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Waveform Coding

Good morning, welcome to the new lecture and in this lecture we will be talking about

Waveform Coding. So, what is waveform coding? 

(Refer Slide Time: 00:30)

Waveform coding deals with the subject of converting an input waveform; so, we have

this input waveform into a binary strip ok. So, this is the objective of waveform coder

you have  an  analog  waveform and  you convert  this  analog  waveform into  a  binary

stream. So, binary stream is a sequence of 1’s and 0’s.

So,  as  you would  know that  many natural  sources  are  analog sources  they  produce

analog waveform and the job of waveform coder is to convert those analog waveforms

into a binary stream. So, let us look at the blocks of a waveform coder. So, first we have

the  sampling  and  normalization  process.  The  sampling  and  normalization  process

converts this analog waveform into an analog sequence ok. So, sequence of real numbers

right, what is the sequence? So, we can understand sequence as a bunch of numbers

right.



And these numbers are real numbers right, what is the time difference between these real

numbers? The time difference between these real numbers, let us say is T and this T

depends upon this sampler, we will see about this in more details later on ok. Then we

have a  quantizer;  the quantizer  converts  these real  numbers into symbols.  What  is  a

symbol? Symbol is nothing, but it is a quantized real number so, that is the job of a

quantizer.

It just rounds off these real numbers to whatever precision it is required ok. Then you

have a discrete encoder, discrete encoder converts these symbols into binary digits ok.

We will see in this waveform coder about these 3 processes sampling and normalization

quantization and discrete encoding then had the output of a waveform coder we have a

binary sequence available. So, sequence of 1’s and 0’s and this sequence in 1’s and 0’s

goes through a binary channel.

So, at the output of that binary channel, we have already seen what that binary channel is

in the introductory lecture you can look at it  again at the output of a binary channel

again, we have a binary sequence if we are lucky we will be having the same binary

sequence as was fed to the binary channel. Then discrete decoder converts this binary

sequence again into symbol sequence and then this symbol sequence passes through an

analog filter which converts the symbol sequence into a waveform.

So, most of this processes are almost covered in the courses like signals and systems. So,

in this course we will not be looking at each block in that much detail, I will assume that

you have already seen this and we would just try to present the flavors of these blocks

from the point of view of digital communication system. So, let us look at what we are

going to study now in more detail.
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So, today we will have a basic recap of this sampling and normalization procedure we

will see, what are the key steps there we look at quantization in much more detail then is

covered in the basic courses and then we will look at discrete coding. So, let us start with

sampling and normalization this is what we are going to see.

(Refer Slide Time: 04:18)

So, what is the job of a sampler and normalization unit it can be understood as a block

which takes in a continuous time signal like x c t. So, c here represents that this is a

continuous time signal.  So,  it  takes  in a  continuous time signal  and, it  converts  this



continuous time signal into a discrete time signal. So, this is x n is a discrete time signal

and  you  must  have  known  by  convention  this  continuous  time  signal  chooses  an

independent variable t.

Whereas, a discrete time signal by convention chooses an independent variable n because

n represents not the time, but it represents the number of the symbol ok. So, n is the

number of the symbol. For example, if you have an array and you have some values here.

So, n represents the index of this array whereas, t is time. The second difference in the

notation is when we are referring to continuous time signal, we use this parenthesis, but

when we refer to discrete time signal we use these square brackets ok. So, this is the

difference between continuous time signal and discrete time signal by notation.
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Also,  if  we have to  look at  a  continuous  time  signal;  so,  we know that  time is  the

independent  variable  so  that  means,  this  independent  variable  takes  values  in

uncountable set; that means, this belongs to the set of real numbers and we have a signal

like this ok. So, this is a continuous time signal. When we are talking about a discrete

time signal it is nothing, but you can think of this as an array.

And you have some numbers in this array, and we want to go from this signal to this

signal. So, this continuous time signal to discrete time signal and we know why is this

important? This is important because this is a physical signal this can travel over physical

mediums. So, if you have an electrical circuit you would produce the current and voltage



like  this  right  current  and  voltage  signals  are  continuous  time  signals  and  this  is  a

discrete time signal. So, if you want to store a signal in computer you want to store this

as an array, right because this would take infinite memory because independent variable

is defined for all real values ok.

This time here belongs to an uncountable set. So, this signal cannot be stored right. So,

for a storage we like to use discrete time signal whereas, continuous time signals are

important for transmission over physical channels and we want to make use of both kind

of signals. So, it is an important idea to be able to convert this continuous time signal

into discrete time signal and this is what happens in this block which, we have seen

before  so,  this  continuous  to  discrete  time  converter. So,  here  you can  see  that  this

continuous and discrete time converter is fed by clock, and this clock is working at a rate

of T this will be more clear in a while.
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So, let us now see what happens in the C D system continuous time to discrete time

converter system. So, you take in a signal x c t so this is a continuous time signal right.

