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Lecture – 12
Random Variables and Random Processes: Properties of Random Process

So, welcome to next lecture on Random Processes. Today’s is lecture 6, in the unit on

random processes and in the last lecture we defined what is a random process? And we

have looked at certain examples of random processes. And what was the most interesting

example that we saw in the last lecture it is that a random process can be expressed in

terms of orthogonal functions and random variables ok.
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So, we continue with that idea was so strong, so, let us assume that now, I have a random

process which is again expressed in terms of sinc functions. So, we have seen a similar

example in the last lecture, but now what I have is these Z Ks are zero-mean Gaussian

random variables and let  us also assume them to be statistically independent  of each

other. So,  Z Ks are let  us  say they are  iid  – independent  and identically  distributed

random variables.

So, what can I say about this Z t? What is this Z t? Of course, I have seen that this

provides me a framework to express random processes, but first let me see what does this

mean is I am saying Z t is Z 0; so, putting K as 0, let me say K goes from 0 to infinity ok.



So, Z 0 I have sinc t by T then I have Z 1 sinc t minus T by T, then I have Z 2 sinc t

minus 2T by T and so on so forth, I can continue right because the infinite terms.
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Now, if you look at this and try to draw this if I try to draw this. So, let me have; let me

have a sinc function let me first put some markers. Let me draw now the sinc t by T ok.

Now, I draw a sinc function which is shifted by T units. So, this will have a maxima here

ok. Now, if I shift this sinc by 2T units it would be some function like this. So, this is my

sinc t by T, this is my sinc; I am shifting my sinc by T units to the right and this is my

sinc t minus 2T by T ok.

So, now if I investigate let us say at 0-th time what do I see? So, if I am interested in the

sum at this time instance what you would see is I have only the contribution from the red

curve and the contribution from green and black is 0, right. So, I just have contribution

from red, contribution from green is 0, contribution also from the black curve is 0. So, at

0th time instance I have contribution only from sinc t by T. 

Similarly if I look at the T-th instance the black and red curves are 0, their value is 0 at T

and only I have contribution from green curve; that means, at T-th instance I only have

contribution from sinc t minus T by T. Similarly I can go on and see that at 2T-th time

instance I have contribution only from this term. So, let us look at this expression again.

So, I have a Z t which is combination of various sinc terms and certain random variables.
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So, let me ask if I am interested in the value of this random process at K T time if I am

interested in Z of K T right, where T is the let us say the sampling interval. So, now, this

K Tk is  some integer,  so,  this  I  would  have  contribution  only  from the  sinc  whose

maxima lies at K T. This is a sinc whose maxima lies at K T. If I substitute t as K T here

right what I would end up with is Z K. Now, important point is so, what I am saying is if

I have a random process which I have thought by this expression if I am taking the value

of or if I am sampling this random process at K T times what I would end up with is Z K

and Z K is a Gaussian random variable. So, if a sample the process at K T time what you

would get is a Gaussian random variable.

Let us know sample this process at some other time let us sample it as t s time, where t s

is not K T because we have seen what happens if the sampling time is K T. If we do not

sample this what you would have is Z 0 and you would have some contribution from this

term,  right.  I  do  not  know  what  that  contribution  is,  but  you  would  have  some

contribution  because  these  terms  goes  to  0  only  at  K  T times,  right;  at  other  time

instances they are not 0. So, I would have some contribution let me say that contribution

as a 1.

Similarly, I would have some contribution from second sinc and let me call this as a 2.

Similarly I can go on and on I will have some contributions from all sincs. Now, what

you would see is Z t s; what is Z t s? It is a random variable because I am looking down



the random process at a specific time instance and this we have said is a random variable.

So, Z t s is a random variable and now this random variable as you can see is nothing,

but it is a linear combination of these random variable Z naught, Z 1 and Z K and they

are assumed to be independent. So, Z t s is also Gaussian random variable ok.
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So, if I choose to sample this process at another time instance let us say t m, where t m is

not K T what I would end up with is again let me make this as b 0, b K ok. So, what you

would see is Z t m is again a linear combination of Z naught, Z 1 and Z K and what are

these? These are as I have assumed they are Gaussian random variables more ever they

are independent of each other, right.

