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Welcome to the new lecture of Modulation. So, in the last lecture we started with power

spectral density calculations and we calculated the power spectral density of the analog

basement waveform. And we said that the power spectral density is a function of the

square of the magnitude of these pattern of the modulating pulse, it is a function of the

power spectral density of the input sequence. And we also looked at the power spectral

density of the polar signaling mechanism and we got a power spectral density function

like this.
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The important points that we can look in this power spectral density is there the power

spectral  density has a bandwidth of 2 times R b where R b is the data rate.  It has a

nonzero DC power which transform it is not like AC coupling circuits does not like and

it would create lot of loss if this signaling mechanism is used. Then it cannot detect any

error, it is transparent to 1 and 0’s because it keeps on making transitions even if there is

a long trains of 1’s and 0’s, the number of transitions does not decrease with the long

trains of 1’s and 0’s.



So, it is good for synchronization that is typically required in a digital communication

system and we can easily recover the clock by just rectifying the pulse ok. And today we

will look at the other signaling mechanism particularly unipolar, bipolar and some other

interesting signaling mechanisms.

(Refer Slide Time: 01:55)

So, let us start with unipolar: so unipolar signaling mechanism is a waste, it does not

have  useful  properties  except  in  certain  communication  systems  like  optical

communication  systems,  because  in  optical  communication  systems  you  cannot  use

something like polar signaling mechanism. Because in polar signaling mechanism we are

transmitting the amplitude of A and of minus A right. In optical communication systems

basically the communication happens not always, but mostly by modulating the intensity

of the light and intensity of the light cannot be negative, it is always a positive quantity

so right. So, there you cannot have a positive and negative intensity.

So,  you cannot  use a  polar  signaling  mechanisms in optical  communication  systems

mostly, in optical communication systems also there are various techniques by which you

can even transmit or detect phases, but mostly optical communication system is built or

thrives on the transmission of intensity ok. So, say unipolar signaling mechanism is a

waste,  except  in  certain  communication  systems  where  polar  signaling  mechanism

cannot be used ok. So now, let us see R 0. So, to calculate the power spectral density we



need to calculate R 0 and R m in general; and how we did it in polar? So, we assume that

we have a 1 and the another sequence is also 1 because there is no delay in the sequence.

So, whatever you have here you should have it here or you can have 0 or 0, when you

have 1 you transmit an amplitude A, when you have 1 you transmit an amplitude A,

when you have  0 unlike  in  polar  signaling  mechanism where  you were  transmitting

minus A in unipolar u transmit 0 ok. So, this is the mapping that we use in unipolar. So,

for transmitting 0 we use 0, for transmitting 1 u transmit amplitude A. Again there is no

sacrosanct about this mapping, it could have been used in other way around as well for 0

we could have transmitted A and for 1 we could have transmitted 0 ok.

But this is more natural that you transmit 0 for 0. So, for 0 we are transmitting 0, for 0

we are transmitting 0. So, when you have this what we get is A square and when you

have 0 into 0 you get a 0. So, it is little bit easier in unipolar signaling scheme because

sometimes we get 0 and then you do not have to account for this ok. So, R 0 is 1 by N

summation n b n into b n conjugate minus k where k is 0 ok. 

Now this would happen, if I have a sequence for n where n goes from 0 to N minus 1;

that means, if you are considering N samples capital N samples and being pretty large

then this event would happen with N by 2 times and this event will also happen N by 2

times. Because we are assuming that occurrence of 1 is as likely as the occurrence of 0

ok. So, this event happens N by 2 times when it happens what we have is A square. So, R

0 is A square by 2 ok, this is easy.
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Now, let us see what is R of 1. R of 1 again we have to assume the four possibilities, we

have 1 the bit in the sequence delayed by 1 unit is also 1, we have 0 0, we have 1 0, we

have 0, we have 1. So, there can be four combinations possible. Again when it is 1 we

use A, 1 we use A and we multiply because here we have multiplication. So, we get A

square wherever we have 0 output would be 0 because 0 multiplied by anything would

be 0 ok.

