here? We want that g t

should be 0 at  t  equals  to  k T. So, if  g  t  is  0 for  t  equals  to  k T, there will  be no

contribution from this term and inter symbol interference will be 0. So, if I use a filter

whose impulse response satisfies these two condition then what we can see is that the

inter symbol interference will be 0 ok.
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So, what are the examples of g t? A sinc function. So, for example, we know that a sinc

function sinc t by T is a function which has a t equals to 0 value of 1 and at all integer

multiples of t it has 0. So, sinc function is a function that satisfies Nyquist criteria. And

this is in fact, the Nyquist criteria even though we have not mentioned it. 

So, this is Nyquist criteria that g t should be 1 for t equals to 0 and for t equals to k T g t

should be 0 and if you have a function which satisfies this than inter symbol interference

is 0 and this function is known as Nyquist pulse at rate 1 by T and sinc function is an

example of the Nyquist pulse because it satisfies this condition, so, its easy. 

So, what is the problem with this pulse? The problem with a sinc pulses that the sinc

pulse extends from minus infinity to plus infinity and we have seen that this sinc pulse

sinc t by T which can be approximated as some sine by t. So, we are not writing on the

exact values, the only thing that we need to appreciate is that sinc t by T translates to

some constant time sine of something divided by t this is an oscillatory function.

It goes up and down and so, for large values of t, this function decays as 1 by t and this is

a slow decay. And because of this slow decay in practical situations this is not a good

function to use even though theoretically its fine. So, what we are saying is the sinc

function decays as 1 by t and thus for practical applications, this is not a nice function to

use because what would happen is in practical situations let us say we are using a sinc

pulse. 
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So, one sinc pulse is like this and let us use another. So, this is p of t and then let us draw

p of t minus t which would be something like this. Let me draw one more something like

this something like this. So, this is p t this is p t minus T, this is p t minus 2 T. And where

we are sampling? We are sampling at these instances. So, we are sampling here we are

sampling here and we are sampling here and so on so forth. 

So, this is 0 T 2 T and so on so forth. So, now, what you see is that when you sample this

you just have contribution from p t. The contribution from p t minus t and p t minus 2 T

is  0.  When  you are  sampling  at  t  you just  have  contribution  from p  t  minus  t,  but

contribution from p t and p t minus 2 T is 0 and hence this looks like its avoiding inter

symbol interference.

But what happens in practices that, your clock does not sample exactly at the duration of

t seconds right this pulse is created at the transmitter this clock is at the receiver. So,

there might be a mismatch between this pulse duration of T and the sampling duration of

T, because this clock is produced at the receiver. Moreover for the same clock there is a

always some jitter. So, sampling instances not always perfectly happen at the duration of

T. So, there might be jitter in the clock and sometimes you may sample here sometimes

you may sample here. And once there is a clock jitter what happens if you sample at this

time instance, you begin to have contribution from this pulse and this pulse and many



other pulses. And in the presence of this clock jitter this might become pretty large value

and hence it will create an error. 

So,  what we are saying is if  you can have a clock, which can perfectly  sample at  a

duration of t seconds and this duration of t seconds is match to the duration of the sinc

pulses produced by the modulator, then there is no problem right, but impact is what

happens is that there is clock jitter. So, the sampling time instances are not perfect, they

do not always happen at integer multiples of t, but there is some (Refer Time: 26:18)

sometimes it happens, earlier sometimes it happens later.

 And  once  there  is  a  clock  jitter  whenever  you  sample  this  pulses,  there  might  be

contributions from (Refer Time: 26:29) pulses. And this contribution might sum up and

may become a pretty large number and it might create an error ok. So, that is the problem

with the sinc pulse. So, what we are saying is let us go back. So, because the sinc pulse

decays too slowly, it has a decay of 1 by t when you take into account the sampling time

errors, that say instead of sampling at t which is fine.

