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Random Variables and Random Processes: Types of Random Process

Good morning. Welcome to the next lecture on Random Processes. So, so for what we

have done is we have defined random process, we have looked at a spatial kind of a

random process that is a Gaussian process, we have defined jointly Gaussian random

variables, we have defined random vectors, we have defined Gaussian random vectors. 

And today, we would be continuing with random processes and today we will cover two

important concepts in random processes that is the linear functional of a random process

and then, we will look at what happens when a random process passes through an LTI

system, a Linear Time Invariant system.

So, let us get started with linear functional.
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So,  what  is  a  linear  functional?  So,  if  you have  a  random process  remember  that  a

random process  is  usually  denoted  with  a  capital  letter  and  it  is  a  function  of  two

independent variables time and outcome of the experiment. So, let us assume that we

have a random process Z of t and if I take the inner product of this random process with a



deterministic  function  that  is  the  linear  functional  of  a  random  process.  So,  linear

functional  of  a  random process  is  simple;  linear  functional  of  a  random process  is

nothing  but  it  is  the  inner  product  of  the  random  process  with  some  deterministic

function g of t ok.

So, you know how to calculate the inner product. So, for calculating inner product, we

have  to  evaluate  this  integration  and  usually  as  you  know  that  we  have  to  take  a

conjugate and one of the function, but because g t is a real function, we do not have to

take  this  conjugate.  So,  the  inner  product  of  a  random process  with  a  deterministic

function if  everything is real can simply be calculated like this.  So,  this  is the inner

product of a random process with a function and this we say as the linear functional of a

random process. 

Now, some important points here before we move on to another section is that is this

inner product always defined, it need not be and as we have seen from the vectors this

inner product is always defined if Z t and g t are L 2 functions. So, what we are assuming

as g t is an L 2 function and what we are assuming is the sample function of this random

process is also an L 2 function. Because if they are L 2 function, then this inner product

is always defined and we do not have to worry, then about the converging issues and so

on and so forth. So, to simplify do not talk anything about the convergence, what we

assume is the inner product is always defined because the sample function of the random

process is an L 2 function and g t is also an L 2 function. 



(Refer Slide Time: 03:49)

So, let me write that inner product again. So, this is the inner product of the random

process with a function g of t. Now, let us look what is this quantity; what do you believe

this quantity to V. This quantity if you see will not be function of t; why is this not a

function of t? Because t is the running variable; so it will not be a function of t, but it

would be a function of omega. So, what you would get is a real number V of omega is a

real  number  and this  number  would  depend upon omega.  So,  this  V of  omega is  a

random variable; is a random variable.

So, what we see now is that a linear functional of a random process is nothing but it is a

random variable. Why this is a random variable? Because it will only be a function of

omega; it will not be a function of t; t is the running variable, you are having a definite

integration which are evaluating from minus infinity to plus infinity ok. So, we have

looked into what is a linear functional of a random process.

Now, let us see what happens if you have a random process and what happens if you pass

this random process through an LTI system ok. So, if you have a random process and if

you pass this random process through an LTI system, let us see we get some output. How

to evaluate  this  output? So, you know that this output could be computed simply by

convolution.  So, I  need to take the convolution of this  random process with impulse

response and I have to integrate it from minus infinity to plus infinity. So, I have taken

the convolution of a process with impulse response ok.



This you must know already now look at this, what this integration is a function of. It is

not a function of tau for sure because tau is running variable; it is a function of both t and

omega. So, we have got Y of t and omega it is a function of t and a function of omega.

So, what you end up with is a random process ok. So, the output of an LTI system if you

pass a random process through an LTI system, what you get is a random process ok.

So, let us summarize what have we said so far.
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So, what we have said is a linear functional of a random process is nothing but it is the

inner product of the random process with a deterministic function. That is one thing that

we have studied. The second important thing is if you pass a random process through an

LTI system, what you get is a random process itself given by this expression ok.

Now, let us see these things for spatial kind of a random process as the Gaussian process;

we love Gaussian process because it is easy to evaluate linear functional and output of a

Gaussian process and moreover, it is also very practical right. So, Gaussian process is

easy as well as practical. So, let us take an example of a Gaussian process and we know

that I can generate a Gaussian process through this orthogonal expansion function. So, I

can consider a random process which is expressed in terms of orthogonal functions and

the coefficients of these orthogonal functions are nothing but Zero-mean independent

Gaussian random variables ok. 