So, if I have a linear combination of independent Gaussian random variables we have

seen that the resulting random variable is also Gaussian. So, from this I can conclude that

Z t m is also Gaussian random variable ok. So, we have seen the Z t s and Z t m both are

Gaussian random variables, but there is something more hidden in them that is they are

linear combinations of the common set of independent Gaussian random variables. So,

these are linear combination of common set of independent Gaussian random variables,

right. So, we will see later that these random variables are also thus jointly Gaussian,

they are jointly Gaussian random variables.

What is jointly Gaussian we will study a lot about this jointly Gaussian, but this is a first

introduction to water jointly Gaussian random variables. The jointly Gaussian random



variables  are  linear  combination  of  common  set  of  independent  Gaussian  random

variables ok. So, we have concluded some examples of random processes and we will

see more examples of random processes as we go along.
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But, now I think its a time to cover the properties of these processes. So, let us talk about

the mean and covariance, properties of random processes: so, we have done this for the

case of random variables and now we would like to do it for random processes. So, the

mean of a random process X t; so, mean of a process. So, X here stands for the process X

of t. So, mean of this process is nothing, but it is the expected value of random process X

t ok, this is very simple. In the mean of a random variable we were taking the expected

value of a random variable,  here the mean of a random process we have to take the

expected value of a random process. So, let us see how does a random process look like?

So, random process is made up of these various sample functions.

Now, if I look down these ensemble at a puc t 1. So, what I would get is a random

variable right if I look down this ensemble at a particular time instance I get a random

variable, so, this is X t 1. Similarly, I can look this town at and a puc t 2, I get another

random variable. So, when I am calculating the expected value I get a certain expected

value at this time instance this is mu. So, this is E of X t 1 and this expected value is E of

X t 2. Now, as you can see that expected value is a function of time, right; expected value

is what random variable you have in here and the random variable itself changes with



time, right as you scan this time axis you are ending up with different random variables.

And so, now, the expectation is a function of time. In case of random variable it was not

a function of time because we were just looking down at a particular time instance, so,

time was not varying here.

But, in the case of the random process you have to scan these time instances. So, you end

up with different random variables as you move along the time instance and thus the

expected value is also a function time good.
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So, let us now define correlation in case of random processes. So, let me first explain the

notation. Here I have a random process X t, so, X represents the random process X t. I

sample this random process X t at time instance t 1, I get a random variable X t 1, I

sample this random process at time instance t 2, I get a random variable X t 2 and I then

find the expectation of the product of these two random variables. Remember, we have

defined that the correlation is nothing, but finding the expected value of the product of

two random variables.

Here in this case we are obtaining the two random variables by looking at a process at

time instance t 1 and at the time instance t 2 and because these two random variables are

formed by sampling the same random process this is also referred to as autocorrelation.

So, auto specifies that the random variables obtained are obtained by sampling the same

random process ok.



Let us now define auto covariance. So, what is the difference between covariance and

correlation we have already seen in case of covariance we have to subtract the mean

from the random variable. So, auto covariance can be obtained by subtracting the mean

of the random variable X t 1, we denote that with this. So, this quantity represents that it

is the mean of the random variable obtained by sampling the random process X t at time

instants t 1 ok. So, we get this and then we have to obtain the second random variable

and subtract from the second random variable its mean, we multiply these two things we

take it is expectation and this will give us auto covariance. Again, auto means that the

two random variables are formed by sampling the same random process ok.
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So, if there is auto there also has to be a cross, so we can define cross correlation. So, this

is cross correlation and this can be obtained by forming two random variables, but now

the main difference is that the first random variable is obtained by sampling this random

process X t at time instance t 1. The second random variable is obtained by sampling this

random process yt at time instance t 2 and these two random variables are formed by

sampling two different random processes and hence the term cross correlation, we can

similarly define cross covariance ok.
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Now, sometimes in this case, when I am obtaining the two random variables by looking

down at a single random process there are certain integrities. So, I can also write this as

this because it is clear that I am looking down as a single process if I am having it just

one random process I do not have to repeat this ok. So, this is also annotation that is

sometimes used, so, you can also find these notation in different books ok, this is making

things compact.