So,  we  have  A square  and  this  would  happen  N  by  4  times  right  because  there  4

possibilities and these events are equiprobable.  So, each event would happen N by 4

times if n is pretty large. So, we have 1 by N only this event contributes and it happens N

by 4 times it contributes a value of A square to the summation in the end what we get is

A square by 4 ok. So, R of 1 we have derived is A square by 4, R of n similarly by using

the same logic you can prove that it is A square by 4, it would be same and R of 0 we

already derived, it is A square by 2.



(Refer Slide Time: 06:43)

So now, what  we do is  power spectral  density  is  mod of P f  square by T R 0 plus

summation R n into this quantity n not equals to 0 because n equals to 0 has already been

taken into account ok.

Now, R 0 we said it is A square by 2, R n is A square by 4, n is not 0 so, this point is not

included and the summation. Now we take A square by 2 out or we end up here is 1, here

you end up with half by taking A square by 2 out you get half and this summation. Now

we do something strange, but useful that this 1 I split it into half and half because I have

a half here, and what I want to do is I want to include this n equals to 0 point as well. So,

I want to include this half into this summation so, that my summation can run from

minus infinity to plus infinity ok. So, that is why I break it into 2 parts and I want to plug

in this half to this side of the summation ok. So, let us see if it gives something useful.
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What do we have is everything remains same, just half I have plugged to this. So now,

my n goes from minus infinity to plus infinity. And now, half I am taking outside so, this

becomes 4 1 plus summation this n goes from minus infinity to plus infinity ok. Now this

is something that you might have seen before what this summation is if we have not, it

belongs to a class of Poisson’s sum formula.

(Refer Slide Time: 08:37)

To find out that summation let us look into this Poisson’s sum formula and Poisson’s sum

formula can be easily understood if you remember a basic identity from the course in



signals and systems. So, in signals and systems you must have studied that if you have an

impulse train and the impulses are separated by time of T naught, then this impulse train

would have the Fourier series coefficients a k’s as 1 by T naught.

That means this impulse train can be written in terms of its Fourier series where a k’s are

nothing, but 1 by T naught and omega naught is nothing but it is 2 pi by T naught. So,

this you must have studied in signals and systems that an impulse train has the Fourier

series coefficients which are constant and the values of these constants is given by 1 by T

naught, where T naught is the time difference between the 2 impulses in the impulse

train. So, I can say that this is nothing but this and this is same thing as this ok.

(Refer Slide Time: 09:57)

So, this would be than this what I have done is I have just shifted this T naught to this

side. So, it follows from the previous equation and now what I do is I map 1 by T naught

to T and I map t to f ok. So, I know I have been playing this trick for a while.

So, you must now know that this is useful. So, I am mapping 1 by T naught to T and I am

mapping small t to f. So, here this T naught will be mapped to 1 by T. So, this T naught is

mapped to 1 by T and this t will be mapped to f. So, I can say that this would be same

thing as this. Now because k goes from minus infinity to plus infinity whether you have

positive here or you have negative here does not matter. So, these two things are same

because k takes in all values from minus infinity to plus infinity.



So, this summation is same as this. So, from here I can prove that this summation is

nothing but this and this identity goes by the name of Poisson’s sum formula and this is

what  we will  use  now. What  we do next  is  we want  to  put  in  this  result  into  that

expression that we had. So, we had this expression and we were trying to investigate this.

So, we have calculated it. So, let us put it here, we get A square by 4 1 plus this quantity

is 1 by T summation delta f minus k by t for all case and what this tells me is. Now in the

power spectral density function I would have impulses as well and these impulses would

be shifted by 1 by T ok. So, I am expecting in power spectral density some impulses.
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So, let us see. So, this is what I wrote in the last page, again assuming p t to be written to

0 pulse the same pulses we have used. So, there is no confusion rect 2 t by T. So, Fourier

transform of this pulse is this as before nothing changes and now I have to substitute this

in place of this I get this. This is mod P f s square 1 plus 1 by T the same thing as this.

Now you can cancel T by T and you can have 1 by 16 and so on so forth.

