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Welcome to new lecture on Modulation. We will start this lecture by revising some of the

concepts. So, what we said that modulation basically deals with conversion of a binary

sequence into waveforms ok. So, binary sequence means sequence of 1s and 0s. So, for

example, we have a binary sequence and then what the first step we do in modulation is,

we  convert  this  binary  sequence  into  complex  numbers  for  example,  here  we  have

complex numbers a 1 a 1 a 2 a 3 a 4 and a 5 we can also map it into real numbers.

But for general I am assuming it to be complex numbers. Intuitively you can understand

it as you are having train of impulses and the weights of these impulses is decided by

these  complex numbers.  So,  for  example,  this  impulse  has  a  weight  a  naught  and a

naught corresponds to this complex number. So, we have got the binary sequence and we

have converted this into impulse train and the weights of these impulses are the complex

numbers. Mathematically, we can understand it by this expression this just tells me that I

have impulses which are T spaced.



So, T is the spacing between these impulses and the weights of this impulse is a Ks. So, a

Ks means a 1 a 1 a 2 a 3 and so on so forth and I have this T shifted impulses K times

where K goes from minus infinity to plus infinity so; that means, I am going to have

unending impulse train ok. So, this is basic idea how you represent this weighted impulse

train by this expression mathematically.
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So, after we have got the impulse train, the next step that we do is we pass this through

filter ok. So, we have assumed that I have a filter, which has got the impulse response P t.

So,  on  passing  this  through  a  filter  mathematically  what  would  happen  is  that  this

impulse train would get convoluted with the impulse response of the filter which is P t.

And this impulse response of the filter I have assumed to have such a shape; that means,

this is a kind of a pulse which goes from minus T by 2 to plus T by 2 ok. So, this is the

impulse response of the filter and the effect of passing this impulse train to the filter is

that you need to convolve this with such a pulse, convolution of this pulse where this

impulse train can be simply achieved by just putting the caps of this pulses on these

impulses.  So,  you take  you pick  this  pulse,  you put  a  cap of  this  pulse around this

impulse, you get this waveform then you put this cap around this impulse you get this

waveform you put a cap around this impulse you get this and so on and so forth.

So, basically what you would end up with is an analog waveform where this waveform is

this cap and the height of this cap is decided by the weights of these impulses. So, after



you have passed the sequence through a filter you will get an analog waveform. And this

analog waveform will be a basement waveform meaning that most of its energy would be

centered at t c.

(Refer Slide Time: 03:47)

Then next after we have achieved analog waveform what we would do is, we would

multiply it with the cos omega naught t; cos omega naught t on multiplication would

induce  rapid phase fluctuation.  So,  you would have a  waveform like  this  where the

envelope of this waveform is decided by this analog waveform and then this oscillates

very fast at a frequency of omega naught.

So, what we are discussing is, the typical steps that happen in a modulator these are

typical step steps not all  modulators would do exactly like this, there might be some

variations, but it is a good idea to start by thinking about a modulator along these lines.

So, let us look at the block diagram of the modulator which we have seen couple of

times.
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So, we have a binary sequence, remember that a binary sequence is a sequence of 1s and

0s and this binary sequence is then converted into samples and samples we know its

nothing, but it is a weighted train of impulse. This weighted train of impulse then passes

through a filter with impulse response P t, P t and we get a weighted pulse train instead

of  an  impulse  train  and  then  this  is  a  baseband  signal  and  this  baseband  signal  is

converted to passband signal by using a multiplier.

So, what we are interested in this lecture is in understanding the impact of this mapping

of binary sequence to these a Ks and what is the impact of impulse response of the filter

on the spectral  occupancy of various modulation escapes ok.  So, remember what we

have also said in one of the previous lectures that, if we focus only till this part we can

also say modulator as line coder so in fact, in this lecture we will be dealing with these

spectral description of various line coding schemes. So, line coding means you convert a

binary sequence to samples and then you convert  these way to train of impulse into

weighted pulse train ok. So, this is line coder. So, line coder is same as modulator if we

are ignoring this block.
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Let  us  see  something  more.  So,  we  have  said  in  the  last  lecture  that  we  want  to

understand this waveform. So, S t is the waveform that is available here at this point and

we can think about this as this. So, here this b n is the same thing as a case sometimes I

am using a case and in this context I am using b n, so, b n a same things as a case ok. So,

in general I can allow them to be complex numbers all right. 