So, here we have t, t is defined for all real numbers then p t. So, this multiplies x e t with

an impulse train. So, p t is an impulse train we already know what is an impulse train

impulse train contains impulses. So, these are impulses and these impulses let us say are

separated by duration of T; so, this is what an impulse train is.



So,  first  step  is  multiplying  this  continuous  time  signal  with  an  impulse  train  what

happens on the multiplication. So, if I want to multiply this signal with this signal what

happens. So, first of all when we are talking about an impulse train let us say we have an

unit impulse train. So, all these impulses have the weights as 1 right. So, when I am

saying 1 it means that the area of this impulse is 1. So now, when you multiply this

impulse train with this continuous time signal the weights of this impulse is modified by

this continuous time signal.

So, let us say if I have some value let us say 0.2 and at this timing instance, we have

some value 0.4 at this timing instance we have some value let us say 0.5, at this timing

instance we have some value 0.6 and so on so forth what happens is the weights of this

impulse is modified by these numbers. So, we would have here the weight as 0.2, 0.4,

0.5, 0.6. So, why is this so, let us write a basic equation. So, if I is let us say multiply x t

where delta t.

(Refer Slide Time: 10:29)

What is the result? First of all this delta t is an impulse and this delta t is non-zero only at

t equals to 0, delta t is non-zero only at t equals to 0 right. So, when you multiply x t with

delta t you only have x of 0, which is the value of this signal at t equals to 0 and then you

have delta t right. Sometimes a students try to think that x t delta t is just x of 0 which is

incorrect, why is this incorrect because this is a constant number and this is a function of

time is not it.



So, if I want to plot x t times delta t this will be a signal only define a t equals to 0, where

x of 0 is a constant, it is a number like 2, 3, 4 and so on so forth. So, x t delta t cannot be

x of 0, but it would be x of 0 times delta t. This delta t is in here to say that this product

only has a non-zero value at t equals to 0 and this effect is created by this delta t. Now,

we know what happens when you have a continuous time signal and you multiply it with

an impulse; what happens the weight of this impulse, is modified by x of 0 and what is

this x of 0 it is the time at which this delta t is non-zero.

Similarly, now if we go back to that picture this impulse, has its effect only at this time

instants and the weight of this impulse would be modified by the value of the signal at

this time instants ok. In short, what happens when you multiply a continuous time signal

with  an  impulse  train  you  get  a  weighted  impulse  train,  where  the  weights  of  this

impulses is decided by the signal with which you are multiplying this impulse train. So,

this is what we get, we get x p t. And, then the next step is to go from this x p t, which is

still a continuous time signal you can understand that this is a continuous time signal

because of this t and because of this parenthesis.

We want to go to x n which is a discrete time signal; that means, this is a signal which

you can store. So, what happens is instead of impulses by notation, we represent them

using lines. So, these are lines these are impulses and say this simply means that this is a

signal, which is in the form of an array and where elements of this array are nothing, but

it is the weights of these impulses. So, this is your discrete time signal. In this course we

are not very much interested in how to do this right.

So, for that you have to see and look at the courses like digital electronics and other

courses, where they basically talk about how to modify something. In this course we are

just interested in what are the processes which happens, and what is the impact of this

processes on the transmission of a signal. So, this is the viewpoint that we are taking in

this course. So, in short a C D system, or continuous to discrete time system takes in a

continuous time signal multiplies this with an impulse train gets a signal, which is like a

weighted impulse train where the weights are modified by this x t and then from this x p

t you go into a discrete time signal.

So,  this  happens  in  these  sampling  and normalization.  So,  C D system continues  to

discrete  time  system  carries  out  this  effect  of  sampling  and  normalization.  So,  this



process  is  known  as  sampling  and  conversion  from  impulse  train  to  discrete  time

sequence, we refer to as normalization why we want to say this as normalization because

these impulses, were separated by a time duration of t whereas, these numbers are just

separated by 1 unit in the memory or of an array. So, this is for example, n equals to 0, n

equals to 1 and so on so forth right.
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Let  us,  now see  certain  things  that  are  important  if  you want  to  do  this  conversion

faithfully and the first thing that you have to understand is most of this theory works only

for band limited signal. So, you can only convert a continuous time signal faithfully to a

discrete time signal if the underlying continuous time signal is a band limited signal.

And, if it is a band limited signal we have talked about this often, then it would have a

maximum frequency for which most of this energy is confined. For example, in this case

if I have this spectrum you see here, that most of the energy or all its energy of this signal

is confined between 0 and omega N frequencies.

Of course, we have already seen that ideal band limited signals do not exist in practice

and  thus,  for  practical  signals  what  works  is  some  approximation  and  we  normally

consider the bandwidth of those signals in terms of the region in which most of their

energy is confined ok. For example, if I have a spectrum like this you know ideally it

will run from 0 to infinity because it is a practically realizable signal, but we would like



to approximate this as a signal probably like this, because this part of the energy would

not be impacting the signal too much.