You begin the sample at T plus delta, where delta corresponds to the jitter in the clock

then you begin to collects samples from all pulses then you begin to have contributions

from all pulses and this contribution might add up and may become unbounded. In fact,

it can be shown that the worst case error for a signal which decays as 1 by t is given by

this series. So, if you pulse decays as 1 by t, this is the contribution from all other pulses

and this series diverges and does the sampling errors can be unbounded. So, what do we

want  is,  we want  the signal  to  decay faster  we wanted to  decay with 1 by t  square

because when it decays as 1 by t square, you can see that the worst case error due to

other pulses has a contribution proportional to this series.

And this series converges and thus if you want pulses which decays faster than the sinc

pulse. So, sinc pulse though theoretically is good practically it will have issues right.
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So, practically what we want is, we want the pulses that decay faster than 1 by t. So, we

want them to decay with 1 by t square or 1 by t cube and so on so forth. And you can

show that easily that the sampling error when you have a pulse with this decay is given

by this series and this series converges the sampling error for the pulses which has this

kind of decay is given by this series and this series also converges. So, we want pulses

that decay like this or like this.

In terms of frequency response what do we want? So, you can see also from basic course

sinc pulses systems, that if you have a frequency spectrum like if its a discontinuous

spectrum whenever you have these discontinuities, the pulse in time domain decays as 1

by t. If you have first derivative discontinuity, so, if you differentiate this signal you end

up with signal like this is not it? So, when you have a first derivative discontinuity or

slope discontinuity in the spectrum, this translates in the time domain to a pulse or to a

signal which decays as 1 by t square. If you have a frequency response which has second

derivative discontinuity. So, if you differentiate it twice, then you get to a signal like this.

Then in time domain this will correspond to a pulse which decays by 1 by t cube. So, you

can understand the examples of good pulse from good time domain, where you just have

to see whether the decay is proportional to 1 by t square or 1 by t cube or higher. If you

want  to  understand  this  good  pulses  in  terms  of  frequency  response,  you  can  also

understand  this  by  ensuring  that  the  frequency  response  should  have  either  first



derivative discontinuity or should have second derivative discontinuity, it should not be

discontinuous function discontinuous function is bad ok.

So, we want the pulses which satisfies either this condition or this condition or even

better conditions in terms of inter symbol interference and reducing sampling errors and

that is it should have second derivative discontinuity ok.

(Refer Slide Time: 31:11)

So,  now  we  have  to  determine  the  frequency  response  of  the  good  pulse.  So,  to

determine G f corresponding to good Nyquist pulses, we again make use of this impulse

train  we  taken  this  impulse  train.  This  impulse  train  has  the  impulses  which  have

separated by duration of T seconds, where T corresponds to the rate at which you are

producing those aks.
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So, if you see we have this a t which is a k p t minus oh sorry delta t minus k T. So, what

is this? So, you have impulses which were separated by a duration of T seconds and they

carry the weights a 0 a 1 a 2 and so on so forth and what this a 0s a 1 and a 2? If we are

in the regime of digital communication these are quantized real numbers and actually

these are symbols. So, we had a symbol rate R s which is 1 by T. So, at every T seconds

your modulate is spits out a symbol. So, symbol rate is 1 by T and this a naught a 1 and a

twos are symbols quantized real numbers. 

(Refer Slide Time: 32:49)



So, this T is the same T at which we were producing symbols and we know that what is g

t? The two conditions for g t that must be satisfied as it should be 1 and 0 and for all this

timing instances which corresponds to integer multiples of t, g t should be 0.

So, if I multiply this impulse train with g t, what I end up with is an impulse. So, this is

what I am saying g t multiplied with an impulse train is nothing, but an impulse. Now we

know that multiplication in time domain is convolution in frequency domain. So, if g t

has a frequency response G f what is the frequency response of this impulse train? Is an

impulse train given by this relationship. So, this you must know from before and this we

have  also  derived  in  one  of  the  lectures.  If  you  have  this  impulse  train  is  Fourier

transform is nothing, but delta f minus k 1 by T divided by T where k goes from minus

infinity to infinity. So, an impulse train has frequency response which is also an impulse

train.