Now see this that this b n are multiplied by the common pulse shapes ok. So, each b n is

multiplied  by  the  same pulse shape  and this  kind of  modulation  is  known as  linear

modulation. So, linear modulation is the kind of modulation where you have the same

pulse shape ok. Now what is the impact of having this b n as complex numbers let us see

it I have a slide for this.
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So, if I assume b n as a complex number, it can be thought as a sum of real part and an

imaginary part. So, S t can be written down like this. So, I am just decomposing b n into

its real part and its imaginary part, then you can multiply this with P t P t minus n t and

we get 1 real waveform which I call S c t and you have another real waveform which I

call as S s t and S t can be thought as just the sum of S c t plus j times S s t. 

So, this is the impact of assuming b n to be complex, then S t is build up of 2 or real

waveforms S c t and S s t S t then will be complex. After having understood let us come

back to this, so, we want to take the Fourier transform of S t to calculate the bandwidth

because typically that is used, but one problem that you would run straight away when

you want to calculate the Fourier transform of this is, because we always assume this b n

to be stationary.

Why do we assume to be stationary? We have talked about this when we have discussed

random processes and we have said that the stationary wave forms by the practical model

that we want to use because we do not want to say when this waveform stops and for

what period it runs in ok. So, to avoid those kind of difficulties, we simply assume that

the waveform is stationary. Now if this b n sequence is a stationary and if this runs from

minus infinity to plus infinity, it needs to run from minus infinity to plus infinity if b n is

stationary, then we know that the energy of the sequence is infinite with probability 1.



And then you would have problems in finding the Fourier transform of this waveform,

because the Fourier transform of infinite energy waveforms do not exist normally right.

So, you are not sure whether the Fourier transform would exist or not sometimes it exist

if we allow impulses. But in general you cannot say whether the Fourier transform of this

waveform would exist because it has called infinite energy.
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To avoid those kind of mathematical problems what we do is we define another signal S

T naught t where S T naught t truncates S t. So, instead of S t going from minus infinity

to plus infinity what we say that S t goes only from minus T naught by 2 to T naught by 2

ok. So, we are kind of making it a effectively stationary process if t naught is pretty large

ok. The effect of truncation in this could be understood by limit N. So, instead of N

going from minus infinity to plus infinity what we can assume that, n goes from 1 to N

minus 1 where N is pretty large, but it is not infinity ok.

It  is  just  dealing  with  mathematicians  nothing  else,  we are  just  trying  to  make  this

waveform only exist for a finite duration. So, the total duration we said S T naught and if

I have n samples and the difference between the 2 samples is t. So, the total duration

would be N times T its a good idea to note this down that T naught N T. So, now, we can

take the Fourier  transform of this  that  happened for our good because now this  S T

naught t is having finite energy and if it has a finite energy then you can take the Fourier

transform of this, now the Fourier transform of this is defined. So, this is S T naught f ok.
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So, we did cover everything in the last lecture I am just revising giving it a better look

probably. So, what we said in the last lecture that energy spectral density is nothing but it

is the mod square of the spectrum of a signal that is the energy spectral  density and

power spectral density can be defined by taking the limit of this expression, for T naught

tends to infinity and divide it by T naught. So, energy spectral density divided by the

total duration of the signal and make the total duration of the signal tending to infinity,

but not infinity ok. So, this is how we would define the power spectral density. So, we

covered all of this in the last lecture and now the time to learn new stuff and the one

thing that we will do is to find out what is this value for different kind of waveforms.
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So, let us start with this is the same formula that S T naught t b n and this is P t minus n T

and one thing that we need to do now is to take the Fourier transform of this, we can take

the Fourier transform of this because N is finite, N is very large, but it still it is finite.

So, taking the Fourier transform of it b n we know its a constant with respect to time b n

is not a function of time P t P t minus n t is a function of time. So, its a constant with

respect to time. So, I have b n now I have to take the Fourier transform of this pulse;

Fourier transform of this pulse I have assumed is P f into e to the power minus j 2 pi f n

T. This  is  by the properties  of  Fourier  transform. So,  if  we assume that  the  Fourier

transform of P t is P f, then the Fourier transform of P t minus n T would be P f times e to

the power minus j omega n T, so, omega is 2 pi f. So, using these properties of Fourier

transform we can quickly calculate the Fourier transform of this expression its simple.
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Now so, we have calculated the Fourier transform, now the task is to calculate energy

spectral density which is mod of the spectrum of S T naught t square and we have seen it

several  times  that  the best  way to compute  this  quantity  is  to  multiply  this  quantity

whether its conjugate. So, here we have to multiply S T naught f whether its conjugate

ok.

