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So, welcome to the first unit of this course. In this unit, we will be studying about 

waveforms and signal spaces and today is the first lecture of this unit. So, let us start this 

is the outline of the lecture. 
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First we will see why it is important to be able to treat waveforms as vectors. We will also 

answer the question what are waveforms, then we will study what are known 

as 𝐿1 and 𝐿2 spaces and indistinguishable functions. And finally, we will talk about basis 

and linearly independent vectors. 
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So, let us see the objective of this unit. In this unit, we would be developing framework 

which would allow us to treat signals as vectors and once you can convert signals into 

vectors, the signal becomes a point in a vector space. So, you will have a vector space and 

signal will be just a point in a vector space. Normally you would have seen in the courses 

like in signals and system that signal is either a function of time or signal is either a function 

of frequency. But here what we would be doing is we would be able to convert signal into 

a point in a vector space. 

And this will be very useful and helpful and with this, we would be able to define how 

close the two signals are, what the angles between the two signals are and so on. So, this 

is a really important unit for this course on “Principles of Digital Communications”. So, 

let us see it more clearly. 
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To understand this let us start with a simple receiver. We have already talked about the 

additive white Gaussian receiver. So, it is a receiver like this, here we have this input. So, 

this is the input and to this input we have some noise addition. So, noise is additive to the 

input and this is the output of the receiver X + Y. 

Now, let us assume for simplicity that X takes in a value from this set so, either it can 

transmit 0, 5 or 10. So, this is a finite set. So, we know that we are in the regime of digital 

communication and let us assume that Y takes in a value between - 1 and + 1. So, noise is 

limited or the noise amplitudes rather are limited between - 1 and + 1 and what arrives in 

the receiver is a combination of a transmitted signal and a noise. 
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Now, what receiver does is it first maps these possible transmitted values on a real line. 

So, it maps this transmitted values 0, 5 and 10 and let us assume that the received value 

pumps up this real line on a certain point let us say a point A. Now what does a receiver 

do is it calculates the distance of the received value from the possible transmitted signals. 

So, it calculates distances 𝑑1, 𝑑2, 𝑑3 from all possible transmitted values and then what it 

does is it finds out the transmitted symbol or signal with minimum distance. 

So, in this case for example, 𝑑2 is minimum out of this 𝑑1, 𝑑2, 𝑑3 and thus it selects 5 as 

the possible transmitted signal. So, receiver decides that 5 must have been transmitted and 

so things look very simple as now there are no real complications involved in this. Of 

course, we have simplified this problem a lot, we have converted a complicated problem 

into a toy problem, but if we can do or if we can convert the signals into numbers this 

problem of reception and deciding what has been transmitted looks rather a simple 

problem. 



(Refer Slide Time: 04:45) 

 

So, in reality a transmitter would transmit signals. So, it would 

transmit 𝑠1(𝑡), 𝑠2(𝑡)and 𝑠3(𝑡). Now if we are able to convert these signals into vectors for 

example, we have been able with some framework we have not talked how, but let us say 

there is some framework which allows us to convert the signal into a vector where this 

signal can be understood by some real numbers, then we can do what we did just 

previously. So, we can talk about the distance between the two signals, we can talk about 

the angle between the two signals and so on. 

So, whatever you have studied about vectors applies here now so with this framework. So, 

this framework allows us to talk about the distances between the two signals, angle 

between the two signals and we will be able to convert signals into numbers and things 

will become really simple. And so, this is what we are trying to learn in this unit how to 

do this. So, let us start and first thing that we have to learn is what waveforms are. 
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So, we have already seen a hint what are waveforms in the first lecture and we would be 

talking more about this today. 
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So, waveform as we have already stated is a function and it is function with independent 

variable as time. It is a continuous time function, it is something that can travel over 

channel it is something that could be produced by electrical circuits. So, it is a continuous 

time function with independent variable as time. What is a function? A function provides 

mapping between domain and range. So, if I take a function as t + 1, then this function 



provides a mapping between domain range and t is the independent variable. So, t is an 

independent variable and the functions of interest in this course the independent variable 

is always time and maybe sometimes frequency, but mostly it is time. 

And this is giving us the range of the function and it is providing a mapping between 

domain and range. So, for example, if domain takes these values then, the range can be 

simply obtained by just adding one to this. So, this is a very simple example of function; 

function provides a mapping between domain and range and waveform is a function with 

independent variable as time. It is a continuous time function. 
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Now, the functions can be of two kinds. It can be a real valued function or a complex 

valued function. Now because we have said that the functions in which we are interested 

in the independent variable is time. So, it is a function like 𝑓(𝑡) independent variable is 

time. Now time is always a real quantity, time is never a complex quantity it is always a 

real quantity.  