So, when we say band limited signal you always mean approximately band limited signal

ok. Then we have some terminology running in here first is Nyquist frequency which is

the highest frequency of a band limited signal for in this case the highest frequency is

omega N. So, Nyquist frequency is omega n and then we have Nyquist rate which is

twice of the Nyquist frequency. So, Nyquist rate in this case is 2 times omega N and then

we  have  a  very  celebrated  sampling  theorem,  which  goes  by  the  name  of  Nyquist

sampling theorem.
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It says that the sampling frequency should be greater than twice omega N, if you want to

have a faithful conversion from continuous time domain to discrete time domain. The

sampling frequency should be greater than twice omega, what is the sampling frequency.

So, we have already seen that to sample we have to multiply with an impulse train and

this impulse train let us say, has a period of t then the frequency is 2 pi by t. So, Nyquist

sampling theorem says that this frequency if I like to call this as omega s should be

greater  than 2 times omega N where omega is  the maximum frequency of this  band

limited signal.

Then you can have a faithful reconstruction ok, if you do not follow this if omega S is

less  than  twice  of  omega,  then  you have  an  effect  called  as  aliasing  in  which  high



frequencies  pose  themselves  as  low  frequencies.  So,  high  frequency  alias  as  low

frequencies; I would not be discussing too much about this aliasing, but I will just like to

point out that aliasing happens and sometimes it deteriorates the perception of the signal.
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 So, last point about this sampling is, because these signals are not band limited or may

not be band limited, it would be a good idea to first band limit them by having a low pass

filter. So, that after this low pass filter the maximum frequency becomes omega M or

omega N and then you use a sampler, whose frequency is greater than twice omega n. So,

we use a  low pass  filter  just  to  truncate  this  bandwidth of  the  signal  to  frequencies

around omega N and this filter goes by the name of anti aliasing filter. So, sampling is

easy there is nothing much in here only few things you have to know the first thing is,

about this C D block this is only important you do this continuous time to discrete time

conversion. 

Following these steps taking a continuous time signal multiplied with an impulse train

you carry weighted impulse train. And then, you convert these impulses into lines and

you just store the weights of these impulses and you get a discrete time signal. And for

faithful conversion you have to follow the sampling theorem the sampling theorem states

that  the  sampling  frequency  has  to  be  greater  than  twice  omega  N  for  the  faithful

conversion ok. I think we are done with this sampling and let us now move to second

stuff, and that is about quantization because after sampling what we are getting is so



sequence right, of real numbers and you can also not store real numbers because real

numbers  also  require  infinite  memory  right  real  numbers  have  infinite  decimal

representation.

 So, if you have to store these real numbers they will come up with infinite memory. So, I

have to take the decision to round off those real numbers to whatever precision you are

with and this process of rounding off in engineering is referred to as quantization.
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So, let us look at the quantizer transfer characteristic. So, quantizer is a rather simple

block. So, let us say we have input here, and this is the output of a quantizer. So, in this

case in this quantizer the quantizes can be of various kinds. So, the kind of quantizer that

we are looking into, what happens is if the amplitude of input lies between minus delta

by 2 to plus delta by 2 the output of the quantizer is 0.

If  the  amplitude  of  input  lies  between delta  by 2 to  3  delta  by  2  the  output  of  the

quantizer is delta of course, there is a discontinuity at a single point and we rather do not

worry about discontinuity at a single point or we do not even care about the signals,

which are discontinuous at a single point because we have seen that they belong to class

of  indistinguishable  functions  right.  So,  two  functions  which  are  different  only  at

countable number of points are indistinguishable we have seen all of that stuff the only

point that is important is, if the amplitude lies between this to this range the quantizer

output is delta.



If the amplitude of input lies in this range the quantizer output is 2 delta and so on and so

forth. Now, you can see that input amplitude could have taken any value right because it

has a continuously varying amplitudes. So, this amplitude belongs to an uncountable set,

but the amplitudes at the output of a quantizer belongs to a discrete set, because now my

amplitude can be either 3 delta, 2 delta, delta, or 0 right or if you want to look at this x s

it can be minus delta, minus 2 delta, minus 3 delta. 

So, at the output of the quantizer we have only finite number of amplitudes available so,

how many in this case in this case we have 7 amplitudes available. So, the output of a

quantizer  we have  a  discrete  set,  is  not  it.  So,  here  only  7  amplitudes  are  possible

whereas, in the input the amplitude can take any real number between minus 7 delta by 2

to 7 delta by 2. So, the output of a quantizer is a discrete set. Of course, there must be

some error because of this, quantization and this error is known as quantization error. Let

us look at the quantization error let me do it before showing you the picture.

(Refer Slide Time: 24:25)

Let us consider the case, where input amplitude varies between minus delta by 2 to delta

by 2 and the output of the quantizer is 0, let me plot the output of the quantizer. So now,

what  is  the error? Error is  let  us say input  amplitude  minus,  the quantization output

which is 0. So, in this region the error is just same as the inputs amplitude ok. So, its 0

here and it goes up to delta by 2. So, input is also delta by 2 and on this axis what we



have is the quantization error, similarly it will go up to minus delta by 2, I will show you

neat a picture in a while, this is just for understanding. 