Is impulse train is also known as picket fence right. So, because you have this pickets,

pickets  are  soldiers.  So,  these impulses  looks like  soldiers  pickets.  So,  we have this

impulse train which is also known as picket fence has a Fourier transform which is also a

picket fence. So, leisurely we say that picket fence is Fourier transform which is picket

fence anyways. So, we have an impulse train the Fourier transform of this impulse train

is also an impulse train. Of course, it has a frequency of 1 by T and then there is an extra

factor of T in here and what is the Fourier transform of delta t is 1? So, what we can say

is G f convolution this thing should be same as the Fourier transform of delta t which is

1.

And we know that G f convolution with impulse gives us this. So, I have taken T to this

side. So, we have seen this several times that if you take a signal convert this with an

impulse you just get the same signal, but it is shifted to the point where impulse has an

effect. So, delta is simply replaced by G that is it; that is the fact of convolution of a

signal with an impulse and then I write 1 by T as Rs; where R s is the symbol rate, so, we

get  this  condition.  So,  the  frequency  response  of  a  Nyquist  pulse  must  satisfy  this

condition.
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So, let us look at this what does this mean? This simply means that. 
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So, let me write this. So, if I have G f minus kR s is T; k going from minus infinity to

plus infinity it simply means that if I have a G f let us assume some G f. So, let us say G

f and then I have G f minus R s plus G f minus 2 R s and so on so forth all these terms.

So, if this is G f, G f minus R s would be let us say this G f minus 2 R s let us say would

be this. So, let us say this is G f minus R s this is G f minus 2 R s and so on so forth. So, I

have a spectrum and you have various shifted spectrums with the spectrums are shifted at



R s 2 R s 3 R s 4 R s and so on so forth and you add up all these spectrums then what you

should get is some constant.

So, that is the Nyquist criteria in frequency domain. So, if G f is the frequency response

of the Nyquist pulse, you take that spectrum you shift this spectrum at integer multiple of

sample rates then you sum of all these spectrums what you should get is a flat constant.

So, that is this picture is saying we have this G f. So, this is G f minus R s and so on so

forth G f minus 2 R s. 

So, we have this main spectrum we shift this by R s this by 2 R s and so on so forth then

I add all of them I should get a constant. So, T; in this case for this diagram what I have

assumed is R s as 1 and T is also 1 ok. So, that is the interpretation of this equation and

this should help me in identifying what are possible solutions for this G f. 

(Refer Slide Time: 38:44)

So, let us start by making some assumptions. The first assumption that we make is g t is

real  and symmetric  that  would imply  that  G f  is  also real  and symmetric.  If  a time

domain signal is real and symmetric is frequency spectrum is also real and symmetric

and  if  you want  to  look at  this  equation  for  frequency  is  between 0  and  R s  what

happens? So, let us make diagram for this. 
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So, if we have G f which let us assume is confined between minus R s and plus R s and

we take a shifted version of that like this, let us assume that this is G f minus 2 R s this is

2 R s, so, sorry G f minus R s. And let us then consider third spectrum which is G f

minus 2 R s, then what you can see is that G f minus 2 R s and spectrum which are

shifted  beyond  this  2  R  s,  would  have  no  impact  information  for  frequency  range

between 0 and R s. 