So, these functions would be providing mapping between real space (because time is 

always real) to a real space; (that means, the value of this function can be a real value) or 

it can provide mapping between real space to complex space; that means, 𝑓(𝑡) can take a 

complex value. So, we can have two kinds of functions: the functions which provide 

mapping between real space to real space, or the functions which provide mapping 

between real space to complex space. The functions which provide mapping between real 



space to real space are known as real valued functions while the functions which provide 

mapping between real space to complex space are known as complex valued functions. 
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There is abuse of notation that is normally being done in engineering textbooks and we 

will continue to do that. And this is that when you write 𝑓(𝑡), normally this will mean the 

value of function at time instants t. But when we are writing f of t, it simply means that 

this is a function where the independent variable as time and it means that time can take 

value in the real space. So, time can take any value between - ∞ to + ∞. Now to talk about 

the specific value of this function at let us say at a specific time instance let us say, we are 

interested in a specific time instants 𝑡0. So, this is how we would be differentiating between 

a specific instance of time and the time as an independent variable. So, when we are saying 

t it simply means that time is independent variable, when we are saying  𝑡0 it means that it 

is a specific value of time. 

So, when I am talking about 𝑓(𝑡0) it means that this is the value of a function at a particular 

time instants 𝑡0, when I am just writing 𝑓(𝑡) it simply means that this is a function with 

independent variable as time. So, this distinction has to be made. This is not precisely how 

things should have been done, but this is what has been done in most books and we will 

continue to use this notation. 
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Now, normally the functions can take more than one independent variable. So, we have 

been looking for functions with one independent variable, but the functions in general can 

have more than one independent variable. 

For example, let us look at this picture of dog. This image is also a function and this 

function could be constructed by knowing the intensity of this image along x and y 

coordinates. So, this is a two dimension function; it has two independent variables x and 

y, but lately in this course we will only be talking about one dimensional functions or one 

dimensional signals. So, things are pretty easy in this course. 
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So, this is the last point that we only deal with one dimensional signals of functions in this 

course. I am using this word function and signal interchangeably because they are so. So, 

what we have done? We have already understood the objective of this unit which is trying 

to treat signals as vectors and we have already defined what a waveforms; waveforms of 

functions with independent variable as time. We only talk about one dimensional signals 

or functions in this unit. Now, let us see what are 𝐿1 and 𝐿2 spaces and 𝐿1 and 𝐿2 functions 

or signals and what these indistinguishable functions are. 
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So, let us first define what an integral of a real valued signal is. So, real valued signal 

provides a mapping between real space into real space and this is how the integration of a 

function is defined. Everyone must have learned the integration in high school or 

secondary schools and so on so forth. So, how do we do integration of a function? 

Now, the one way to think about doing the integration of a function and the way we have 

been taught mostly is we take a function, like this is a function which spans from 0 to t 

seconds. And when you calculate the integration, basically you are interested in finding 

the area under the curve and the simple way to do this is to divide this function into chunks. 
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Let us say we have divided it into n chunks. So, the width of each chunk would be T/n. 

Now to calculate the area under this curve, what you can do is you can break this function 

into chunks with width of T/n and you find out the value of this function in each chunk. 



(Refer Slide Time: 13:11) 

 

For example, in this chunk I can approximate the value of the function as 𝑢1 of course, if 

this width to be pretty small. So, I can approximate the value of this function in this chunk 

as 𝑢1 and then the area in this chunk would be 𝑢1 × 𝑇/𝑛 because the width is T/n. And 

similarly, I can find the area under this function by summing up the areas corresponding 

to each chunk and this is what we are doing. So, we have to find the area of one chunk and 

then we have to sum up the areas of all chunks to evaluate the integration of this function. 

This approach of finding integration is known as Riemann integration. You can also 

interpret integration in other ways. 
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For example, you can think about integration using Lebesgue approach. And what is that 

approach? Instead of discretizing the time axis so, this here we discretized the function 

along time axis. What you can also do is you can discretize the function along y axis; 

instead of x axis you can discretize it along y axis. So, now, what you can do is let us just 

focus on one part, let us say this function takes in the value three delta. And let us now in 

order to find the area of this part how can you find the area of this part would be 3∆ times 

the time interval for which this function takes in this value of 3∆. For example, in this case 

these time instance is 𝑡4  −  𝑡3 and then there is a second part the width would correspond 

to 𝑡2  −  𝑡1. So, this is the total time for which this function takes in a value of 3∆. So, the 

area corresponding to this could be obtained by multiplying 3∆. So, this is also known as 

the measure of the function. So, the idea is similar instead of discretized it along time axis, 

you have discretized it along the amplitude axis and then you are finding the area for each 

chunk and then you summing this up. So, this is known as the Lebesgue approach. 
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Now, whether you take the Riemann approach or Lebesgue in approach for most functions 

you would have the same output, but for certain functions the Lebesgue integration would 

give a different result than Riemann integration. 