So, the resultant power spectral density looks like this. So, what you see now is where is

the first null? The first null would happen at the same position as before because we are

having the same expression in the case of the polar signaling mechanism. So, let me see

if I have that slide. So, look at the polar one where we were having sinc square f T by 2,

we are having this and the null happened at 2 by T.
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Similarly, the null here would happen at 2 by T, everything remains same just now the

peak value of power spectral density is A square T by 16 ok. Now what do you see more

is we are getting the train of impulses and these impulses are located at 1 by T. So, there

would be at 0 1 by T 2 by T, but because it is multiplied with this it would be 0 3 by T

and so on so forth.

So, this is the power spectral density of unipolar signaling scheme or you have a train of

impulses, what you see here the bandwidth requirement is 2 times R b same as before it

also has non-zero DC power again like polar signaling scheme it does not have any error

correction  or  detection  possibilities.  Is  also  not  transparent  to  0  so  that  is  also  a

disadvantage right compared to polar signaling scheme, because if you have long trains

of 0’s and for 0’s what we are having is nothing. So, there is no pulse used for 0’s. So, let

me try to draw that.
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So, if I have long trains of 0’s I get a signal like this, there are no transitions in this signal

and hence the synchronization where the transmitter would be difficult if you have long

trains of 0. So, it is not transparent to 0 so, it is transparent to 1. Easy clock recovery and

this we can see from this is spectrum only that you have a impulse at 1 by T, if you have

impulse at 1 by T this impulse corresponds to the clock. So, clock recovery should be

easy, we will also see this in a different way ok. So now, you might be wondering that

unipolar and polar signaling mechanisms they have such a different spectrum.
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In unipolar now, what we are seeing is we are having impulses present in polar signaling

a scheme there were no impulses; and why is this so? Intuitively is there a reason for

this? Yes, there is a reason if you see I have a unipolar signaling mechanism. So, one I

am using a R z pulse with amplitude A, 0 I am using nothing and for 1 I am using this

pulses. Now I can break down this waveform into a polar waveform and a clock ok, it is

easy. So, wherever there is 0, I can create this 0 by having minus A or minus A by 2 to be

precise. So, this would be minus A by 2 so, I can have a minus A by 2 and in the clock I

would have A by 2. So, these 2 things will cancel. So, I can recreate 0 by having this

pattern.

So, unipolar signaling scheme can be broken down into a polar signaling scheme plus a

clock and clock is a periodic signal and you must have studied in the course in signals

and system that any periodic signal has a discrete spectrum right. So, you have impulses

present in this spectrum of a periodic signal. So, that is why in the unipolar signaling

scheme in addition to a spectrum like that of a polar signaling scheme you have impulses

present because of the presence of a clock, and because there is inbuilt clock in this

unipolar signaling scheme what you can say is clock recovery is easy ok.

So, we have finished with unipolar signaling scheme again we see that there are some

disadvantages  to  this  unipolar  signaling  scheme,  it  has  all  disadvantages  of  polar

signaling scheme and it has one additional disadvantage that it is not transparent to 0.

And we will  see  also  that  there  are  some other  disadvantages  of  unipolar  signaling

scheme compared to polar signaling scheme and hence this is not very popular signaling

mechanism. 
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Next let us study the third one bipolar signaling scheme. And this has been used or a

version of this has been used in telephone systems, this is also known as alternate mark

inversion signaling scheme.

So, if we want to see this, what you see is for 1 I am using a pulse, for 0 I am using no

pulse. So, let us say this is 0, this is A and for next 1 I am using a pulse of opposite

polarity then of this pulse. So, I am using a pulse A or minus A for 1 and for 0 I am using

no pulse and I should choose a pulse of opposite polarity for the 1 that comes after a 1.

That means, if I have a 1 and I have chosen a pulse with amplitude A, for the next 1 I

should use the pulse with amplitude of minus A ok. For next 1 again I should flip the

amplitude and I should choose the pulse which is a flipped version of the amplitude of

the pulse which I have chosen for the last one ok. So, this is a bipolar signaling scheme. 