Because they are shifted at 2 R s and if G f is limited between minus R s and R s, G f

minus 2 R s and spectrum beyond that spectrum shifted beyond 2 R s would have no

impact in the summation. So, between this frequency range; that means, the frequency

between 0 and R s, I will have the impact of G f and G f minus R s. Let us now assume

that f is x plus R s by 2. So, there is a change of variable and assume that mod of x is less

than R s by 2 so, that this s satisfied. So, when I assume that f is x plus R s by 2, I simply

substitute that in here and I get this.
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And then what we can do is, we can just write this as G of minus R s by 2 minus x. So,

from this we have got this question and because G f is symmetric, G of minus f is same

as G of f. So, this is nothing, but this. So, from this we can get G of R s by 2 plus x is T

minus G of  R s by 2 minus x and this  condition  is  known as band edge symmetry

condition or vestigial symmetry condition.
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That means the spectrum of the Nyquist pulse must satisfy this band edge symmetry or

vestigial symmetry by which I mean that this should be satisfied. And the first thing that

you can understand is just let us assume x to be 0; if x is 0 then g of R s by 2 should be

same as T minus G of R s by 2. From this we get G of R s by 2 should be same as T by 2.

So, that is what we have got. 

So, let us assume that this is T this is what we have plotting is G f. So, let us assume that

is T. So, on this axis I have f. So, r frequency corresponding to R s by 2 I should have a

value of T by 2. So, this value is T by 2 and as I shift x from this point this distance is x.

So, let us assume that the value of G R s by 2 plus x is y, so, this is y. So, what should be

the value of G R s by 2 minus x let us work this out. 
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So, G R s by 2 minus x should be nothing, but T minus G R s by 2 plus x and this we

have said is y. So, G R s by 2 minus x should T minus y. So, this value should be T minus

y and this total duration is T right, so, this is T. So, what should be this? This should be y

and  this  is  the  idea  behind  vestigial  symmetry  if  you  move  x  from  the  centre  of

frequency. So, centre of frequency I mean R s by 2, where the value is exactly half of this

total value. So, if we move x to this side and x to this side if this value is y this value is

also y. So, G f should have a spectral which should have this band edge symmetry ok.

So, this is the solution following from very simple ideas right and what is the idea? Idea

is simply that g t should be a function which should be 1 at t equals to 0 and it should be

0 at the sampling instances, which are integer multiples of t ok. So, we now know what

or how should the spectrum of Nyquist pulse should look like. There are one to small

points that are remaining about this spectrum G f, let us look at this. 
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So, one thing is let us assume that G f is restricted to frequency is less than R s by 2 ok.

So, let me first try that equation G f plus G f minus R s should be constant. Again we are

looking only at the frequencies between 0 and R s. So, if let us assume that G f let me

make one scale. So, let us assume 0 here and R s is here, 2 R s is here minus R s and

minus 2 R s, so, this is R s by 2. So, let us assume that I have a G f which is like this and

now this is my G f and so, I also have to have G f minus R s which would be this. So,

this is G f minus R s. 

And if I add these 2 things up what would I get? They are not overlapping. So, what I

will get is exactly this and this is not a constant and so, what we learn from here is, if G f

is restricted to frequency is less than R s by 2 then this condition can never be satisfied.

So, this can only be satisfied if G f has the support at least greater than R s by 2 support I

mean one sided support. 

So, G f should have one sided support at least  greater than R s by 2, then only this

condition can be satisfied. So, this condition will not be satisfied if one sided support of

G f is less than R s by 2. So, this has to be kept in mind.



(Refer Slide Time: 48:16)

So, from this we have got very important idea that minimum bandwidth of G f is R s by 

2 this is absolute minimum bandwidth because if bandwidth is less than R s by 2 then 

you can never satisfy Nyquist criteria. And s o, we have looked into the sink pulse g t 

sink t by T what is the spectrum of this sink pulse? The spectrum of this sink pulse is 

erect and where does you have a null in here at 1 by 2 T. So, what is the one sided 

bandwidth of this signal? The one sided bandwidth of this signal is 1 by 2 T and what is 

1 by T it is R s. So, the bandwidth is R s by 2.

So, if  I  choose the sinc pulse as the Nyquist  pulse,  then the sinc pulse translates  to

rectangular spectrum and the one sided bandwidth of this function is R s by 2. Thus if I

choose the sinc pulses as the Nyquist pulse then what I am doing is, I am getting an

advantage that this pulse requires minimum bandwidth and it satisfies Nyquist criteria to

avoid inter symbol interference.