So, all integrals in this course are understood as Lebesgue integrals and this is because 

when we are stating theorems we want to state them precisely and some theorems are only 

applicable if you consider the integration as Lebesgue integration. So, we will like to think 



about the integrals as Lebesgue integrals; just for preciseness. Now we can also define 

whether a function as integrable function, if it follows the two condition. The first 

condition is function must be a Lebesgue measurable function and the second condition is 

that the integration of mod of that function should be finite. 

If these two conditions are satisfied, then we say that the function is integrable function. 

So, two conditions first Lebesgue measure, it should be a Lebesgue measurable function 

and integration of mod of that function should be a finite thing. If the function is integrable 

function, we say that the function belong to 𝐿1 space. So, the set of all integral functions 

is denoted by 𝐿1 space. 
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Now, if you want to define this thing for a complex valued signals; so far we have been 

just talking about real valued signals. So, what happens if we want to talk about these 

things for complex valued signals, the same thing happens just because its complex you 

can break this function into two parts; real part and imaginary part and now you apply the 

condition for integral ability for each part individually. So, you have to say that these things 

have to be Lebesgue measurable functions and the integration of |𝑅𝑒{𝑓(𝑡)}| should be 

finite and integration of |𝐼𝑚{𝑓(𝑡)}| should be finite or integration of |𝑓(𝑡)| should be 

finite. We have not yet talked about what are Lebesgue measurable function, we have just 

said that the function has to be a Lebesgue measurable function. 



Now, trying to understand what are Lebesgue measurable functions is really complicated 

and we have to restore to measure theory to understand what are Lebesgue measurable 

functions. But luckily most of the signals and function that we will be dealing in this course 

will be Lebesgue measurable functions. In fact, it is very difficult to find an example of a 

function which is not Lebesgue measurable function; all functions are virtually Lebesgue 

measurable function.  

So, we will take it for granted that the functions that we will be dealing with will be 

Lebesgue measurable function; so that is not so strict condition. More important condition 

would be trying to find out whether the integration of mod of a function is finite or is not 

finite. 

(Refer Slide Time: 18:47) 

 

So, now let us study about 𝐿2 waveforms. So, we have already talked about 𝐿1 waveforms 

and there was that function has to be Lebesgue measurable function and integration of mod 

of that function should be finite. So, what is that thing in 𝐿2 waveforms? So, 

for 𝐿2 waveforms the function has to be Lebesgue measurable function and integration of 

mod square of that function should be finite. 

So, when talking about 𝐿1, we were interested that this quantity should be finite integration 

of mod of function should be finite; here we have a square. So, integration of mod square 

of function should be finite. So, if you have done a course in signals and system, you know 

that this quantity is telling me the energy of the function. So, this quantity corresponds to 



the energy of the function. So, one way in which we can define 𝐿2 waveforms is that class 

of all finite energy signals because, if this quantity is finite; that means, we are saying that 

energy of the signal should be finite. 

So, the class of all finite energy signals belong to 𝐿2 space. Now can we have signals which 

have infinite energy? Answer is no; if you could have signals with infinite energy then the 

energy crisis of the word could have been solved. So, we do not have any signal with 

infinite energy. So, practically all signals that we deal with have finite energy only, but 

mathematically we would be interested in certain functions which have infinite energy and 

does we have to be really careful when we are dealing with those signals. 

Now, one important advantage of these 𝐿2 waveforms is that 𝐿2 waveforms are vectors. 

You can treat these 𝐿2 waveforms as vectors, you can use the ideas of signal spaces you 

can do simple things. Secondly, 𝐿2 waveforms always have Fourier transform and Fourier 

series. So, you must have studied these tools in signals and system codes that you can go 

from time domain to frequency domain. You can go back and forth using these tools and 

all this theory is applicable if the underlying signal is an 𝐿2 signal or is an 𝐿2 waveform. 