So, that will give me mod square of S T naught f. So, its also easy and that is why we are

not writing everything today. So, we have S T naught f which is this we derived in the

last  slide  and  then  we  have  to  multiply  again  with  this,  but  we  have  to  take  the

conjugation.  So, if  we have to take a conjugate here.  So,  it  becomes b conjugate m

conjugation  here  we  got  a  conjugation  here,  when  I  am taking  a  conjugate  of  this

quantity this minus will become plus. And everything else remains same, I have also

introduced one more change that instead of n going from 1 to N minus 1 now we have m

going from 1 to N minus 1 and while we do this we do it often and this is because we

want to preserve the cross components. So, for example, in this multiplication you would

have b 2 multiplied by b 5 right.

So,  all  these  things  become easy  if  you assume a  different  running  variable  this  is

commonly the case ok. This we do every time we need to multiply 2 summations ok. So,

we have kind of trying to calculate the mod S T naught f square. Now one thing that you

can see here before we move to the next slide then this P f is not a function of n. So, this



is  a constant  with respect to summation.  So, we can pull  this  out.  Similarly this  P f

conjugate is not a function of m, so, this could also be pulled out. So, pulling this P f and

P f conjugate out of this two summations what you end up with is mod P f square ok.
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Mod P f square because this is nothing, but P f into P f conjugative ok; so, that is this part

is taken care of. Now again from Fermats theorem we do not worry about the order of

summation we simply club them together. So, now I have taken all  two summations

together what do you end up with is b n into b m conjugate into e to the power j omega

and here I was having omega m and here I was having omega n within minus. 

So, when I add these two things, I get omega m minus n. So, this is here j omega m

minus n T. Now what we do is we try to substitute n minus m s K. So, first thing that we

try to understand what is the limit of K from where to where K goes. And if you want to

see that what should be the maximum value of K? Maximum value of K would happen

when m is 0 because m is anyway positive right.

So, if I assume m is 0 I should get the maximum value of K which is the maximum value

of n which is n minus 1. So, this is the maximum value of K. Similarly to find the

minimum value of K, I need to assume n is 0 and then I find out the minimum value of K

K which is the maximum value of m minus. So, minus maximum value of m minus N

minus 1 because maximum value of m is N minus 1 right, we are running this summation

from 1 to N minus 1. So, in short K should go from N minus 1 to minus N minus 1. Now



one thing that we should do now is to replace this n minus m with K. So, this should

become e to the power j omega minus KT. 
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So, this is what I have here nothing difficult. So, mod P f square because it was already

here the summations are intact have not still changed the limit or anything, b n into b m

conjugate into e to the power minus j omega KT and we know that m is n minus K. Now

we want to now change the limit. So, what we do if we see this is not a function of n. So,

first what we want to do is to have 2 summations a summation with K and a summation

with n as a running variable. So, instead of m because m we have substituted as n minus

K. So, now, I have 2 variables n and K and we want to get rid of m we have got rid of m

by using this change of variables. So, now, we have 2 variables K and n as you can see m

is replaced by n minus K.

So, in this integration there was the m here we have replaced it with n minus K. And so, I

have 1 summation that respect to k, k goes from minus N minus 1 to plus N minus 1 and

have another summation with respect to n which as before goes from 1 to N minus 1.

Now if you see here this was only a function of k. So, I have pulled this here and this I

have  combined  all  terms  which  has  n  as  a  running  variable.  So,  I  can  reduce  this

summation in to this summation its trivial kind of its there is nothing difficult in here.

Now autocorrelation function we define using this. So, this quantity should tell you that

is in autocorrelation function we have divided by n and we are limit N tends to infinity.



Now, you should also see that when we are having these quantities like autocorrelation

function or other things let me write.
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So, if you are having Rk or autocorrelation function there are 2 ways in which you can

calculate this either by doing a time average operation or by calculating the ensemble

average. So, we have seen all this before and for an ergodic process, this time average is

same as  ensemble  average  and we have also  said all  practical  processes  are  ergodic

processes  and  so,  we  can  either  calculate  this  autocorrelation  function  using  a  time

average operation or we can find this using ensemble average ideas whichever idea is

good we can use that.