So, remember in a bipolar signaling scheme what we do? We choose a 0 for 0 and for 1

we choose either A or minus A and we choose a pulse amplitude for a 1 of the opposite

polarity of what we have chosen for the last one. So, this is the idea in a bipolar signaling

scheme. R 0: R 0 is easy you can have 1 1 or 0 or 0, 1 you can have either A or A, if you

have chosen A or you can have minus A into minus A. So, you get A square and for 0 you

get 0 right. So, R 0 is A square by 2, same as that of unipolar signaling scheme using the

same ideas. What about R 1? Let us see what happens in the case of R 1; R 1 again the 4

possibilities 1 0, 0 1, 0 0, 1 1 right.
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Now, if I have 1 I have chosen minus a let me assume, for 0 I would choose a 0 I could

have chosen A for 1, for 0 I am choosing 0, but this is less important because in the end I

am going to have 0. Similarly because there is a 0 I am going to have a 0, if there is a 0 I

am going to have a 0. So, these three are less important we do not have to worry about

because  we know the  final  answer would be  0.  This  is  interesting  1 1;  what  would

happen here? So, let us say if I have chosen A, now this 1 means that this should be the

amplitude of the sequence when it is delayed by 1 unit.  So, for example, if I have a

sequence 1 1 let us say 0 0. Now I may have chosen A for this; if I have chosen A for this

then I have to choose minus A for this and 0 and 0.

Now, if I delay it by 1 unit, I get this and I am choosing A for this minus A for this and 0

for this and 0 for this; that means, if I have 1 1, if I have chosen minus A then for this one

I should have chosen a right because for consecutive one I should choose the amplitude

of the opposite polarity. Thus if I have chosen A in the last bit I should have chosen

minus A, if I have chosen minus a in the last bit I should have chosen A right. So, in the

end I should get minus A square this will happen N by 4 times if I am considering a

sequence of length N 0 to n minus 1, then this event would happen N by 4 times right.

So, 1 by N this happens N by 4 times and when it happens it has a contribution of minus

A square.



So, in short I am going to have minus A square by 4 as my R 1, it was not too difficult,

but  it  was  relatively  difficult  to  calculate  then  polar  and unipolar  signaling  scheme.

Interesting thing R 2 is different in this case, because this scheme is having some kind of

memory right. In polar and unipolar signaling scheme there was no memory right, you

are choosing an amplitude level independent of what you chose in the past. Here you are

choosing an amplitude level depending on what you chose in the past right, if you have

chosen A for the next one that is following up you would choose minus A right.

So, here you have some kind of a memory and so in this case R 2 will not be same as R

1, where as in previous cases R 2 R 3 everything was same as R 1, because there was no

memory.
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Let  us  see  R  2  here;  again  for  these  three  sequences  because  they  involve  0  the

calculation is easy we get 0, for 1 1 now let us see. So, let us see an example. So, let us

say if you have 1 1 0 and I have 1, and let us say that we have chosen these amplitude

levels. If I delay the sequence with 2 units of time I can get A, minus A, 0 and A.

So, I am focusing; if I am focusing on this let us say as an example and let us say I have

fixed A then it can happen that I had get minus A, this can also happen that if I have

chosen A here I could have got A again here, if there was 1 in between. For example, if I

had a sequence like this then my mapping would become like this and let us see now if I

delay this by 2 units I get A minus A A minus A. And let us see now what happens is I am



getting A and I am getting A. So, if I am looking at this. So, this is let us say is b n and

this would be b n minus 2. So, both situation can happen, if you have A you can get

minus A as in this case, if you have A you can get A and these 2 events would happen

with equal probability.

Because this depends whether you have 0 in between or you have 1 in between, if you

have 0 in between you would have minus A if you have 1 in between you would have A

and the occurrence of 0 and 1 is same so, they happen with a equal probability. So, let us

say this would happen with the probability of half and when it happens it takes a value

minus A square, it has a probability of half when it happens it takes a value of A square

in short the resultant would be 0.

 So, here we have assumed that we are having A, you could also start with minus A and

the same logic flows and you get a 0; that means, R of n is 0 for n greater than 1, but R of

1 was not 0. So, I am just proving it for the case of n equals 2, you can prove it for other

ends do this exercise and I request you to come to the conclusion that R of n is 0 for n

greater than 1. 
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Let us see now the power spectral density.