So, 𝐿2 waveforms comes with lot of advantages, means you can use Fourier series over a 

transform you, can use the ideas of signal spaces and all practical signals anyway 

are 𝐿2 waveforms. So, most of this makes sense. 
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Let me test you with one question we have four signals here. So, we have cos 𝜔𝑡, we have 

𝑢(𝑡) which means unit step, we have 𝛿(𝑡) which means unit impulse, I have sinc(𝑡) which 

means 
sin 𝑡

𝑡
 and you have to find out whether these signals are 𝐿1 signals or 𝐿2 signals. Now 

let us look them one by one. 
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So, let us start with cos 𝜔𝑡. So, cos 𝜔𝑡 you can see is neither 𝐿1 nor 𝐿2; unit step is 

neither 𝐿1 nor 𝐿2, unit impulse is 𝐿1, but it is not 𝐿2, sinc(𝑡) is not 𝐿1, but it is 𝐿2. So, the 

first thing that you should appreciate is the function can be an 𝐿1 function, but it need not 

be 𝐿2. 

For example, 𝛿(𝑡) is an 𝐿1 function, but it is not an 𝐿2 function the function can 

be 𝐿2 function, but it need not be 𝐿1. For example, sinc(𝑡) is 𝐿2, but is not 𝐿1. So, there 

are functions which are 𝐿1, but not 𝐿2 there are functions which are 𝐿2, but not on 𝐿1. 

There are functions which are both 𝐿1 and 𝐿2; there are functions which are 

neither 𝐿1 nor 𝐿2. So, from one you cannot make easy conclusions about the other. So, let 

us see how can we think about whether the functions are 𝐿1 or 𝐿2. To think about this let 

us start with cos 𝜔𝑡. 
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So, in this we would be making very intuitive proof, we would not be going through 

rigorous mathematical proof. So, how can we think about whether this cos 𝜔𝑡 is 𝐿1? Let 

us first start with 𝐿1. So, when we are talking about 𝐿1, we are interested in integration of 

mod of that function. So, for cos 𝜔𝑡 if I think about one period, this integration of mod of 

that function would be a finite quantity whatever is that it is not interesting and this cos 𝜔𝑡 

runs from - ∞ to + ∞. That means, you are multiplying a finite quantity with ∞ and so this 

would be giving us ∞.  

So, this is not an 𝐿1 function. Similarly for 𝐿2 you need to check whether this is finite or 

infinite and again the same logic holes when you do this in one period, you will end up 

with a finite quantity. Again because cos 𝜔𝑡 runs from - ∞ to + ∞ you have to multiply a 

finite quantity with ∞ and you will get ∞. 

So, cos 𝜔𝑡 is neither 𝐿1 nor 𝐿2, what about unit step? Unit step also you can think unit step 

goes from 0 to ∞ takes in a value 1 and because it exists for infinite duration and it exists 

for infinite duration with a value of 1, this is also not going to be 𝐿1 neither 𝐿2. What 

about 𝛿(𝑡)? 
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So, if we are talking about 𝛿(𝑡) this is interesting, let us check whether it is 𝐿1. Let us first 

define 𝛿(𝑡). Let me assume that 𝛿(𝑡) takes in a value 1/𝜖 between 𝜖/2 and - 𝜖/2 where 𝜖 

is very small number. So, if I am interested in integration of |𝛿(𝑡)𝑑𝑡|; it runs from – 𝜖/2 

to + 𝜖/2 and you get 1. If I do this for |𝛿(𝑡)|2𝑑𝑡, I get 1/𝜖2 × 𝜖 and this turns out to be 1/𝜖 

because 𝜖 is very small quantity, this will approach ∞. So, clearly this is 𝐿1, but this is 

not 𝐿2. Let us now check for sinc(𝑡). 
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Now, proof for sinc(𝑡) would be most complicated out of three of them, but we can use 

one idea that sinc(𝑡) because it is represented as 
sin 𝑡

𝑡
  and sin (𝑡) is an oscillatory function 

it goes from - 1 to + 1. So, this sinc(𝑡) for large t’s can be approximated as 1/𝑡. 

So, sinc(𝑡) decays as 1/𝑡 whereas, sinc 2(𝑡) would decay as 1/ 𝑡2. Now because this 

sinc 2(𝑡) decays faster, you can prove that this is an 𝐿2 function and because sinc(𝑡) 

decays slower with 1/𝑡; this is not going to be finite. So, this would be infinite and this is 

this will not be an 𝐿1 function. This will be an 𝐿2 function because this quantity is going 

to be finite. So, you can simply check whether (1/𝑡)𝑑𝑡, you can check this will be close 

to infinite if it runs from - ∞ to + ∞ whereas, (1/ 𝑡2)𝑑𝑡 is going to be finite. So, this is not 

a rigorous proof for this gives you some idea to interpret about this sinc(𝑡)s and this is an 

important idea which we will use later on as well. 