 But the problem would be that this is spectrum as we have seen is a discontinuous

spectrum and when you take into account the practical situations of Georgian sampling

clock and so and so forth, the sampling errors might become unbounded and that is the

reason why we want to avoid this  pulse. However, this  pulse is  best  in terms of the

bandwidth requirement  that it  offers. And so, the idea is I need to use the pulse this

which may be required little bit more band than R s by 2, but it offers me a smooth decay

from t to 0 ok.
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So, if I let us say I have a sinc pulse. So, this is sinc. If I have sinc pulse and if it has to

satisfy Nyquist put in T which is this, then you see that this would have a spectrum. So,

this will be G f 0 R s by 2 and you will have G f. So, G f minus R s and this should be T

and because these are  non overlapping.  So, this  amplitude should also be T. So, the

spectrum, so, G f should be spectrum like this which is T between 0 to R s by and then

this is 0 ok.

So, this satisfies band is symmetry this also satisfies this condition only problem it has is

the sharp discontinuity. So, to avoid sharp discontinuity what we want to do is, to have

little bit more bandwidth. So, we have seen that for R s by 2 my value should be T by 2

and then it should have some band edge symmetry. So, I can have a some pulse like this.

So, what is this pulse doing in? It is having little bit larger band width in R s by 2 and

assuming that it is satisfying band is symmetry, if it satisfies band edge symmetry then it

would satisfy this condition.

And if  this  decrease from T to 0 is  a smooth,  this  might  be a  good example of the

spectrum of  the  Nyquist  pulse.  So,  we will  see  what  are  the  good examples  of  the

spectrum  of  the  Nyquist  pulse?  By  that  this  moment  I  am  trying  to  highlight  two

important  ideas  one  important  idea  is  that  to  satisfy  Nyquist  criterion,  the  minimum

bandwidth that G f should have is R s by 2. Second thing that we have understood is if

you want to have minimum bandwidth of R s by 2, the solution is the same pulse that



same  pulse  has  a  discontinuous  spectrum  and  there  becomes  all  troubles  related  to

sampling errors and so on so forth.

So, what you would like to do is to span little bit more on bandwidth. So, you want to

have band with little bit more than R s by 2 and using this little more bandwidth what

you would like to do is, to allow your spectrum to make a smooth transition from t to 0.

Because a smooth transition would allow it to have sampling errors bounded and as long

as it  satisfies banded symmetry and as long as it  satisfies Nyquist criterion tan inter

symbol interference can be avoided ok.
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So, for all this discussion what we have assumed is that G f is real and symmetric; the

question that we ask is what if G f is complex. So, we get any more benefit. If G f is

complex then instead of this condition, it should satisfy this condition you can break this

G into 2 parts real parts and imaginary part and this should be T. So, from this we get

that this should be satisfied and this condition should be satisfied. 

Now by having the imaginary part,  you do not have any different condition than the

condition that we had before. So, the real part should satisfy the same Nyquist criterion

as it had to satisfy before and that is by having imaginary part, we do not improve in

facilitating a smoother transition from t to 0. So, this does not help us in any way in

making the spectrum to move smoothly from t to 0.



And thus this is redundant and we might face some more energy by having an imaginary

part.  So, what I am trying to point out is by having G f to be complex, we are just

wasting energy in having some imaginary part and having an imaginary part is helping us

no way in having a spectrum which goes more smoothly from t to 0. So, thus we restrict

G f to be real ok.
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 Then now next we want to develop is some examples of G f that I used in practice and

to understand them we have to understand this roll off factor. So, the roll off factor is

defined in terms of this ratio of excess bandwidth divided by R s by 2. Remember R s by

2 is the minimum required bandwidth. So, we have said that this is minimum what we

require. 