Let us see now the power spectral density. And now I am using this expression for power

spectral density I said that all three expressions are useful. So, if I see this R of 0 we



calculate it to be A square by 2. So, there is only R of 1, rest are 0 and R 1 was minus s

square by 4. So, we have minus s square by 4, 2 times minus A square by 4 cos omega T

corresponding to n equals to 1. Then it becomes a trivial exercise, I pull this A square by

2 to this side, what I get is 1 minus cos omega T and 1 minus cos omega T I can write as

this 2 times sin square omega T by 2.
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Simplifying this further, we get this just cancelling 2 by 2. Now assuming that P f is T by

2 sinc f T by 2 as we have been doing for a while, we get power spectral density. So,

plugging this into this expression we get T by 4 A square sinc square f T by 2 sine square

omega  T  by  2  ok.  Interesting  things  to  note  when  omega  equals  to  0  something

wonderful happened that the power spectral density becomes 0 because sin 0 is 0. Now

this is great, this what; and this is what we have been looking for. We wanted to have a

power spectral density is 0 for omega equals to 0 and we have got this because of this

function here. 

Second thing let us see where we get the first null. So, I get a one null because of this at

2 by T, this is obvious this we have done. So, let us see whether this changes the location

of the null because of this function null will happen when omega t by 2 becomes pi here

investigating for the first null.
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And if we look at this omega T by 2 pi 2 pi f T by 2 equals 2 pi we get f equals to 1 by T.

So now, the first null happens at 1 by T and 1 by T corresponds to R b; that means, in this

case the bandwidth that is required is R b instead of 2 R b as it was required in polar and

unipolar signaling scheme, this is great. So, this has achieved 2 important advantages it

has got a bandwidth same as R b.

(Refer Slide Time: 29:01)

Even though not R b by 2 but it is better than unipolar and polar signaling mechanism, it

has got 0 power at DC right.
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So now, you transformer and AC couplers would like this, it has been error detection

possibility. So, it can detect one error. So, you are using bipolar and you have got this

waveform you know instantaneously that there is some error here, because what you are

expecting is if you have got an amplitude of A you know next time either you should get

0 or you should get minus A. Because if it is one we would have used minus A, if you are

getting this you know that an error has happened somewhere. So, at least you are able to

detect errors.

So, this is an advantage of bipolar signaling scheme disadvantage is its semitransparent

so, again if you have long trains of 0’s. So, if it is pretty long let us say this is not correct

so,  if  it  is  pretty  long, then you have no transitions,  if  you have no transitions  your

synchronization circuit will not like it and your receiver would get out of synchronization

with your transmitter so that is its disadvantage. Clock recovery is also difficult because

you have null at 1 by T, if no power at 1 by T where clock lies. So, intuitively clock

recovery is difficult in bipolar signaling scheme. 
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Next,  we  can  also  compare  which  with  the  signaling  schemes  based  on  their  error

performance. Everything about this slide will become clear when we study detection, but

intuitively it would be a good idea that I can introduce the error performance at a very

naive level ok.

So, error performance typically depends upon the distance between the amplitude levels

when you are transmitting 1 and 0. So, in this case this is the distance. So, for these

signaling schemes to have kind of the same error performance you want to preserve this

distance. So, you want to keep this distance same, I am talking about this distance. This

distance has to be same; this is the distance between the amplitude of 1 and 0. 

Now this distance in polar signaling scheme is 2 A the difference in the amplitudes if I

want my unipolar signaling a scheme to have the same distance and if this is 0 then this

amplitude should be 2 A. In the bipolar if I want to have the same distance then this

should be 2 A and this should be minus 2 A. So, in this way these signaling schemes

would have the same error performance, but let us see what is the power requirement in

the same case, power requirement per bit. So, when I am transmitting 1, I am using a

power of A square and I transmit 1 with the probability of half. When I transmit 0 the

power  is  A square  and  I  transmit  0  with  the  probability  of  half.  So,  power  per  bit

becomes A square for polar signaling mechanism. If I do the same exercise for unipolar



when I transmit 1 I am spending 2 A square and I use this much power half the time

when I transmit 0 I do not use any power.