So,  if  you use this  framework,  this  framework can  be  used  to  model  all  interesting

Gaussian  processes;  it  cannot  model  all  Gaussian  processes,  but  it  can  model  all

interesting Gaussian processes, now Gaussian processes which are of interest to us. So,

let us revisit why can this generate a Gaussian process? 
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So, let us take a sample of that process and we have also said that most of the time we

would take these orthogonal functions to be t spaced sinc functions ok.

So, let us now specify what these orthogonal functions are. So, the random process then

can be written like this and if we assume a particular instance of t that is t 1 what I get is

this expression. Now, as you can see what you get is a linear combination of independent

Gaussian  random  variables.  A linear  combination  of  independent  Gaussian  random

variables is nothing but a Gaussian random variable. So, Z t 1 is a Gaussian random

variable and if you take a second sample; another sample of this process what you get is

this expression.

So, what has changed? Nothing has changed. So, we are putting a specific value of t. So,

in this case we have put t s t 1 in this case we have used t s t 2. Now what you get again

is you are getting a linear combination of independent Gaussian random variable. So, Z t

2  is  also  a  Gaussian  random  variable  and  what  more,  they  are  different  linear

combinations of the common underlying set of independent Gaussian random variables.

So, Z t 1 and Z t 2 are also jointly Gaussian. 



So,  they are also jointly  Gaussian random variables  and if  the samples  of a  random

process are jointly Gaussian random variables with processes a Gaussian process. So,

what I have convinced you again because it is so important that this process can be used

to create and model Gaussian processes which are of interest to us ok.
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So, let us assume that we have taken such a Gaussian process and let us see what is the

linear functional of such a process. So, linear functional is defined as the inner product.

So, I have to take the inner product with let us say a deterministic function g t ok. 

Now, pulling out this summation bringing in the integration as we usually do I can write

this as ok, now what we can see from there is that this function this is a function of time;

no, it is not a function of t because we have their running variable as t. It is a function of

k right. So, I can write this as we are not interested in what is the value, but rather I can

say that this is some function g k ok. So, it is a function of what is your g t and it is a

function of k.

Now, g k is a real number right. So, it is some real number depending on the value of k.

So,  what  you end up with  is  a  linear  combination  of  independent  Gaussian  random

variables and we have seen that a linear combination of independent Gaussian random

variables  leads  to  a  question  random  variable.  So,  V omega  is  a  Gaussian  random

variable.  So,  what  we have learned is  a linear  functional  of a Gaussian process is  a

Gaussian random variable. 
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Let us let  us take a linear functional let  me write this  as V 1 omega for some other

deterministic function, for the same Gaussian process. Let me take it for f of t d t. So,

now, I have to replace g of t with f of t; f of t is another deterministic function. So,

similarly you can show that this would be nothing but using the same analogy we get that

V 1 omega there is again linear combination of independent Gaussian random variables,

where value f k is decided with the k and what function you have assumed.

Now, if you see that V 1 omega and V omega, they are the different linear combinations

of the common underlying set of independent Gaussian random variables and thus, these

are jointly Gaussian random variables. Why are we studying all this is because most of

the time, what you deal with is how does a random process interacts with the digital

communication systems with your receivers and so on and so forth and in that context

understanding about linear functional will be going to help us a lot and thus, this idea of

linear functional is important. 

Now, let us see what happens when a Gaussian process passes through an LTI system.
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So,  let  me assume that  we have an LTI  system and let  me assume that  the impulse

response of this LTI system is h of t and let me assume that at the input of this LTI

system we have a Gaussian process and as you would have known by now that Z k for

this to be a Gaussian process the Z k has to be independent Gaussian random variables.

So, let us ask the question what is Y t? So, first we know that it should be a random

process itself and this should be summation k Z k sinc tau by t minus k into h of t minus

tau t tau ok. Then, pulling the summation out putting integration in what we get is Z k

ok. Now from this, what we can write if you see this carefully now what is this? This is a

function.  So, that we are not interested as before; we are not interested in what this

integration evaluates to, but we are more interested in what is this quantity.
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So, if you see that let me first write and then explain. So, we would have Z k and this

quantity would be a function now, it is a function of t ok. It is a function of t and this is

also a function of k. So, what we would have is let us say we would have h k t because it

is a function of time. Now, this is a random process because it is a function of time.