Now let us look at this region, when the input amplitude varies between delta by 2 to

three delta by 2 and the quantizer output is delta. So now, we have x t minus delta as the

error in this region. So, at this point the error is minus delta by 2, and now the input

increases, and the error reduces, and a delta let us say delta is here the error becomes o

and then it becomes positive. At this point at 3 delta by 2 let us say three delta by 2 is

here the error magnitude is 3 delta by 2 minus delta which is delta by 2. 
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So, if we look at the quantization error which is nothing, but x t minus quantized value of

x  t,  you  get  a  saw  tooth  wave  in  this  case.  If  you  look  at  the  magnitude  of  the

quantization error the maximum magnitude of the quantization error is delta by 2, the

minimum is minus delta by two and what is this delta this delta is important. So if I look

at that quantizer again this delta is, the step size of the quantizer. So, this is known as the

step size it is an important tau.

So, if you reduce the step size or the quantizer, what happens the maximum quantization

error reduces because maximum quantization error is delta by 2. So, let me write this

reducing step size of quantizer, reduces maximum error a maximum quantization error.

So, why not we have a very small step size; what is its disadvantage? If you have a very

small step size, then what happens is you end up with many quantization levels. So, these



are known as also quantization levels or simply levels. In this case how many levels we

have 7, how to find out the levels that you would have in a quantizer that is also simple

exercise.
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So, let us say if the signal amplitude varies between mp so maximum signal amplitude is

m p minimum is minus mp. So, the total dynamic range of the signal is 2 m p understand

these words clearly. So, this is known as a dynamic range. So, it is the maximum minus

minimum of a signal, there you want to measure or transmit this the dynamic range of

the signal in this case is 2 m p and if you use, quantizer with the step size of delta. And in

this case we are assuming a simple situation where the step size is uniform that means,

difference between any two quantization level is delta that is fixed then the number of

levels is 2 m p by delta easy.

So, if I have a reduced delta then the number of levels increases and as we will  see

shortly, that increases the bandwidth requirement for the transmission of the signal and

that  is one important  trade of that if  we want to see how to choose this  delta,  delta

increases,  quantization  error  increases.  We have  seen  this  delta  reduces  L increases

number  of  levels  increases  and  we  will  see  that  also  increases  the  bandwidth

requirement, which is also an important resource in communication system. So, initial

studies in communication systems which are also referred to as pulse code modulation

based systems.



Let me use another word introduce pulse code modulation, we will see and understand

the name later on, but whenever you are talking about waveform coding an important

way to do this waveform coding is by using this pulse code modulation techniques ok.

So, whatever we have studied falls into the regime of pulse code modulation and so,

initial studies in pulse code modulation systems dealt with how to choose this delta and

so on so forth ok. So, what we have seen is an important attribute in quantization is the

step size step size influences the quantization error, and step size also influences the

number of levels that you have at the output of a quantizer.

So, we have also seen that if the step size is constant; that means, the difference between

two quantization levels is constant, then we call that quantizer as uniform quantizer.
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And there is another interesting quantizer which is non uniform quantizer and as you

would have guessed in non uniform quantizer, the difference between the quantization

levels is not constant right.  So, for example,  in this case the difference between two

levels is not constant and the idea is because, the probabilities of low amplitudes is much

more than the probabilities of occurrence of higher amplitudes, it is better to use more

levels to code lower amplitudes whereas, it is good to use fewer levels to code bigger

amplitudes. 

For example, even in the case of noise and even in the case of Gaussian PDF we have

seen, that the Gaussian PDF is like a bell curve and what does it say it says that the



probabilities of amplitudes in a case of noise at least is higher at the amplitude levels

around here so around 0. And as the amplitude level increases so, to state it carefully the

probabilities of amplitudes, around a decreases as a increases this is what happens in the

Gaussian case and for natural occurring waveforms like a speech waveforms or music

waveforms it is also seen that the lower amplitudes happen more frequently, than the

higher amplitudes and thus its wiser to use more levels to code lower amplitudes than

large amplitudes and this what happens in non uniform quantization.

This is exactly like you are texting rich more than poor right. So, what is how to do this

non uniform quantization is, to first pass the signal through a compressor.
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So, compressor changes the signal the normal signal to another signal in this case ft and

then you use in uniform quantizer for this ft to get the quantized version of f t which I

call as f q t. And, so instead of using a non-uniform quantizer what we are doing is we

first pass the signal through a compressor and mostly the transfer characteristic of this

compressor a logarithmic. For example, in this simple case what we have assumed as f t

is nothing, but log of x t and then you pass this f t through a uniform quantizer, how does

it solve our problem of coding lower amplitudes more than the higher amplitudes will be

clear if you look at this picture of logarithmic mapper.
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Here you can see clearly that let us say, we have two regions in here. So, I have two

regions for amplitude levels one region goes from 0 to 500 let me put 500 here and then

there is a region between 500 to 1000. So, these regions are uniform, but now what you

see is this region is mapped to values between 0 to 2500.Whereas, for this region we

only have y going in between 2500 to 3000 does this lower region has an output dynamic

range much, larger than this region which has a very small output dynamic range.