So, if I look at G f suppose G f is like this and we know that this must be R s by 2, at this

point this should be T by 2 this is T and so, this requires little bit more bandwidth. So,

this part this is referred to as excess bandwidth. So, roll off factor is nothing, but it is the

ratio of this excess bandwidth divided by theoretical minimum bandwidth and we can

find this roll off factor to be between 0 and 1. So, you do not want to have lot of excess

bandwidth because then it will lead to band wastage.

So, what we want to do is we try to keep excess bandwidth at most as R s by 2. So, the

theoretical bandwidth than would be required would be R s by 2 plus excess band width

which is R x and R x is nothing, but it is r times R s by 2. So, the bandwidth requirement



is R s by 2 times 1 plus r where r is the required roll off factor. So, let us look at the

examples of G f that I used in practice.
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So,  here  we  have  example  of  raised  cosine  pulse  raised  cosine  pulse  has  such  an

spectrum ok. So, what it simply says is that. So, what are the key points? So, we have 0

R s by 2 and we want to restrict ourselves to R s ok. Similarly you will have minus R s

by 2 and minus R s. Now what we see is that here we should have a value of T and at R s

by 2 I should have a value of T by 2 ok. 

This  is  to satisfy Nyquist  criterion  and this  we have already seen before.  Now what

should  happen is  you should  have  to  satisfy  banded symmetry  which  for  the  raised

cosine pulse we choose this function as a cos square function the exact expression is

given in here we are not worrying about that but in general this has to be some cos

square function. 

And this would take some excess bandwidth and this point is R s by 2 1 plus r. This point

similarly is R s by 2 1 minus r. So, this is how the spectrum of a raised cosine pulse we

will look like it should be constant for mod frequency is less than R s by 2 1 minus r for

frequencies between this and this it should be given by cos square function this is a cos

square function and for frequencies greater than this it should be 0 right and here I have

the exact spectrum drawn in for you for 2 roll off factors of course, r equals to 0 is the

frequency response of this impulse right.



And for r equals to 0.5 some excess bandwidth is incurred and the spectrum becomes

continuous right. If I take the inverse Fourier transform of this pulse, we get this pulse

and if you see carefully this decays by 1 by t.  So, I have cos pi r t by T. So, this is

basically an oscillatory term, it does not decay with t and this term for large values of t

decays as 1 by t square. So, g t decays approximately as 1 by t cube. And this also is

clear from the spectrum because the spectrum has second derivative discontinuity and

this is a very popular example of the pulse that is used it goes by the name of raised

cosine pulse. 
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I have the picture corresponding to the frequency response of various roll off factors. So,

this one is r equals to 0.4 and so on so forth the basic idea is simple as roll off factor

increases  excess  bandwidth  requirement  increases,  but  in  time  domain  time  domain

signal becomes more and more confined right. For example, at r equals to 1 I have a

signal like this it becomes more and more time limited as roll off factor increases. It

would be a good idea for you to plot these frequency response and impulse response

yourself by changing the value of R. 
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Finally, let us come to the last point here we have talked everything with respect to g t.

Where g t has an impulse response obtained when the convolution of impulse response

of this filter channel and this filter. Now what we have done is we have introduced one

more block which goes by the name of equalization filter and we are saying that this

equalization  filter  has an impulse response h dash t  and this  equalization  filter  is  to

inverse the effects caused by channel. 

So, if channel has an impulse response of h t if I use a filter with an impulse response of

h  dash  t  and if  I  choose  this  equalization  filter  say  impulse  response  such that  h  t

convolution h dash t is delta t, then you know that this channel impact would be negated

by this equalization filter.