So, remember the sinc(𝑡) decays with 1/𝑡 it is not a fast enough decay. So, if you integrate 

that function from - ∞ to + ∞, you would have infinite values whereas, when you are 

considering 1/𝑡2 this decays faster. So, even if it spills from - ∞ to + ∞ because it decays 

faster, the area of 1/𝑡2 would be a finite quantity and this is intuitive way to understand 

why sinc(𝑡) is not 𝐿1, but it is 𝐿2. Rigorous proof of this could be obtained from Fourier 

series and transforms and I leave this to you to think about how you can prove the same 

things rigorously mathematically using the ideals of Fourier series in transforms. 
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So, let us move on and let us try to find out another important idea and that is thinking 

about sets of functions with Lebesgue measure of zero. Now let us start this by asking a 

question. So, if you are given that integration of mod of a function is zero, what are the 

possible values of this 𝑓(𝑡)? So, what can be that function? Now a simple function that 

would satisfy this equation would be an all zero function. So, a function which is all zero 

would definitely satisfy this. If you take the function, if you take that mod of a function 

this mod of this function will also be an all zero function and if you pass this through an 

integrator you are going to get a flat zero. 

But are there other functions which satisfy this equation still them being not all zero 

functions? Yes, there are functions for example, functions like this. So, what is this 

function? This is a nasty function which complicates things in digital communication and 

this function takes in some values only at discrete instants of time. So, let us say that it 

takes in some values for time instances 𝑡1, 𝑡2, 𝑡3 and 𝑡4. Now what happens if you take the 

mod of a function? The mod of a function would give you the same thing, if I assume this 

𝑓(𝑡) is all positive and real so taking mod does not make any changes. 

And now if I pass this function through an integrator, what happens? Now if you lo, let us 

just focus on one point. So, if I pass this through an integrator because there is no width 

integrator calculus the area. So, because there is no width the function exists only at a 

single point there is no width. So, once you pass this thing through an integrator you get 

zero. Similarly the contribution to the output of these points will also be zero. So, passing 

this function through an integrator would give you an all zero signal. So, this is also a valid 

solution to this equation. So, there are two valid solutions. 

So, one is an all zero signal that is good and the second are the set of functions which takes 

values only at discrete instances of time. So, because at the points there is no width when 

they are passed through the integrator, you are going to get a zero. 
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Now, with this idea we can define what is known as what are known as indistinguishable 

functions. So, the functions two functions are referred to as indistinguishable functions. If 

you subtract the two functions and you get a function which is like a non-zero function. It 

need not be an all zero function, it may be like a non-zero function for this. For example, 

this function is also like an all zero function because once it passes through an integrator, 

you get an all zero thing. 

So, when you are having the systems, the systems are normally built using integrators, 

multipliers and adders. So, once you pass this function through an integrator anyway are 

going to get zero. So, whether you feed this to a system or to this to a system, you get the 

same answer zero. So, this is also like and all zero function. So, indistinguishable for 

indistinguishable functions, we have to take two functions we have to subtract them and 

we have to see whether we are getting a function which is like an all zero function because 

if this is the case, then you can say that two functions are indistinguishable functions. For 

example, I have taken these two functions. I have taken u and I have taken a function v 

and let us subtract it what you are going to get is a function like this on the sub subtraction 

of u with v. 

Now, this is like in all zero signal because passing this through an integrator is going to 

give you a zero. So, these two functions are indistinguishable functions you cannot 

distinguish between the two of them. 
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More precisely, we can define indistinguishable functions as the functions which are 

different only at countable number of points. We have already seen in the first lecture that 

the countable set is the set which has one to one correspondence with the set of integers. 

So, we will use this idea to further define what are known as, what is known as equivalence 

class and so on and so forth. So, we have covered the three parts of this lecture seen the 

objective waveforms, we have seen what are 𝐿1 and 𝐿2 spaces; we have seen what are these 

indistinguishable functions. 

And now it is our time to look at vectors because this is what we are aiming for. We are 

trying to establish an equivalence between 𝐿2 signals and vectors. So, let us start by 

looking into this basis and linearly independent vectors. So, the first thing that we have to 

see is what these vector spaces are. 
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So, vector space is a space which consists of some elements these elements are known as 

vectors it has some set of scalars and it has some set of rules. So, this is a very basic 

definition of a vector space something which consists of vectors, it has elements which are 

vectors it has a scalars and it has some set of rules. So, that is what a vector space is. Now 

these scalars can be a real numbers, these are scalars can be real and then we are talking 

about real vector space. These scalars can be complex and then we are talking about 

complex vector space. 