So, this happens when you pass a signal through a logarithmic mapper and now if you

use a uniform quantizer at ft what would happen is, uniform quantizer we will have the

quantization level at constant interval. And because this range is much larger than this

range you would have more quantization levels in this range than in this range and thus

to code this lower range, we are using many more quantization levels. Than what we are

using to code the higher range and this is what logarithmic mapper doing for us.

So, let me summarize what we have said so far is, because the lower amplitudes happen

with a higher probabilities in naturally occurring signals like a speech and music signals,

it has been understood as a good idea to have more levels to code lower amplitudes than

for higher amplitudes. And this is the concept behind non-uniform quantizer and to do

non uniform quantizer you do not change anything in quantizer the quantizer remains

uniform.



But what  you do is  you pass  this  signal  through a mapper, which is  also known as

compressor and usually in practice we use logarithmic mapper’s which takes in a signal,

takes this log and produces another signal and when it does automatically what follows is

a lower range of amplitudes has a much more output dynamic range than the higher

amplitudes. So, what we end up with is, you use many more quantization levels to code

lower amplitudes than what you use to code higher amplitudes of course, this transfer

function.
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I have introduced for simplicity in practice you have little bit more complicated transfer

functions. In fact, you have laws for this mapping the two important laws mu law, and a

law mu law is used in North America and Japan. The standard value of mu is 255 for 8

bit codes, and this is a transfer characteristic I will not read out this, but important point

to appreciate is that it is a log function. A law is used in Europe, India and rest of the

word and the standard value of A is 87.7, you do not have to learn these laws by heart the

only thing that is of interest here is to appreciate that these laws also have logarithmic

mapping which, we know intuitively will work because any log mapping whatsoever is

that would produce a larger dynamic range for a lower range of amplitudes. So, as I have

seen here is x what is x? x is nothing, but m t divided by m p m p is the maximum value

of the signal.
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So, just to get a some practical flavor on, the differences between mu and A law is pretty

similar as the value of mu increases you see that you have more and more compression

and we also know what values of mu and A are used in practice, mu law provides larger

dynamic range than A law. A law on the other hand has a smaller proportional distortion

and because many countries are using a laws other than North American Japan it is used

for international connection if one of the country uses it, just to get some flavor on the

differences between mu and A law.

Let us now get to the third business and there is about discrete coding. So, far what we

have done is we had this continuous time signal we converted this into discrete time

signal and then what we have done is in this conversion we have also got a sequence.

But, the sequence consisted of real numbers, bunch of real numbers, sequence of real

numbers, and then you have this quantizer which converts the sequence of real numbers

into sequence of quantized real numbers, and we call those as symbols. Now once you

have got the symbols or the levels you want to find the code binary representation for

those symbols and this is easy in waveform coding was pretty hard in the source coding

and that is the main difference.

So, when we see waveform coding, we normally assume that all these levels are of equal

probability and we also want to use the same number of bits for each representation.
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Whereas, in source coding you want to optimize that, so we will not be discussing a

source coding in this course. We have simplified it to waveform coding where we assume

that the levels that we have caught, 8 levels in this case all this levels happen with equal

probability and we want to find good binary representation for these levels and this is

really a simple issue. The one thing that you have to decide in here is, how many bits

would you need to represent a level and the number of bits that you would require is

simply given by this log 2 L, where L is the number of levels. So, for example, if you

have 8 levels as in this case you would need 3 bits.

If you have 9 levels you would need 4 bits and then you would see that, it is a wastage

because if anywhere you are using 4 bits it would have been a better idea to use 16 levels

is not it. So, what we want to do is we want to make the number of levels L as some 2 to

the power n so, that there is no wastage is not it. So, once you know the number of levels

then finding the number of bits that you would require to represent that level is simple, it

is  just  log to  L and these  bit  assignments  follows either  lexographic  coding or  gray

coding. In lexographic codes you take in a numerical value and you choose the binary

representation in accordance with the numerical value that you have in here.

For example, if this is the order of the numerical values of these symbols for example, 0

represents the lowest amplitude, one represents a little higher amplitude, two represents

higher  amplitude  than  1 and so on  so  forth.  So,  this  is  in  the  let  us  say increasing



amplitude levels and what you can do is? You can simply assign the codes the binary

codes, in the increasing order of binary value ok. So, you use 000 to represent 0, 001 to

represent 1, 010 to represent 2 and so, on so forth and this  is known as lexographic

coding. So, you arrange the symbols in the order of their values and then you generate

binary codes and assign the symbols their binary codes, based on the values of these

binary codes.

In gray coding we are little bit more careful because we want to make sure that, the

difference between the codes of two adjacent symbols does not differ more than 1 bit.