So, currently I am finding autocorrelation function using time average idea and after a

while  we will  do the same computations  using this  ensemble averaging or statistical

averaging idea. So, right now we are trying to use this time average idea, which is more

convenient at this point. So, autocorrelation function or time averaged autocorrelation

function if you like to call it in that way is given by this quantity where you have to take

the limit and tends to infinity. Now if you want to replace this thing you should realize

that this is nothing, but R k times N because this whole thing is R k N is anyway very

large, we are assuming N to be very large. So, this quantity is nothing, but R k times n.



So, substituting that in this  expression what do we get is mod P f square everything

remains same. So, let me put it here. So, this is same, this is same this quantity we have

replaced with R k times N ok.
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So, now you look at this what do you see? So, this i plug here. So, this is R K e to the

power minus j omega K T summation K going from minus of N minus 1 and N minus 1

where N tends to infinity this is nothing, but it is the Fourier transform of autocorrelation

function and Fourier transform of autocorrelation function is nothing, but it is the power

spectral density ok. So, what you have is a power spectral density of input sequence, so,

which we denote with Z I of f.

So, power spectral density I represents input sequence. So, finally, after all this maths

what we get is mod P f square, this quantity we said is Z I f and anyway we have N here.

So, we got this finally, coming back to what we were deriving and see what we have got

now.



(Refer Slide Time: 22:51)

So, by definition we said power spectral density is this quantity will limit T naught tends

to  infinity  and this  quantity  we have  already  evaluated  now, we have  evaluated  the

energy spectral density which we have derived it is nothing, but mod of P f square Z I f

times N using this value of energy spectral density here.

And T naught as we have said is nothing, but N times T number of samples into the time

difference between the samples and now instead of putting T naught as infinity we can

put N as infinity right is one in the same thing. So, now, canceling N by N, what we get

is a very neat formula it is power spectral density is mod P f square by T into Z I f where,

Z I f is the power spectral density of the input sequence. So, this is one thing that you

should know and remember its very useful formula. So, one big thing from here to see is

that  the  power  spectral  density  depends  upon the  a  square  of  the  magnitude  of  the

spectrum of the modulating pulse; that means, which pulse you choose decides in some

sense the power spectral density.

So, we have to be careful with the choice of our pulse. Secondly, it also depends upon

the power spectral density of the input sequence and we will see some examples of how

it influences the output power spectral density. So, just to avoid any confusion let me

also say that  this  is  a power spectral  density  corresponding to S t  and this  is  power

spectral density corresponding to b n ok. So, this we have to see carefully. So, this is b n

this is power spectral density corresponding to b n and this is the power spectral density



corresponding to S t and these are related by this. And this formula is also valid only for

linear modulation. So, we are using just linear modulation and this you have to be careful

with ok.
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So, finally, P S D of the analog waveform. So, when I am seeing analog waveform I

mean S t. Just keep this in mind otherwise it can be confusing sometimes because we

have several power spectral density is going in here. So, we are saying the power spectral

density of S t is this quantity mod square of P f where, P f is the Fourier transform of the

modulating pulse divided by T, T denotes the spaces at which bits arrive or you want to

create sequences and Z I f is the power spectral density of input sequence. 

Now there are various ways to write it more powerful than this all these equations are

derived simply from here.  We know that  anyways Z I  f  is  what  is  it  is  the  Fourier

transform of we have already seen this, Z I f is a Fourier transform of the autocorrelation

function of the binary sequence right nothing great in that.

So, instead of writing Z I f, I have written it in a somewhat a strange way in this because

this is quite useful. So, what I have done is I have pulled out R 0, so, I have R 1 here. So,

this you can interpret as R 0. So, I have pulled out R 1 then what I end up with is the

summation except R 1 point. So, this is the summation this here K goes from minus

infinity to plus infinity except K equals to 1 because that I have included here. For some

reasons which will become clear the reason is simple that this is probably more useful



than combining everything together ok. We will see some examples and then probably

you will appreciate the use of this expression anyway its one in the same thing just its

more convenient to use it sometimes.