Now, if you take the sample of this process and let us say specific time instants t 1, what

we get is Z k h k t 1. If you take the sample of this process at time t 2, what we get is Z k

h k t 2 right; just substituting t s, t 1 and t 2 and what you see now is what is this again,

now this is some number some coefficients. So, again Y t 1 is a linear combination of

independent Gaussian random variables.

So, Y t 1 is a Gaussian random variable and Y t 2 again it is a linear combination of

independent Gaussian random variables. So, Y t 2 is also a Gaussian random variable.

What more is again they are different linear combinations of common underlying set of

independent Gaussian random variables. So, Y t 1 and Y t 2 are jointly Gaussian random

variables.  So,  everything  is  very  similar  to  the  last  time.  So,  they  are  also  jointly

Gaussian random variables. So, what we can say now is Y t is also a Gaussian process

right. 

Similarly, you can do it for any samples and you would see that the random variable

created by looking at this process at a specific time instants would nothing but it would

be a different  linear  combinations  of  the  common and the length set  of independent



Gaussian random variables and thus, you can say every sample created by looking at this

specific order by looking at this process will be a jointly Gaussian random variables and

hence you can conclude from this is Y t omega is a Gaussian process.
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That is a very important and useful observation that if you have an LTI system, linear

time invariant system; if you have a Gaussian process at the input of this LTI system, the

output  process  is  also  Gaussian.  So,  if  input  is  a  Gaussian  process,  output  is  also

Gaussian process and we say this by saying that linearity preserves Gaussianity right. So,

this can be any linear system linear time invariant system. So, if you have a linear time

invariant  system, what happens is  input is  Gaussian process;  output is also Gaussian

process; it is a very useful result ok. 
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Now, let us define different types of random processes. Let us define different types of

random  processes  and  the  first  interesting  class  of  random  process  is  a  Stationary.

Stationary random processes; what is the stationary random process? Let us try to first

understand it intuitively. So, suppose if you have a random process Z of t and if you

delay this random process by some amount, let us say if I delay this with d unions right.

Then,  these  processes  Z  t  or  Z  of  t  minus  d  are  statistically  they  are  statistically

indistinguishable ok. That means, you take a random process, you delay it by a anytime

units you want; then the process that you create is statistically indistinguishable from the

original process. If that is the case then the random process involved is known as the

stationary random process; that means, it does not care where your time origin is right;

does  not  care  what  is  what  is  the  value  of  t  ok.  So,  such  processes  are  known as

stationary random processes. 

So, let us see mathematically how can we define this more concretely.
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 But before taking that mathematical definition let me warn you do not think suppose I

have a random process which is a collection of several sample functions. So, let us look

this process at time instants t and let me look this process it time instants t plus d. So, I

am looking this  process  at  two different  time instances.  What  I  am saying is  if  this

process is stationary, then it statistically this sample is same as this sample; statistically.

It does not mean that this value is same as this value I do not mean that right. So, you

have to really understand what stationary random processes; do not get confused that the

sample functions are completely deterministic, they are not right. Statistically if you see

this random process at a time instants t or at a time instants t plus d, the statistically these

samples are same; that means, they have the same mean they have the same probability

density  function  and  so  on  and  so  forth  ok.  So,  that  is  the  meaning  of  statistically

indistinguishable.

Let us try to see how can we define mathematically stationarity. So, suppose I have a

random process.
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So, let me draw this. So, that you get a grip of what is a random process and I sample this

at  different  time instances.  Now when a sample a random process the different  time

instances what I am going to get? I am going to get certain random variables and if I get

certain random variables, I can define what is known as the joint CDF right. So, let me

define the joint CDF; so this is how we define a joint CDF of this random process. 

Now, you know what is  the joint  CDF; it  is  saying that  what is  the probability  that

random variable X t 1 takes an argument less than or equal to x 1 and random variable X

t 2 takes in a value less than or equals to x 2 and so on and so forth random variable X t l

takes in a value less than or equal to x l. So, we have already discussed what joint CDF

is; just we can define a joint CDF for this random process.

Now, if this random processes is a stationary random process; what should happen more

is that if you delay these samples by let us say some d times. So, instead of t 1 you

collect the random variable at t 1 plus t similarly then if a process is stationary the joint

CDF that you obtained by sampling the process at time instants t 1, t 2 and so on and

forth up to t l is the same joint CDF if you sample the process at time instants t 1 plus t 2

plus t and so on and forth up to t l plus t. Of course for all f X 1, X 2, X l and for all

values of d right; so if this equation satisfied, then we say that the process is a stationary

process ok. 