For example, the adjacent symbol to symbol 2 is 1 and 3 and let us say the code that we

want to use for 2 is 011, then we want to make sure that the code of 1 and 3 does not

differ by more than 1 bit. So, 001 and 011 differs by 1 bit in this location. So, there is a

difference in this  location and 010 and 011 differs in this  location,  but there is  only

difference on 1 bit. Whereas, you see in lexicographic coding that is not the case for

example, these two quotes differ by 2 bits and what do we want to make sure that in grey

codes the difference between the codes assigned to adjacent symbols is not more than 1

bit is because the probability of bit error, for 1 bit is much larger than probability of bit

error for 2 bits. 

Thus for example, if I assume that there is 1 bit error, this was transmitted and because of

some error  they  receiver  thought  that  this  is  transmitted  you only  slip  two adjacent

symbols and does the deterioration level is not to significant. Whereas, in this case, let us

say here and let me choose this and this for explanation. So, these two codes also differ

by 1 bit and the errors 1 bit errors will be much more dominant than 2 bit errors and as

soon as there is a 1 bit error you slip from 2 to 6 and there is a serious deterioration,

because there is a much more difference between 2 and 6 then would have been between

adjacent symbols.

And that is because 1 bit errors are more probable than 2 bits errors in a code, then the

gray code serves you better because whenever there is a 1 bit error in the code do you

only slip two adjacent symbols. And thus the detoriation is not significant on the other

hand in lexicographic coding, even if there is a 1 bit error you might move to a symbol

which is too far from the symbol which is actually transmitted. And, thus you face lot of

detoriation and thus it is a better idea to use gray coding whenever you want to map

symbols 2 bits.



This idea will  be reinforced when we talk about modulation and this is exactly what

happens in coding. So, discrete coding is simple, what we have seen is as soon as you

identify the number of levels you can find the number of bits that you want to use for the

binary representation of those symbols, we have a formula log to L to find that and you

want to make sure that the number of levels is 2 to the power n. So, that you do not waste

the bits right you make the optimum use of the resources and thirdly we have seen that

the symbols  should be assigned the bit  spaced on gray coding,  that  is  most  optimal

because then one bit error does not slip you too far.

Now, it is the time that we do this performance characterization of these PCM systems.

This is exactly what happens in a PCM systems, sampler quantizer, discrete coding and

there is little bit more that we will see later on.

(Refer Slide Time: 48:50)

But all these three steps happens in PCM systems. So, maximum error in the case of

uniform quantizer, we have seen what is what is the maximum error. So, the maximum

error was delta by 2 and delta we have seen is nothing, but 2 mp by L. So, delta by 2 is 2

mp by 2 L which is nothing, but mp by L. So, that is the maximum error in uniform

quantization  and  if  I  assume that  this  error  can  be  modeled  by  assuming  uniformly

distributed  random variables.  So,  you must  have seen if  x is  a uniformly distributed

random variable. 
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And, this we have seen in one of the lectures on random variables its probably lecture

number 9 and there we have seen that if you have uniformly distributed random variable,

which spans  from minus delta  by 2 to  plus  delta  by 2.  Then the probability  density

function takes in a value of 1 by delta and the power in that random variable, is delta

square by 12.

This we have seen I will not derive it, this is the reason that we derived in there when we

discussed uniformly distributed  random variable.  The point  is  if  we assume that  the

quantization error is also uniformly distributed random variable, quantization error has a

maximum value of delta by 2 and minimum value of minus delta by 2 where delta is the

step size of the quantizer, then the power in that noise or in that error process is delta

square by 12 and delta as we have seen is nothing, but 2 mp by L.

 So, substituting that in here we get mp square by 3 L square. So, average is square error

is m p square by 3 L square mp is the maximum amplitude or the peak amplitude of the

signal L is the number of quantization levels. Signal to noise ratio is the average signal

power  divided  by  average  noise  power,  the  signal  to  noise  ratio  is  an  important

characteristic for digital communication systems.
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We will see a lot about it when we do detection, at this point I just like to stay that this is

an  important  metric  and  the  more  is  the  signal  to  noise  ratio  better  is  the  receiver

performance  or  the  communication  system  performance.  So,  we  want  to  have  a

communication system with as high signal to noise ratio as possible, because you want to

have more signal power and less noise power is not it. So, a higher signal to noise ratio is

better. So, and what is signal to noise ratio it is average signal power divided by average

noise power, average signal power is given by this m square t tilde and this is nothing,

but it is simply 1 by t, 0 to t, m square t dt which is the mean square value of the signal,

where t is the duration for which the signal empty exist.

Quantization error as we have seen before, is given by this and signal to noise ratio can

be obtained by dividing this by this. So, if we divide m square t by m p square L square

and so, we get three L square m square t by m p square, let me put tilde here and we

combine all of this in a constant c because this is really constant. So, we get signal to

noise ratio is constant times L square and L we know, what is L? L is 2 to the power n.