Because now what would happen is, g t would be p t convolution h t convolution h dash t

convolution r t and this is delta t p t convolution delta t is nothing, but p t convolution of

r t convolution with r t. So, g t is nothing, but p t convolution with r t, so, channel effects

are negated.
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So, in the presence of equalization filter g t is given by p t convolution with r t and how

should we select this r t, remember that the r t is the impulse response of the matched

filter.
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So, let  us see what  we have seen about this  matched filter, we have seen about  this

matched filter in lecture number 4. So, we know that if we have to receive a signal s t,

which is expressed in terms of orthonormal functions phi 1 t phi 2 t and phi k t, then the



job  of  the  receiver  is  to  extract  the  coefficient  of  the  signal  along this  orthonormal

functions.

 And  the  way  we  can  extract  the  coefficients  of  the  signal  along  this  orthonormal

function is to use what is known as a matched filter ok. And matched filter simply has an

impulse response which is matched to one of this orthonormal function. So, namely if

this matched filter extracts the coefficient a 1 of the signal s t along phi 1 t, then the

impulse response of this matched filter is phi 1 T minus t and then there is a sampler

which samples the output at T ok. And similarly you can have other matched filters and

you can extract the coefficients a 1 a 2 and a k we have seen all of this in lecture number

4. 
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So, we have also seen that if these phi 1 t, phi 2 t and phi k t are complex functions then

the impulse response of the matched filter also need to have this conjugation because the

job  of  a  matched  filter  is  simply  to  calculate  the  inner  product.  So,  it  would  be

calculating the inner product of s t with this orthonormal function phi 1 t. And you can

prove it yourself that if this receiver has to carry out this inner product operation then the

impulse response of this filter should have a conjugation if these functions are complex

functions alright. 
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Now, let us see something else here we have assumed that d is some constant and the

sampler also needs to sample at this time T alright. We can assume the value of t also to

be 0. So, if we can have the impulse response which is phi 1 minus t conjugate and you

can sample at time instance 0. 

Of course, this will create causality and realizability issues which we have seen in lecture

number 4, but let us forget these causalities and realizability issues for simplification and

let us simply assume that the impulse response of the matched filter is simplify phi 1

minus t conjugate. And what we will get is the coefficient a 1 right, but the job of a

communication system is to continuously receive signals right it would not stop by just

getting the signal a 1.
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So, in general the signal does not just transmit one coefficient  it transmit a series of

coefficients.  So,  it  transmits  a  1  a  2  a  3  and  so  on  so  forth  and  it  transmit  these

coefficients or these symbols at integer multiples of T alright. So, let us see what would

be the design of a matched filter in that case when the matched filter should receive these

symbols a 1 a 2 and a 3. So, to understand that let us assume that I have a signal s t and

first I pass the signal s t through a filter phi 1 t and then let us assume that I have a

matched  filter  which  has  this  impulse  response  and  then  I  am  sampling  at  integer

multiples of T. 

And let us assume that I have got some output y i t. So, b t which is the output at this

filter is simply a k phi 1 t minus k t and why is this so? Because this b t is nothing, but s t

convolution with phi 1 t and we have seen this several time that in that case b t will be

simply this  function.  This output  at  this place would be b t  convolution width phi 1

minus t conjugate and let us solve this out.
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So, then we can say y t is this function. So, what we have just done is, we have carried

out the convolution operation. Now when I have to find the output at i T time instances I

just have to substitute t as iT. So, substituting t as iT we get this. If this phi 1 t minus k T

is an orthonormal set  for k belonging to  the certain  set  of integer, then I  can easily

appreciate that this would be 0 if k is not same as i because its an orthonormal set and if

k is same as I then this will be 1 ok. 

In that case if this phi 1 t minus kT are orthonormal set for k belonging to set of integer

then y i T is simply a i ok. So, this summation would have contribution only when this is

1 and this will be 1when k will be same as i. In that case a k will have contribution only

for a i and rest terms will go to 0 because of this function.