So, power per bit in unipolar signaling scheme comes out as 2 A square in bipolar again

by doing the same exercise power per bit would turn out to be 2 A square. So now, you

see that if I compare polar, unipolar and bipolar signaling scheme in terms of the power

requirement per bit for the same error performance what I see is polar signaling scheme

requires minimum power both unipolar and bipolar signaling scheme require twice as

much  power  as  the  polar  signaling  scheme and  this  is  an  advantage  of  using  polar

signaling scheme. So, bipolar loses out on that, if your channel is not power constraint;

that means, if you can pump in more and more power in the channel then there is no way

you can use bipolar signaling scheme ok.

So, we have looked into three kinds of signaling mechanisms polar, unipolar, bipolar and

I hope you can now take up other kind of signaling mechanisms yourself.  So, some

important examples of signaling mechanism at least one that I like you to read yourself is

HDB 3.
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.

Because this has also been used in practical digital communication systems try to read

about HDB 3 by yourself, this is some kind of a variant of a bipolar signaling mechanism

making it  also transparent  to  long trains  of 0’s ok.  So,  so far  I  have been trying to



motivate you how does the choice of mapping of these 1’s and 0’s to ak’s influence my

power spectral density.

But I could also influence my power spectral density by choosing p t, choice of p t is also

important.

(Refer Slide Time: 34:45)

And one popular example of line coding scheme which takes the advantage of the pulse

shape is Manchester coding. So, Manchester coding has such a pulse for transmission of

0 and such a pulse for a transmission of 1. Now you know that an immediate advantage

of Manchester coding is that it has transitions even if you have long trains of 0’s or long

trains of 1’s right. So, it transparent scheme long trains of 0’s or long terms of 1’s are not

going to impact the synchronization performance. So, it is good in that sense. 

The second important advantage of this Manchester coding could be understood in terms

of the Fourier transform of the pulse. So, Fourier transform of the pulse can be obtained

by using this Fourier transform equation. And if I want to look at P of 0 this is a moments

theorem which we have used. So, in moments theorem you put f is 0 then if f is 0 this

becomes 1. So, P of 0 becomes the area of the pulse and the area of the pulse is 0,

because it takes in a negative value for half the time and it takes a positive value for half

the time. So, overall area is 0; that means, P of 0 is 0. If P of 0 is 0 without doing any

complications what I have done is I have made power spectral density 0 at omega equals

to 0.
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So, this is one way in which finite DC power problem is solved. So, Manchester coding

looks good in sense that it is transparent to a long sequence of 1’s and 0’s and it also has

0 DC power and thus there would be no problem when this signaling scheme is used

over digital communication systems which are using transformers and AC couples.

(Refer Slide Time: 36:55)

Next we are going to introduce a big idea in case of spectrum shaping and this idea is of

pre coding ok. So, pre coding uses the idea that if you have a sequence a b n I am

producing another sequence J n where this sequence J n is produced by adding a delayed



version  of  the sequence to  b n and I  am using some fraction  of  this  alpha  is  some

constant.

So, I am adding some fraction of b n minus 1 to b n and I am using a resultant sequence

which I call as J n. So, idea is simple. So, for example, if you have b n as some number

alpha 1 and b n minus 1 is some number alpha 2, you add some constant to this you get a

new number alpha 1 plus alpha alpha 2 which is store in J n. So, you have modified your

sequence and this idea is known as pre coding, you are doing some pre coding before

transmission. I could generalize this; I could say that I create this J n by adding alpha

naught times b n plus alpha 1 times b n minus 1 plus alpha 2 times b n minus 2 and so on

so forth ok.

So, I am generalizing how I am producing my J n. In short I can compactly write this by

this expression where L is the number of delayed sequences that I want to have in my

summation. So, L is also denotes the memory of your pre coder so; that means, it would

take L previous samples; that means, that denotes the memory of a pre code. So, now,

what I  am doing is  I am producing a new sequence J n from b n and their  delayed

version. Now if I want to find the Fourier transform of J n, the Fourier transform of J n is

simple, this is not a function of n. So, we use this notation to tell that this is a Fourier

transform of J n.