So, L square is 2 to the power 2 n which is this. So, we get signal to noise ratio is c times

2 to the power 2 n where the value of c as we have said is this thing and this is an

important result, in the case of the performance of PCM systems. 
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So, in short we can say that the signal to noise ratio in the case of PCM systems is

constant times, L square which is constant times 2 to the power 2 n. What is n? n is the

number of bits that your coder use. So, this is for the uniform quantizer because this

quantization error that we have obtained is for uniform quantization.
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Let us see what happens in the case of the quantizer where you have the compressor

based on mu law, we will not derive it because it is really complicated, but it is good to

see that the signal to noise ratio follows the same form it is constant times L square. But,



here the constant depends just on 3 and the mu that you use and it does not depend upon

the signal power for large values of mu so, it is pretty constant the signal to noise ratio.
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Other important point is the bandwidth performance of the PCM systems. So, first we

see what is the bit rate? In the case of PCM systems, so, bit rate would depend upon the

number of bits that you are transmitting per second R b is number of bits per second, first

of all you can see that how many samples are happening per second. So, this would be

nothing, but it is the number of bits for one sample times the number of samples per

second. And number of bits for one sample is n we have said that we are using n bits to

code one sample, sample is same as symbol and how many samples are we having per

second that is given by the sampling frequency which we are seeing f s.

So, f s is the sampling frequency number samples per second, and sampling frequency is

nothing, but it is 1 by t where t was the time duration between two impulses. And we

have seen in one of the previous lectures that the sampling frequency and we have seen

and revised today as well should be at least twice of W, where W is the signal bandwidth.

So,  we have to  take the sampling  frequency to follow Nyquist  sampling  theorem as

greater than twice of W, we have chosen it to be twice of w in this case and so, the bit

rate would be n times 2 W and the bandwidth as we will see in one of the lectures is

nothing, but R b by 2. 



So, if you know bit rate the bandwidth requirement or rather let us say the minimum

bandwidth that you would require would be R b by 2. So, we are assuming that our

communication system is optimal and its requiring the minimum bandwidth for a given

bit rate. So, minimum bandwidth that you would require for a given bit rate is R b by 2.

So, it will be n times w.
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So, let us see the tradeoff between bandwidth and quantization error. So, one thing that

you see is bandwidth increases with n so, as you increase end the bandwidth increases

and signal to noise ratio also increases with n and signal to noise ratio is good. So, if we

increase n you get a better signal to noise ratio, but you also require more bandwidth. So,

signal to noise ratio as we have seen already is c times, this and what is the n? So, if we

can write n is B T by W, where B T is the required bandwidth, W is the signal bandwidth.

So, we can replace n by BT by W and then you can see is, there is a tradeoff between

signal  to  noise  ratio  and  transmission  bandwidth.  So,  if  you  can  allow  for  a  larger

transmission bandwidth you get more signal to noise ratio and the other way around as

well. So, normally you must have seen that there is a tradeoff between this signal to noise

ratio and the required transmission bandwidth and you also see this trade off in here. The

important point is that this signal and bandwidth trade off follows exponential law, you

see  the  transmission  bandwidth  is  an  exponent.  So,  there  is  an  exponential  tradeoff

between signal to noise ratio and required bandwidth whereas, if you have seen analog



modulation  a  schemes  like  amplitude  modulation  or  phase  modulation  of  frequency

modulation these modulation schemes particularly phase, and frequency modulation at

best achieves the square law tradeoff that means, signal to noise ratio is proportional to

transmission bandwidth the square.

But here the tradeoff follows an exponential law that means, by spending a little bit more

on transmission bandwidth you can get a lot of signal to noise ratio at vantage in case of

these modulation techniques PCM. So, signal to noise ratio we have seen is proportional

to c times L square, we have already seen this and if I want to write it in dB scale, I can

take log of this thing I will come to dB in a while. So, I take 10 log c 2 2 to the power n

and you know that n log you can write this as 10 log c plus 10 log 2 into 2 to the power n

which you can write 10 log c plus 20 n log 2 and 20 into log 2 log 2 is 0.3. So, this

becomes 6 n.

So, more or less we get alpha plus 6 n. So, this has to be 20 n log 10 2. So, we get 10 log

c plus 20 n log 2, log 2 is 0.3 20 log 2 times n become 6 n. So, we get signal to noise

ratio is alpha plus 6 n in dB. So, what you see is in this case if I look at this signal to

noise ratio grows exponentially with the number of bits, if I want to increase the bit by 1

signal to noise ratio grows by 6 dB look at this if I change n by 1, I get 6 dB advantage in

signal to noise ratio. Every bit would, quadruples my signal to noise ratio. I will come to

this dB in a while at this point you can simply understand dB as 10 log c.
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So, if you want to talk about the dB you just if you want to change c, c can be some

number like 2. So, if you want to change this in dB scale you just find 10 log of 2, then

you know log 2 is 0.3 multiplied by 10 and you get 3 dB. So, 2 in dB scale is 3 dB. Let

me talk about this now, and then we will talk about other things.
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So, dB as I have said, is used in communication systems because we often measure ratios

using logs. So, when you say bel is the log 10 of a ratio and we want to use dB which is

decibel, which is 10 times log 10 of a ratio. And, this is an important scale because of

various reasons first reason is that the human perceptors like ears and eyes respond to log

of intensity and pressure, it is very natural this log scale.