So, as you can now see that stationarity checking stationarity is also very difficult right.

It is not easy to prove that a joint CDF of l random variables involved does not change

when you shift the sampling time by d units and you have to do it for all values of l right

1 or 2 would not be sufficient you have to do it for all possible positive integers. So,

doing this would be difficult. 

Now, let us see some interpretations of what stationarity can mean.
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So, stationarity will mean that as we have already said the insight is that if you shift a

random process by d units;  if  you delay a random process then this  random process

remains is statistically indistinguishable and we have also said then the process does not

care where the time origin is. So, let us say that we have covariance function; we have

already defined what a covariance function is. So, let us assume that we have obtained a

covariance function by sampling the process at time instants t 1 and t 2.

Now, this  covariance  function  should  also  be  same as  this  covariance  function;  that

means, if you shift the t 1 by d units and t 2 by d units, then you should get the same

covariance function because the process is stationary. This is not always true this is only

true when involved processes is stationary random process; that means, the sampling or

random process does not care what the absolute values of time instances are right. So, it

does not care whether you have t 1 and t 2 or you have t 1 plus d and t 2 plus d ok. 



Now, I can choose any value of d. This must be true for all values of d. So, let us choose

d as minus t 2. So, if you choose d as minus t 2 what you get is k z t 1 minus t 2 and 0.

Now, this is interesting. So, for a stationary process, the covariance function obtained by

sampling the random process is  times t  1 and t  2 is  nothing but it  is the covariance

function where one time instants of t 1 minus t 2 and the other time instants is 0 ok. Now,

this 0 is kind of redundant. So, I can write this as k z t 1 minus t 2. Now, see what we

have done. So, this covariance function it is a function of 2 arguments right, but this

covariance function is a function of only one argument t 1 minus t 2.

So,  when  you  see  the  covariance  functions  with  one  argument;  what  you  should

interpret? You should interpret that this covariance function should be of a stationary

process right. So, whenever you see a covariance function of one argument like in this

case, it should hint to you that this is a covariance function of a stationary process of

stationary random process. Now, furthermore what it could imply is that the argument

here t 1 minus t 2 should be nothing but it should be the difference.

So, how to relate this from this; so, this t 1 minus t 2 you should interpret that this should

be nothing but it is the difference of 2 arguments in the case of the covariance functions

with 2 arguments. For example, if I have k z tau and this is a covariance function of a

single argument. So, you should interpret this as that this should be same thing as when if

I am writing this in terms of 2 arguments, then what we should have is tau and 0 ok.

So, this is what stationarity leads to. A stationarity converts a covariance function which

is normally with 2 arguments in the covariance function with single argument. With a

single  argument  denotes  that  difference  between  the  time  instants  of  the  covariance

functions with 2 arguments ok. What should happen to the mean? So, normally mean as

we have illustrated before whats the mean of the random process?
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So, you sample this random process at a time instants t 1, then the mean of the random

process can be understood as the mean of this random variable X t 1 X t 1 is a random

variable. So, we calculate the in sample average of this random process or you calculate

the expected value of this random variable X t 1. And similarly you can calculate the

mean of this random process by varying your t from minus infinity to plus infinity.

So, mean is generally a function of time; is not it? So, because at every time instants, you

get a random variable and then you calculate the expected value of that random variable

right. So, mean is a function of a time for ordinary random processes, but now if I am

talking  about  the  stationary  random processes  and if  I  am saying stationary  random

processes does not care where the time origin is; then, what it would mean is that mean

should not be a function of time, it should be constant right.

So,  mean of a  stationary  random process should be a  constant;  that  means,  you can

choose any value of time for example, have chosen the time to be 0. So, m x t is nothing

but m x 0. In fact, you do not have to specify what the timing instance is, it would be

independent of the time. So, mean of a stationary random process is a constant right. It is

not a function of time ok.

So, what we have learnt is that when we are talking about the stationary random process

things  becomes even simpler  right;  simpler  in the sense that  the covariance function

which is normally covariance is a function of 2 arguments reduces down to a covariance



function of a single argument and the mean remains constant. So, these are some effects

of a stationary random process. 
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Now, let us define another class of random processes which are known as wide sense

stationary; Wide Sense Stationary in short WSS wide sense random processes and what

are they right. So, of course, they are stationary random processes in some sense in wide

sense right. So, what we say is a process a random process is a wide sense stationary, if

the covariance function two argument based covariance function is nothing but you can

convert this into a single argument based covariance function and the mean of a random

process is a constant ok.