So, we use this is a Fourier transform of J n this is the summation times alpha k and the

Fourier transform of this sequence I am saying it is S b f times e to the power minus j k

omega T. Now what we are interested in, we are interested in the power spectral density

that we will  get after  pre coding. And to get power spectral  density first we have to

calculate the energy spectral density.
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So, energy spectral density is nothing but it is the magnitude of the Fourier transform

square. So, if we do this what we get is I have to take the Fourier transform which I have

calculated here and I have to multiply with the conjugate of this right. So, we have been

doing this for a while, take the Fourier transform multiply this with the conjugate of the

Fourier transform ok.

Now, I have pulled out this S b f because it is not a function of k pulling this out what

and what remains is this summation that alpha k into e to the power minus j k omega T.

what we have now is we have conjugation everywhere, but I am just interested in this S b

f conjugating this, again this S b f is not a function of k I have pulled out. Remaining

things I keep with a conjugation sign. Now I am pulling this S b f to this side which

gives  me mod S  b  f  square  and what  I  end up with  is  this  quantity. So,  this  times

conjugate of this which gives me mod square. So, this is the energy spectral density of J

n.
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Now, power spectral density of J n can be obtained by having the energy spectral density

which we calculated dividing by N. So, energy spectral density that we calculated is this,

we just calculated in the last page dividing this with N. Now dividing this with N; that

means, I am dividing this, this is the energy spectral density of the original sequence. So,

dividing this energy spectral  density by n gives me the power spectral  density of the

original sequence which we called as Z I of f ok, we call this quantity Z I of f previously

so, I am using the same notation. This gives me the power spectral density of b n and

here I am finding the power spectral density of J n ok. So, power spectral density of J n is

power spectral density corresponding to b n times this quantity.
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So, result in power spectral density now would have this extra term in there as well. So,

up to now the power spectral density was just this, but because of this pre coding I have

now this extra  term in the power spectral  density ok.  Let me explain the use of pre

coding by just taking a very simple example. So, I have J n b n plus b n minus 1. So, I

am using as simple pre coding as this. So, I said J n is alpha naught times b n plus alpha

1 times b n minus 1 alpha 2 times b n minus 2 and so on so forth. So, alpha naught is 1

alpha 1 is also 1, other alphas are 0. So, in that case if I look at this, what is this? This

will be simply so, expanding this I have alpha naught plus alpha 1 e to the power minus j

omega T other alphas is 0 so, we do not have to consider them 

And now, when alpha naught and alpha 1 is 1, what I have this 1 plus e to the power

minus j omega T mod square, I guess it is simple. Now let us see does all this math’s

give us something it should give us something otherwise as a waste.
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So, this square I can write as this times its conjugate. So, taking a conjugation of 1 gives

me 1 taking a conjugation of this changes the sign of this. So, I get e to the power j

omega T. Now I multiply term by term I get 1 plus e to the power j omega t plus e to the

power minus j omega T plus 1 and this is simply in the end 4 times cos square omega T

by 2 great.
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So, let us see the resultant power spectral density in this case becomes this. Let us look

where has my first null gone to; the first null will go where this omega T by 2 is pi by 2



the first null will go to 0 when omega T by 2 is pi by 2. So, this decides the location of

the first null. So, putting omega is 2 pi f 2 by T 2 cancels with 2 pi cancels with pi, what

I get is f is 1 by 2 T which is R b by 2 the minimum bandwidth required in a digital

communication system.

So, with using the simple pre coding mechanism it cannot be anything simpler than this

what we are doing is simple pre coding mechanism, what I am doing is I am reducing the

bandwidth requirement of my digital communication system it has dropped down to R b

by 2.

So, pre coding mechanisms in general gives us some interesting results and thus they are

used a lot in a spectrum shaping. So, today we have completed basically different kinds

of line coding mechanisms and we have also seen how we can use this pre coding. It

looks very powerful it is actually very powerful in shaping the spectrum of my signal. In

the next  lecture  we will  see some other  ways in  which we can calculate  this  power

spectral density. We will see how can you calculate the same power spectral density by

using what is known as Markov chains.

Thank you.