So, K goes from minus infinity to plus infinity instead of that, I have assumed K going

from minus infinity to plus infinity except K equals to 1 and K equals to 1 point I have

pulled  out.  And  this  expression  can  also  be  converted  into  this  expression  again

sometimes you will use this sometimes you will use this both are pretty useful. So, it is a

good idea to see that there are various ways in which you can find the expression of the

power spectral density. How we get this from this let me explain that as well its tedious,

but its also trivial. So, let us just see we are trying to derive this expression from this

expression. 
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So, we have R 1 plus R K e to the power minus j K omega T. So, this is R 0 let me put it

ok. So, that there is no difference between the 2 notations and now you see that K goes

from minus infinity to plus infinity except K equals to 0. So, I can break this down into

two summations where K goes from 1 to infinity everything same and K goes from

minus infinity to minus 1 anyway K was not including 0. 

So, I have broken down this summation into two summations that is good then I do not

do anything, but here what I do is I introduce a change in variable. So, I have used m

instead of K I am using m and I am saying m let m be minus K ok. So; that means, K



should be replaced by minus m. So, I am replacing this K with minus m this K with

minus m. So, this becomes positive and the limits should change instead of K going from

minus infinity to minus 1 m should go now from 1 to infinity just normal exercise.

So, now I have this and now realizing that R of minus m is same as R of m because

autocorrelation is an event function, I can rewrite this expression just by replacing R of

minus m with R of m. So, everything remains same just I have replaced R of minus m by

R of m, because they are same its an even function autocorrelation is even function. So,

R of minus m is same as R of m ok, so, we have got this. 
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Now let us see what we do is now I do again something trivial because this is with m m

going from 1 to infinity m is just a running variable. So, I can very well replace it with K

nothing would happen. So, I am replacing now m with K and I am getting the same

expression, let me try to put everything together. So, I had this. So, this is same as this

just here I replaced m K nothing changes just instead of m I have got the K ok.

Now, you see everything has same almost other than these complex exponentials which

are rotating in different directions. So, I can pull this out, I can take this summation R K

common this I can multiply with e to the power minus j omega T from here and I have e

to the power j K omega T from there and this you know is cos K omega T times 2 and

this is what we have. So, it was a very simple proof nothing difficult, but it is a very

convenient thing to realize to remember because it would be useful right.
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So, let me remind the three expressions of power spectral density that we will use this as

simple to state and a convenient expression is this and a convenient expression is this ok.

So, there are 3 ways to state the power spectral density.
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Let us now see some examples and the example of line coding mechanisms that I am

starting with the first one is the polar signaling mechanism a polar line coding. So, in

polar mechanism what happens is you can map A to 1 and you can map minus A to 0. So,

we have a binary sequence 1 or 0 1 is mapped to A and 0 is mapped to minus A. There is



nothing sacrosanct in this mapping what you can also do is you can map 1 is mapped to

minus A and 0 is mapped to A and in fact, this mapping is usually preferred and what is

the reason for this? The reason is that if you use this mapping the XOR of these binary

sequence is same as multiplication of these numbers ok.
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So, if you do the XOR operation on the binary sequence for example, if I have these two

binary sequence and if I choose positive for representation of 0 and negative for the

representation of 1. And if I see the XOR operation of these two binary sequence I obtain

this sequence and in this case I am mapping positive voltage to 0, negative voltage to 1

positive to 0 negative to 1. 

Similarly, I can have the representation for this binary sequence like this and if I multiply

these numbers, I get some negative and positive numbers. If I assume negative numbers

to be 1 and positive numbers to be 0 I see that the multiplication of these numbers is

same as the XOR operation of the binary sequence and this equivalence is sometimes

convenient in certain applications and though for our case it would not make a difference

whether you use this mapping or this mapping.

But for practical systems this mapping is usually more preferred and the idea is that we

want  to  have  the  equivalence  between  XOR  operation  for  binary  sequence  and

multiplication operation for real numbers and that is why this is usually preferred. But

for this course we will continue using this mapping and this is because it would be more



consistent  when  we  steady  line  coding  schemes.  So,  even  though  this  is  usually

preferred, but for academic reasons I would continue using this mapping.
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Let us see how we can find the power spectral density for polar signaling scheme and as

I have said I will use this mapping where 1 is mapped to A and 0 is mapped to minus A

and first thing that I need to find is R of 0 what is R of 0? By definition you have to

compute this summation if you are interested in finding R of 0. 

So, here the sequence is the same as the sequence, but it comes with the conjugation, but

because I am assuming that these numbers A are real. So, if you take conjugation or if

you do not take conjugation it would not matter ok. So, let us assume that I have a binary

sequence some binary sequence does not matter and the next binary sequence that I have

to take should be the same binary sequence as I have assumed here because this is same

as this other than the conjugation, but conjugation really does not matter. 