So, we can have vector spaces of the two kinds: real vector space which means that the 

scalars involved are real. We can have complex vector spaces; that means, the scalars that 

are involved are complex and of course, in either of these vector spaces ∞ is included. So, 

throughout this lecture, we will be taking examples of vector spaces which are real vector 

spaces, but you can easily extrapolate whatever we say for real vector spaces for two 

complex vector spaces,. So, let us get started let us get started with very simple thing. 
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When you are talking about the vectors for example, we have now 𝑎2D vector 2 

dimensional vector. This 2D vector can be understood as a vector which has 2 real 

numbers. So, when you are talking 2D vector, it is equivalent to having 2 real numbers. 

So, in this case you have 2 real numbers x and y. Remember we are just giving examples 

from real vector spaces. Now this x as you know would correspond to the value or the 

projection of this vector along let us say i coordinate and y corresponds to the value or the 

projection on this vector on this j coordinate. So, this is what you must have done. So, 2D 

vector remember as we have said is denoted by 2 real numbers. 

Now the set of all 2D vectors would consist of 2D vector space. So, if you take all such 

2D vectors, if you make a set of all 2D vectors then what you end up with is our 2D vector 

space. Example of 𝑎2D vector space is like the plane of paper or it is computer screen and 

so on and so forth. This is what you know from before. Now if you have 𝑎2D vector what 

you can do is you can have another 2D vector. 
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So, if we have 𝑎2D vector here. I can take another 2D vector and I can add these 2 vectors. 

So, vector addition is defined, it should be possible. Once you add the two 2D vectors what 

you end up with is another 2D vector. So, addition of 𝑎2D vector with the 2D vector should 

give you another 2D vector. So, vector addition is possible. What I can also do is I can 

take a vector and multiply this with a scalar to change the length of my vector. So, this is 

known as the scaling operation take a vector multiply this with or scalar. So, here I show 

for scaling operation. So, vector scaling is also allowed. 
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So, vector scaling is allowed and vector addition is also allowed. 
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I can talk about the 3D vectors as well the 3D vectors are represented using 3 real numbers. 

So, instead of 2, now we have 3 real numbers because the dimension is 3D. Similarly as 

in the case of 2D vectors, the vector addition is allowed; that means, you can take in 

another vector you can add up these 2 vectors to get 𝑎3D vector. So, I have taken a vector 

v, I have taken a vector u and I have added these 2 vectors to get another vector v + u 

which should also be 𝑎3D vector. I can take this vector and I can scale this up by 

multiplying this with a scalar. So, scaling operation is also defined. So, after scaling 

operation also the dimension of the vector remains same. 
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So, I can extend this concept to nD vectors; so, n dimensional vector spaces. So, in 2D, 

two real numbers, 3D three real numbers, nD it should be represented by n real numbers 

and we also call this as n tuples. So, you have an array of n real numbers that is what we 

simply also call as n tuples. 
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Now, mathematically if you have to prove that something is a vector space, you have to 

prove that certain axioms or properties are satisfied and now we have we will be going 



through those properties to see what they are. As we have said if you have two vectors, 

you can add the two vectors to get another vector. 

So, vector addition is defined. So, addition is defined, the order in which you add these 

two vectors does not matter. So, vector addition is commutative. There all always exist a 

zero vector which means that if you the vector with a zero vector you get the same vector. 

So, zero vector exist addition of a vector with a zero vector should give you the same 

vector. Then an inverse of a vector also exists; that means, you can have an inverse vector 

which when added to the original vectors this is an inverse of this vector what you get is a 

zero vector. 

So, inverse of a vector must also exist, then vector addition is also associative; you add v 

+ u + w with this bracket involved and this would be same as this thing. So, vector addition 

is associative. So, all this properties corresponding to vector addition must be satisfied. 

Now in the case of the vector space, we have already seen that a scalar multiplication must 

also be satisfied and it should be satisfied by following these properties. 
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So, distributive properties in the scalar multiplication must be satisfied and associative 

properties must also be satisfied. I will not be reading out these properties because I feel 

that these are very simple properties. Moreover we should also have a unit vector. What is 

the unit vector? Unit vector is a vector by which if you multiply any vector, you get the 

same vector. So, there must also exist a unit vector. So, in short we can say vector spaces 



space where vector addition is defined and scalar multiplication is also defined and these 

are defined in such a way that the properties that we have listed out are satisfied. 
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Let us take an example with this n tuples and let us say that I have a vector v which is set 

of n real numbers, I have a vector u which is set of n real numbers again and I can define 

the vector addition by taking an element from v and by taking a corresponding element 

from u and adding these 2 things together. 

So, we make an element wise addition as demonstrated here, you have added 𝑣1 + 𝑢1 that 

forms the first element of vector v + u. You can define the scalar multiplication as simply 

multiple line each element by this scalar. So, there is a scalar multiplication is also easy. 