So, y i T will be a i. So, what we learn from this is, that if you want to make a receiver

which is receiving the sequences continuously, the sequence is a transmitted at integer

multiples of t then the matched filter should look like this and here we are ignoring any

causality and realizability issues ok. So, in short we can simply assume the matched filter

response as phi 1 minus t conjugate followed by sampler, which is sampling at i T time

instances and this matched filter will give us sequences which are transmitted at integer

multiples of t ok.
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So, in short I can say that the impulse response of a matched filter is phi conjugate of

minus t ok. So, this is what we are saying in here. So, I am having a matched filter,

matched filters impulse response is matched to the filters impulse response. If I take the

Fourier transform of this from this I get R f is p conjugate of f using the properties of

signals and transforms. 

Now what is G f? G f is nothing, but P f times R f and R f is P conjugate f. So, G f is P f

times P conjugate of f and this is mod of P f square. So, from this we get mod of P f

should be square root of G f and what is G f? Its a raised cosine filter that we have seen

and so, the mod of P f should be square root of raised cosine. So, the filter that you have

to use at the transmitters should have an impulse response, which is a square root raised

cosine that is important ok.

So, whatever we discussed before what is for g t and G f; G f has to be raised cosine, but

the P f  a mod P f  has to be a  square root of raised cosine.  So,  this  caused with an

abbreviation of SRRC. 
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So, what we know is mod of P f should be square root of G f and P f in general is square

root of G f into some angle.  So, we can choose this  theta f our self and there is no

restriction; there is only restriction on what should be the amplitude of this P f. So, if you

choose this  P f  with this  angle,  you have to choose R f.  So,  Rf  because R f  is  P f

conjugate, so, then this R f is this theta ok.
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And one last issue that we have to see is that this g t is nothing, but it is p t convolution

with r t and we are assuming that channel has been compensated and has been accounted



for by using this equalization filter. And we have seen that r t is p minus t conjugate in

that  case,  g  t  is  p  t  convolution  with  p  minus  t  conjugate  and just  writing  out  this

convolution operation we get g t is this function ok. So, simply replacing this t by t

minus tau. So, p of minus t conjugate will become p conjugate minus t plus tau alright.

Then putting this t as kT we get g of kT is so, we have to substitute t as kT we get this.
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Now, what should be this g of kT? We know that g of kT should be 1 if k is 0 and if k is

not  0  then this  should be 0 this  is  from the  Nyquist  criterion  to  avoid inter  symbol

interference and we have seen this before. So, from this we get this should be 1 for k

equals to 0 and it should be 0 for k not equals to 0 and thus we have saying that this p t

minus kT should be an orthonormal set for k belonging to a set of integer. So, what we

say is if we have p t which satisfies Nyquist criterion, then p t minus k t should be an

orthonormal set. You can also conversely prove that any orthonormal set will also satisfy

Nyquist criterion ok.

So, we know that we can easily generate several Nyquist pulses and this is an easy way

also to generate  several orthonormal sense alright.  So,  in this  lecture today we have

clearly understood how should we choose this p t and this r t as well this matched filter

response, to avoid inter symbol interference of course, we have not considered noise at

this moment. 



But later when we will see noise we will also see that this is an optimal thing to do even

in the presence of noise. And what we have identified it is that this filter response should

be  belonging to  raised  cosine  family  where  you end up with  different  functions  for

different values of roll off factor as you increase roll off factor you span little bit more

bandwidth than the minimum required bandwidth and the advantage of doing that is to

make the frequency spectrum having a smooth transition from t to 0. 

And we have  seen  that  we  can  have  the  spectrum which  has  the  second  derivative

discontinuity  and  because  of  the  second  derivative  discontinuity,  the  time  domain

equivalent  of  that  spectrum would  decay  with  1  by  t  cube  and  that  will  allow  the

sampling errors to remain bounded and this is important from practical point of view. So,

in  the  next  coming  lectures  what  we will  do is,  we will  look at  some examples  of

modulation schemes particularly we will start by looking at pulse amplitude modulation

and quadrature amplitude modulation and then we will define bandwidth efficiency and

other parameters for those modulation schemes.

Thank you.