So, I will have the same binary sequence and then I can map this binary sequence to

some voltages like this. So, here I am mapping these binary sequence to these voltages

and you can see what happens is that if you have 1 here also you will have 1 because the

sequence is same as this sequence.

So, if you have 1 in this sequence in this sequence also you will have 1. If you have 0 in

the sequence in this sequence also you have 0. So, because these sequences are 1 and the



same thing. So, I can have two situations either I will have 1 or I will have 1 if I have 1

in this sequence in the next sequence also I am going to have 1 ok. So, if I want to find

out what is the result of this multiplication, here I am multiplying the numbers associated

with these binary digits ok. So, if I am associating A to 1 this 1 will also be mapped to A.

So, I will have A square for these 0s I will have minus A multiplied with minus A which

again will be A square.

So, whether you have 1 or 1 every time we will be getting just A square ok. So, this

summation you can think yourself will be nothing, but it will turn out to be as A square

right. Because the product of this multiplication will always be a square whether you

have 1 or you have 0 ok. So, the average will also be always A square.
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Let us now see what happens if I have R of 1. If I have R of 1 then this sequence would

be delayed by 1 bit corresponding to this sequence. So, if I assume a binary sequence,

this b n minus 1 will be a delayed version of this. But this b n and b n minus 1 are not the

binary sequence they are the voltage corresponding to this binary sequence.

So, if I use the mapping which I have used before. So, 1 is mapped to A this one is

mapped to A, this is minus A minus A A, so, I will have and so on so forth. Now if you

have 1 here you can have either one. So, this situation or you can have 0 these bits are

statistically independent of each other. So, if you have 1 here you can have very well a 0



or a 1 it is delayed by 1 unit. So, you can assume that if you have 1 here, you can very

well could have had 1 or 1. 

So, if I have 1 in this sequence I can have 1 or 1 similarly, if I have 0, you can have 0 or

1 and all these events will be equi probable if you assume that the probability of 1 is

same as the probability of 0 ok. Corresponding to these binary digits the voltage mapping

would be A and A and we have we are interested in finding their product.

So, this will be A square this will be A times minus A, this will be minus A square this

will be minus A times minus A, this will be A square this will be minus A times A this

will be minus A square and each of these pattern would happen and by 4 times if I am

assuming N as the total length of the sequence if N is very large and all these 1s and 0s

are equi probable I can assume that each of this pattern would happen for N by 4 times. 

So, I have 1 by N each of this product would happen for N by 4 times and you have a

contribution of A square minus A square plus A square minus A square and you can

easily see that this will be 0 ok. So, R of 1 is nothing, but it is simply 0.
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Similarly, you can find it yourself that R of n will also be 1 for n greater than 1 ok. In

short I have already found that R of 1 is A square and R of n is 1 for n greater than or

equals to 1 this we have already proven, this I leave to you to prove and in short I can

arrive at these two conditions. 



Power spectral density as I have already said can be given by mod square of P f divided

by T R 0 and these terms and because all of them is 0 if K is not 0 then I simply end up

with the power spectral density which is mod square P f by T times R of 0 and R of 0 is

nothing, but it is the power of the data sequence binary sequence this we have already

seen in one of the previous lectures that R 0 corresponds to the power of the sequence. 
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P d you can see is nothing, but this quantity all right and this is R of 0 ok. So, we have

derived a very useful relationship of power spectral density for a polar signaling scheme.
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Now let me assume a pulse shape P t and the pulse shape that we are choosing is rect of

T divided by T by 2 ok. So, if you see this what we are doing is we are saying that if I

assume that  these bit  duration is  T my pulse duration is  only T by 2.  So,  the pulse

duration is T by 2; that means, this pulse would take a value 1 or A for a certain duration

and then it will drop down to 0 and such a pulse is known as written to 0 pulse; that

means, it returns to 0 within a bit duration. You can also have a non return to 0 pulse; that

means, if it is 1 it remains 1 for the entire bit duration it does not drop down to 0 within

the same bit duration ok.