So, these are the effects of the stationary process that we have already discussed. So, if

this process is stationary, it needs to satisfy these two conditions right; it needs to satisfy

the two argument based covariance function can be reduced to a single argument based

covariance function. This we have already proven and what more we say that the mean is

constant is not a function of time anymore for a for a stationary random process.

Now  so,  if  these  two  conditions  are  satisfied,  we  call  that  processes  a  wide  sense

stationary process as well. Now so, you can imagine that every stationary process is a

wide sense stationary process right, but other way around is not true if a process is wide

sense stationary; that means, these two conditions are satisfied that does not mean that

strict condition of a stationarity is satisfied. What is the strict condition of a stationarity?



A strict condition of stationarity is this. So, you have to prove a stationarity, you have to

prove that this equation is satisfied for all apples for all arguments for all values of d

right.  So,  this  is  the  strict  condition  of  the  stationarity,  but  these  are  kind  of  weak

conditions right. These are weak conditions that you can say that the processes a wide

sense stationary process if only these two conditions are satisfied ok.

So, every stationary process would satisfy these two conditions. So, the every stationary

process is a wide sense stationary process, but every wide sense the stationary process

will not be stationary process. So, there is some confusions in case of the language used.

Sometimes  the  wide  sense  the  stationary  process  is  also  referred  to  as  a  stationary

process right.
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To avoid  any confusion  in  the  words,  sometimes  these  stationary  processes  are  also

referred to as strictly stationary processes and these wide sense stationary processes are

referred to as wide sense stationary processes. It is also important to know that these

words are not used consistently in literature. So, remember that when we say stationary

or a strictly stationary process, we mean that joint probability density function of the

random process is invariant to time shift; whereas, when we say wide sense stationary

process it simply mean that covariance function and mean is invariant to time shift.

So, normally as you can imagine thinking about the stationary process is or a strictly

stationary process is really difficult. So, we will stick to wide sense stationary processes



only  right.  So,  these  wide  sense  stationary  processes  or  processes  of  practical

importance; the one that can be easily defined and can be used ok. 

Now, let us take some example right. So, let us take the good old example of the random

process that we have been using so far. So, what does this produces if it is a zero-mean

independent Gaussian random variable. Zero-mean is not important, but we are saying it

because we have been defining them to be like this always.

Then you see that it produces a zero-mean Gaussian process right. Now, we have already

seen  that  what  is  the  covariance  function  for  such  a  process?  If  you remember  the

covariance  function  for  such a  process  can  be  calculated  like  this.  We have already

proven  this.  So,  you  refer  to  one  of  the  classes  in  which  we  have  calculated  the

covariance  function  of  this  random  process  and  what  we  observed  then  is  that  the

covariance function evaluated at t 1 in t 2 is not depending upon the absolute values of t

1 and t 2 rather it was depending upon the difference of these timing instances right.

So, hence this process this framework that we have been using can be used to model

wide sense stationary processes only. So, it models wide sense stationary processes or

wide sense stationary random processes; that is one insight. So, together with modeling a

Gaussian process it only models Gaussian processes that have wide since of stationary

Gaussian process that is one thing.
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The second thing is now we know that a Gaussian process is only characterized is only

characterized means when we are talking about this joint p d f we already determined

what is the joint p d f of a Gaussian process, there we saw that this is only characterized

by it is mean and covariance function. 

Now, if it  is characterized by it is mean and covariance function and if the Gaussian

process is wide sense stationary, if Gaussian process is wide sense stationary that means,

it is covariance function does not depend upon the absolute values of time instances that

means, this joint p d f also does not depend upon the absolute values of timing instances

because joint p d f is only a function of mean and covariance right.

So,  let  us  say  that  if  the  processes  wide  senses  stationary  that  means,  the  mean  is

constant and covariance function does not depend on absolute values; absolute values of

time right and hence this joint p d f is also. So, does not depend upon absolute values of

time and hence if a Gaussian process is wide sense stationary it means that it is also

stationary. 