Now I leave the proof to you. To prove that if I define the vector addition in this way and 

a scalar multiplication in this way, then this satisfies all the properties of a vector space. 

So, this you can prove yourself. Let us move on to an interesting question. Is 𝐿2 space a 

vector space? Yes. 

Now, we have something at our disposal which we can use to prove that 𝐿2 space is a 

vector space and what are those things? We know which property should be satisfied and 

let us define first the addition of to 𝐿2 signals and a scalar multiplication of to 𝐿2 signals 

and let us then check whether these satisfies all axioms corresponding to vector space. Let 

us get it started. 
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So, addition of two vectors addition of to 𝐿2 signals is easy, it is trivial; you must have 

done it several times before. You just take the 2 signals and add them. A scalar 

multiplication of a signal is also simple; you just multiply the signal with any scalar. 

Now, if you have these two definitions of how you would want to add to 𝐿2 signals and 

how you want the scalar multiplication to work on an 𝐿2 signal I leave it to you to prove 

that this indeed satisfies all properties of vector space and this will prove that 𝐿2 space is 

actually a vector space. One simple point that you might think about slightly difficult to 

think about is, if you have u and v if u and v are 𝐿2 signals is it guaranteed that u + v is 

also a 𝐿2 signal; that means, is u + v is also a finite energy signal, is it guaranteed? Let us 

check by simple properties from complex numbers that you must have studied which says 

that this quantity should be less than or equals to this quantity + this quantity this quantity 

is finite this quantity is also finite because these are 𝐿2 signals; then this quantity should 

also be finite. 

So, addition of 2 finite quantities should give me a finite quantity; this is intuitive. If you 

if you are adding up a bunch of finite energy signals, then the energy of the signal should 

remain finite otherwise we could have created energy easily. Similarly if we can prove for 

a scalar multiplication as well if you have a finite energy signal you multiply this with a 

scalar which is a finite, then the resultant signal should also be a finite energy. So, 𝐿2 space 

is a vector space; you add to 𝐿2 signals you get another 𝐿2 signal. 
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Now, let us talk about this vector spaces little more and let us again fall back to our 

example of this 2D vector. So, I have 𝑎2D vector again I have represented this like this 

𝑥𝑖 + 𝑦𝑗 and you must have seen this representation before what we are saying is i and j are 

perpendicular vectors and so on so forth as usual as beck convention. Now to generalize 

this I can write this is in this term where instead of x, I have 𝑎1 and instead of y, I have 𝑎2 

and by changing in these values of 𝑎1 and 𝑎2, I would be able to span the complete 2D 

space alright. So, complete space could be spanned if you change these values of 𝑎1 

and 𝑎2. I can also generalize this further I can write this vector as a linear combination of 

2 vectors rather than i and j, I can have a vector 𝑣1 and 𝑣2. I am doing the same thing, but 

I am just generalizing it making things more general. 

So, this vector 2D vector is now a linear combination of 2 vectors 𝑣1 and 𝑣2 of course, this 

𝑣1 and 𝑣2 has to be properly chosen and so on and so forth, but let us say we have made 

an intelligent choice and we have properly selected these two vectors. Now this 2D vector 

could be represented as a linear combination of these two properly chosen vectors. 

Similarly I can extend this concept to 3D case in 3D case; I can have 𝑎3D vector which I 

can obtain by having a linear combination of three other vectors. 
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So, for example, I can have a vector v, I can obtain this vector v by a linear combination 

of 𝑣1, 𝑣2 and 𝑣3. Again I want to generalize this idea, I am always interested in generalizing 

ideas to nD case. 
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So, an n dimensional vector could be obtained by making linear combination of n vectors. 

So, I can have an n dimensional vector, these vectors set of vectors 𝑣1, 𝑣2 … 𝑣𝑛 which 

allows us to span a space is known as a spanning set. Why are they allowing to span a 

space? Because I can change the values of these 𝑎𝑖’s and by changing the values of 𝑎𝑖, I 



can go to any point in that space. So, this is the meaning of spanning the space. So, these 

set of vectors which allow us to spend a vector space is known as a spanning set this is 

important. So, what we have learnt so far in vector spaces? I can have a vector, I can obtain 

a vector by a linear combination of some other vectors and normally if I want to span an n 

dimensional vector space, I would need n properly chosen vectors intuitively. 
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Let us now see the idea of linearly dependent vectors. So, if this linear combination that 

we have just talked about if this linear combination can be made 0 by choosing some 𝑎𝑖 is 

not all of them 0; if all 𝑎𝑖 are 0 then of course, this linear combination would be 0. But 

what we are saying is if we can have this linear combination turning out to be 0 without 

having all 𝑎𝑖 is to be 0, then we say that this set of vectors is linearly dependent set; the 

vectors are linearly dependent on each other. Let us see why is this and for simplicity let 

us just talk about the situation when we have 3 vectors; 𝑣1, 𝑣2 and 𝑣3 and I am interested 

in this linear combination. 