So, this is how we can have different kinds of pulses. So, here we have assumed R return

to 0 pulse. The Fourier transform of this pulse P f you know from signals and system

course its very easy T by 2 comes here and then you have sinc f T by 2 this is a Fourier

transform of this pulse. 
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Now the power spectral density that we would have is mod P f square, P f was this. So,

mod P f square would be this into A square corresponds to P d and we have T. We can

simplify this to get say T cancels with T. So, we have T by 4 A square sinc square f T by

2; certain important  things that you need to see is where the first null  happens right

because that decides the bandwidth of my waveform ok.

So, if I am trying to get the position of the first null, the first null will happen when this

quantity or the argument of the sinc will  become 1 and this will be the case when f



becomes 2 by T. So, the bandwidth is 2 by T and 1 by T; 1 by T is bit rate which we say

R b. So, R b is the bit rate. So, bandwidth is 2 times R b 2 times the bit rate and we will

see short  while  from now or  maybe in  a  next  lecture,  that  the  minimum bandwidth

required is R b by 2. So, this is the minimum required bandwidth and this signaling

scheme its taking a bandwidth which is 4 times b minimum required bandwidth. So, its

wasting lot of bandwidth and this is the drawback of this signaling scheme.
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Let  me  plot  the  power  spectral  density  of  this  signaling  scheme the  power  spectral

density as we have already derived is given by this expression which is this and its a sinc

square. So, typically the shape is of that kind it decreases, with frequencies and so on so

forth and this amplitude the highest amplitude here it will be A square T by 4 the first

null happens at 2 by T; 2 by T corresponds to 2 times the bit rate ok. Let us see the

disadvantages of this signaling scheme the bandwidth is 2 times R b.

 So, that is wastage it has nonzero DC power. So, if we look at DC 0 frequency is having

substantially high power that is a disadvantage; that is a disadvantage because of several

reasons. One important reason is when we were using twisted pairs for echo cancellation

etcetera you were using a transformer I have a picture for that.
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So, this is typical example of a echo cancellation circuit. So, echo cancellation circuit

used to use a transformer. So, transformer does not pass DC right.  So, if a signaling

mechanism has lot of DC power this will go waste, otherwise you cannot use such a

signaling mechanism wherever the transformers are used right.

 And not just transformers we also use AC coupling circuits for impedance matching and

so on and so forth and you will also lose power if you use such a signaling scheme ok.

So, this is a disadvantage typically you do not want to have a large DC power ok. It does

not do any error detection; that means, for example, if I have a binary sequence like this

if I have a waveform like this and because of error if this part flips over then there is no

way to tell that an error has happened.
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They are signaling schemes where you will be able to detect some errors if not called ok.

We will see some examples of that, but polar signaling scheme as such does not do any

error detection. Good point of this is that it is transparent to 1s and 0s, transparent to 1s

and 0s means that suppose I come back to this diagram if you have a long trains of 0s. 

If you have 0s continuously right even then you would have transitions ok. So, if you

have a 0 then if you have a 0 there would be a transition. If you have transition then it is

easy  to  keep  your  receiver  synchronized  with  the  transmitters  ok.  So,  this  for

synchronization it is important that your signaling mechanism is transparent to 1s and 0s

transmission. So, this is this advantage. The another advantage is easy clock recovery

and this could also be seen very easily.
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If you have a polar signaling scheme if you rectify this will flip over changes to this side.

So, we have a clock and so, very easy clock recovery mechanism that you can use if we

use a polar signaling scheme. So, these are the advantages of polar signaling mechanism.

So, with this we end today’s lecture, today we have understood the important ways in

which  we  can  calculate  the  power  spectral  density.  Power  spectral  density  we  said

depends upon the two things; the one thing is that it depends upon the a square of the

magnitude of this spectrum of the modulating pulse; that means, it depends upon the mod

P f square and it also depends upon the input power spectral density ok.
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So, and then we have discussed an important example of a polar signaling scheme and

we said that a polar signaling scheme has certain advantages and disadvantages and at

this point it seems that it has some critical disadvantages particularly with respect to the

bandwidth it takes the bandwidth twice of the data rate. So, that is too much because the

minimum required bandwidth is R b by 2. 

Then also it has nonzero t c power right and which would not be a good thing if you

assume that you have a transmission over to strip a lines which uses transformer or we

are  using  it  over  a  digital  communication  system,  which  is  using  AC coupling  for

impedance  matching.  In  the  next  lecture  we  will  see  important  examples  of  other

signaling  mechanisms  like  uni  polar  signaling  mechanisms  or  a  bipolar  signaling

mechanism.

Thank you.