So, everything simplifies for a Gaussian process right. So, we have said in general it is

quite difficult to prove whether a processes stationary or not because we have to write a

this joint p d f, but for a joint p d f in the case of a Gaussian processes is easy. Because it

is completely characterized by it is mean and covariance function. So, if we say that the

process is wide sense the stationary that means, it is mean is constant and this covariance

function does not depend on absolute values of time. From this, we can conclude that is

joint p d f is also time invariant it is. It is not depending upon the absolute values of time

and hence, the wide sense of stationary Gaussian process is also a stationary. The two

more points that we will like to point out at this point is because we are mostly talking

about zero-mean processes right, the covariance function.
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Let us say the covariance function of 2 random variables are the covariance function of a

random process very sample the random process at 2 time instants is nothing but it is the

same thing as it is autocorrelation function right because it is a zero mean. The difference

between covariance and correlation only comes in terms of mean if something is zero-

mean then either you can talk in terms of the covariance function or you can talk in terms

of the correlation function it means one and the same thing right.

So, whatever we have set for the covariance function also remains true for the correlation

function. So, for example, if I want to say about the wide sense stationary process, I can

say wide sense stationary process is a random process which has covariance function

which is time invariant that means, it does not depend upon the absolute values of time

right and this boils down to t 1 minus t 2 using the same ideas as we have used for the

covariance function. In short if it is a zero-mean process whatever is set for covariance

function can be set exactly for the correlation function not a correlation function that is

one point.
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Second point is let us see if the process is wide sense stationary all that is stationary; that

means, we do not talk about the time origin right. So that means, when you are defining

this process you have to define it from minus infinity to plus infinity because it is not a

function of time. So, in terms of the time this process should exist from minus infinity to

plus infinity right. Now, if something exists from minus infinity to plus infinity that thing

is going to have infinite energy; think more about this. So, anything that exists from

minus infinity  to plus infinity  if  the sample function is  the stationary of the random

process is  stationary existing from minus infinity  to  plus infinity;  then,  it  must  have

infinite energy.

Now, if it has infinite energy all this oil to theory that we have developed does not work

because L 2 L 2 theory is for the sample functions with finite energy right. So, in order to

get rid of this problem, sometimes you talk about the effective wide sense stationary or

effective stationary process meaning that the process is not completely stationary, but it

is a stationary in the timing limits minus t naught to plus t naught ok. In the processes of

stationary  only  within  this  time  interval  and after  that  the  process  does  not  exist  it

becomes 0 whatsoever, then if  you consider  the process to be effectively wide sense

stationary, it would have the finite energy because this process exists only between minus

t naught 2 plus t naught right.

So, any effective wide sense stationary or effective stationary process would be a random

process with finite energy in all this L 2 theory will work and how do we choose this t

naught and minus t naught as long as they are pretty large, it does not matter right. For



example, how does this random process behaves in very far future or how it behaved in

the past before minus t naught if t naught is pretty large is not going to impact today

right.

So, these limits does not matter as long as the value of t naught that is chosen is pretty

large and what does this help us with is it makes the process with finite energy. So, this

idea is also sometimes used. So, we will not use it, but in certain text books you would

find another class of wide sense stationary and a stationary process is known as effective

stationary process; that means, they are only stationary within a time window right and

this time window is chosen to be pretty large. So, that it does not impact the present ok.

(Refer Slide Time: 45:59)

So, let us now define another process which is Ergodic random process. So, what is an

ergodic random process? A stationary process a stationary random process is an ergodic

random process, if the statistical averages are same as the time averages ok. So, we have

defined what is  an ergodic random process. So,  the census first  of all  it  has to be a

stationary random process ok. If it is a stationary random process and if it is statistical

averages are same as the time averages, we say that the processes and ergodic random

process. Now what are the statistical averages?

So, statistical averages are the same as an ensemble averages or they are same thing as

taking expectation ok; taking expectation. So, these are one and the same thing and the

time averages are one that you have already studied right; you have already studied how



can we take in time average of a quantity. So, ergodic random processes for an ergodic

random processes these averages are same. So, we would choose to take an average

which one is more convenient ok.

So, it is an important class which we will talk about in the next lecture. So, what we have

seen today. We have defined what  are  the linear  functional’s and we have got  some

insight into how does a random process behaves when it passes through in LTI system

and more or less we have defined various important classes of random processes. 

We have defined what is the stationary random process; we have defined what is a wide

sense a stationary random process and now we are going to define what is an ergodic

random  process  and  remember  that  most  useful  random  processes  of  wide  senses

stationary random processes and if a processes a Gaussian random process and if it is

wide sense is stationary that means, it is also a stationary random process.

We will see more of this in the next lecture.

Thank you.