Secondly, when you are talking about the communication link you may see that the loss

in a communication link follows typically this relationship. So, this is let us say loss and

it follows typically this relationship where this is some constant and this L is the length

of the link. And so, if you want to express loss in dB it becomes so, do not worry about a

factor of 10 and so on and so, forth. Just see that if loss follows this relationship, loss in

dB becomes a linear function of the length of the link and thus it is easier to estimate the

loss right.

So, there are other reasons as well when we do power budget and things like that, we will

see  that  log  scale  is  more  convenient.  It  is  also  helpful  to  learn  some numbers  this

conversions we have already seen that, 2 in dB scale is 3, 3 in dB scale is approximately



5, 4 in dB scale is approximately 6, 5 in dB scale is approximately 7, 10 in dB scale is

10. So, we have finished with the pulse code modulation techniques and it would be a

good idea to quickly see other modulation techniques as well.
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For example, we have this differential pulse code modulation technique in differential

pulse  code  modulation  technique  what  happens  is  instead  of  sending the  signal  and

coding the signal, we code the difference between the two samples of a signal ok. For

example,  if you have taken one sample here one sample here instead of coding each

sample individually, we calculate the difference between the samples and we rather code

that. What advantage we will get is that this difference would be much smaller than the

signal itself and thus what would happen is the m p or peak value of this signal will

reduce right and so, to get the same quantization performance you can use fewer number

of levels.

Because, we have seen that the quantization error power depends upon m p square by a

quantization error power is m p square divided by 3 L square. So, if m p reduces, m p

reduces  because  instead  of  coding  each  sample  individually  we  code  the  difference

between the samples and thus the peak value of these different signal reduces and there is

the power of the quantization noise reduces ok, if we are using the same number of levels

as before if you want to have the same quantization noise power you can also reduce the

number of levels because m p reduces. So, it cut both ways. So, that is the idea behind



differential pulse code modulation technique. So, finally, we come to the slide where I

capture in the different audio signal requirements.
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So, we say that depending upon the kind of audio input different audio inputs require

different  bandwidth  or  has  different  bandwidth  and  thus  appropriately  you  have  to

choose the sampling frequency, sampling frequency is  normally twice this  maximum

frequency that we have in here for example, what telephone we would need something

like 8 kilohertz right. So, sampling frequency that we normally choose is typically more

than twice of maximum frequency component.

So,  here  you  get  around,  but  normally  we  take  it  as  8  kilohertz.  So,  the  sampling

frequency is decided by the maximum frequency of these different audio inputs and this

is the signal to noise ratio requirement for these audio signals. So, the messages that

these requirements are too much specific on the kind of source signal that we are dealing

with, let us just take the example of the music signal.
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So, we know from psycho acoustic studies, that the minimum sound pressure that we can

here is 20 micro Pascal and the maximum that you can here is 20 Pascal; that means, the

number of levels that we would have is 1 million approximately right. So, 20 Pascal

divided by 20 micro Pascal. And, thus if you want to code these many levels typically the

number of bits that we will require is, log 2 of 10 to the power 6 which is 6 into log 2 of

10 ok. So, you can easily understand the number of bits that you would require and this

turns out to be approximately 19.93 or approximately 20.
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So, let us see what we have got is if you have to have 1 million levels which is optimal

because the ears can hear minimum 20 micro Pascal and maximum 20 Pascal. So, we

have seen that we need around 20 bits and in C D what we do is we use 16 bits per

sample right, and there are certain C Ds where you have 8 bits per sample ok. So, if you

have fewer bits per sample what happens is probably there is little iteration in the quality,

but you get more memory right. So, you can stuff more music if you are using fewer

number of bits per sample.

Idea could be to have even fewer bits per sample like 4, if the quality of music does not

iterate seriously. So, let us do a demo and see how the music quality is affected by the

number of bits per sample. So, we will first see what happens when we use 16 bits per

sample and now, we will see the quality of music which is produced using 8 bits per

sample. And now, we will see the quality of music which is produced using 4 bits per

sample and we can see clearly that up to 8 bits per sample the quality of music did not

degrade seriously, but as soon as we use 4 bits per sample we could hear lot of hissing in

the music and this is because we were really using very few number of levels than what

is required for good quality.

So, this with this we conclude today’s lecture and the main thing that we have seen in

this lecture is how to go from an analog source to binary sequence we have seen the steps

like sampling, quantization and discrete coding. And we have seen that an interesting

class  of  system  that  do  this  is  pulse  code  modulation  systems,  we  have  seen  their

performance metric we have seen that there is an exponential tradeoff between signal to

noise ratio and offer transmission bandwidth in PCM systems, it is much better trade off

then what analog modulation schemes offer which typically offers square law tradeoff.

And then we have seen that different kinds of signals and sources would have different

kinds of requirements of sampling frequency and the signal to noise ratio that they would

require from next lecture, we will talk about modulation.