And let us assume that this becomes 0 when the value of 𝑎1 is a, 𝑎2 is b and 𝑎3 is c. So, if 

I choose the value of  𝑎1 as a, 𝑎2 as b and 𝑎3 as c. I can make the linear combination of 

𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 as 0 and we call this situation that these vectors 𝑣1, 𝑣2 and 𝑣3 would 

be linearly dependent and let us see why is this. So, if this is 0, we can write 𝑣3 in terms 

of 𝑣1 and 𝑣2 and hence this means that vector 𝑣3 is dependent on vector 𝑣1 and 𝑣2. So, 

that is the idea behind the linear dependence of vectors. 
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So, if the vectors are linearly dependent we can express one vector in terms of other 

vectors. Let us see what it does. So, we have already said if the vectors are linearly 

dependent, then 𝑣3 could be expressed in terms of 𝑣1 and 𝑣2. We already know that vector 

v can be obtained by a linear combination of 𝑣1, 𝑣2 and 𝑣3. Now plugging in this value 𝑣3 

into this expression what we get is v vector could be written simply like this just plugging 

in the value of 𝑣3 here. Now I can simplify this and get this. So, what does this tell me? 

So, if factors are linearly dependent, I can express a vector in terms of a reduced set of 

vectors. 

So, I started by expressing a vector in terms of three vectors 𝑣1, 𝑣2 and 𝑣3. So, I was 

expressing vector v in terms of three vectors. Now because these vectors are linearly 

dependent, I can substitute one vector in terms of other vectors and I can express this vector 

in terms of reduced number of vectors. So, I am killing in some I am killing some linear 

dependence. So, this is the idea of what we call as a basis set. 
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So, you have a spanning set. So, using spanning set, you can you were spanning the given 

vector space. Now because some vectors were linearly dependent, you can start killing 

those linearly dependent vectors and once you kill those linearly dependent vectors what 

you end up with is a reduced set and this reduced set is known as a basis set if there is no 

linear dependence between the vectors and if this set is still able to span the complete 

vector space. So, we get a basis set. So, what is the idea? 

So, you have a vector space v, you find out the vectors 𝑣1, 𝑣2, 𝑣3 and so on and so forth. 

Let us say 𝑣𝑛 which allows you to spend this vector space, you find that some of the vectors 

are linearly dependent, you kill those vectors, you get a reduced set, but this reduced set is 

still able to span the complete space and this reduced set where there is no linear 

dependence and which is still able to span the complete vector space is known as a basis 

set. So, let me define because I have not defined what a linearly independent vectors, I 

have already defined what a linearly dependent vectors and the definition follows straight 

away there is nothing different. 

So, we can define linearly independent vectors as the set of vectors for which the linear 

combination can only be made zero if you have all scalars being zero. So, you made a 

linear combination the linear combination only becomes zero if you have all the scalars 

being zero then those set of vectors are known as linearly independent vectors. 
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So, I can define the basis vectors again. The basis vectors is a set of a vectors if the set is 

linearly independent, it spans a vector space v. So, let us now see the dimension of the 

vector space. So, what is the dimension of the vector space? 
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If the number of vectors in a basis that is finite, we call this as a finite dimensional space; 

otherwise it is known as infinite dimensional space. In fact, the number of vectors in the 

basis tells me the dimension of this space. 



So, if the number of vectors in a basis set is 10, then we say that the vector space of use of 

dimension 10; if the number of vectors in the basis set is finite of course, is a finite 

dimensional vector space and the number of vectors in the pacesetters infinite, we call this 

as infinite dimensional vector space. 
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So, we have come to the conclusions of today’s lecture. We have seen what a wave forms, 

wave forms are just continuous function of time. We have seen this, these waveforms are 

useful in digital communication course because they are used in the transmission of 

signals. We have seen what are 𝐿1 and 𝐿2 signals and these are defined based on the 

integration of mod of the function being finite or integration of mod square of the function 

being finite. We have seen that 𝐿2 space is a vector space. So, whatever we can do in a 

vector space can be done for the 𝐿2 space as well. We have defined what is a basis and 

linearly independent vectors. 

And in tomorrow’s lecture we will be introducing a very useful concept and that is the 

concept of inner product space by which you would be able to find out that the angle 

between the 2 signals and so on so forth. 

 