Now, something  more  interesting;  so,  in  case  of  random variables  we  said  the  two

random variables are uncorrelated if their covariance is 0. Here also the two random

processes X and Y if their covariance is 0, if the covariance of two random processes is

0, but this has to be 0 for all t 1 and t 2, so, for all time instances for all epochs if the

covariance of the two random process is 0, then we say that the random processes are

uncorrelated. This is how we define uncorrelated random processes. So, let us understand

this covariance with an example.
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So, let  us take a  random process which we have taken several  times and this  is  the

random process where K takes all possible values, K can go from minus infinity to plus

infinity. So, do not lose your sleep over whether K should go from 1 to infinity or from

minus infinity to infinity as long as K takes a countable infinite values, it is fine, it does

not make a lot of difference. So, from now onwards I will assume K goes from minus

infinity to plus infinity and I would just denote that by writing K here; that means, K

takes all possible values ok.

So,  this  is  the random process  that  we have seen several  times and now what  I  am

interested in what is the covariance of this random process ok? Now, to simplify the

calculation of the covariance let me make certain assumption; so, this is what we have to

find and let me assume that Z K or Z K’s are normal random variables and they are also

statistically  independent.  So,  this  is  what  we assume.  So,  Z K’s are  normal  random

variables; normal random variables means it has a mean 0 and the variance of 1. So, this

is given to us and we are interested in finding the covariance of this process.

So,  let  us start  what  is  covariance?  By definition  the covariance  is;  so,  you have to

collect it random variable by sampling Z at time instance t 1 minus t mean of Z at time t

1 into Z of t 2 minus mu Z t 2. So, you have to find the expectation of this argument. So,

let us now see what is mu Z t 1? So, if you recall in the example that we did just before

this random variable collected at time instance t 1 would be some function it is a linear



combination, so, it would be linear combination of these random variables. So, Z 1, Z 2

and Z 0 is nothing, but these that case you can also include negative part if you like.

So, what I am saying is the random variable, let us say if I collect a random variable at

time  instance  t  1  this  is  nothing,  but  it  is  a  linear  combination  of  all  these  random

variables.  Now, if  I am given that  this  is a zero mean random variable,  this  random

variables. So, if I am interested in the expected value of this random variable, this is

nothing, but a naught times expected value of Z 0 plus a 1 times expected value of Z 1

and so on so forth.

Now, because these random variables are given to us as 0 mean all these expected value

is 0. So, from this we can conclude that expected value of Z at time t 1 is also 0 ok. So,

now, this terms will vanish; this is 0 and this is also 0.
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So, what we will get now is we have got a simplified expression that K Z t 1, t 2 is

nothing, but expected value of Z t 1 times Z t 2; this looks much simpler now. Now,

substituting this in this expression we get expected value of summation K Z K phi K t 1

because we are sampling this at time t 1 into summation m Z m phi K phi m t 2. Just see

why do we have a different running variable here because if we would have chosen K,

then it would not have been possible for us to collect cross terms. So, if you multiply this

with this what you would end up with is Z K would be multiplied with some other terms

as well.



 So, that is why to collect cross terms we need to choose a different running variable than

in this case. So, this is also what we did before. So, I can write this as summation K

going from 1 to for all possible values of K, Z K square phi K t 1 times phi K t 2 plus

summation, where K is not same as m, we can have two summation.

So, what I have written is now let us look at these terms carefully. So, what I am saying

is when I  multiply this  summation  with this  summation what would happen is  there

would be same terms that would get multiplied. So, corresponding to that I would have Z

K square this then would become phi K t 1, this would become phi K t 2 because m has

taken the value which is same as K.

Now, you will also end up with having different terms. So, Z K would also be multiplied

by Z m, where m is not same as K. So, you would collect different terms cross terms and

you would also collect similar terms and now we have to take the expected value of this.

Now, if  you look carefully  if  I take expected operation inside expectation is a linear

operation, so, this would be multiplied by this. So, expected value of Z K into Z m and if

Z K and Z m are statistically independent this is nothing, but it is expected value of Z K

times expected value of Z m, right. An expected value of Z K is 0, because these random

variables has zero mean, so, this term would vanish, so, we would not have this term.
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So, what we will be left with is a much simpler expression that expected value of for all

values of K. Now, if you look this carefully what is this? So, this is nothing, but it is 1



because we have been given that these are normal random variables and this is nothing,

but is the variance of normal random variables and the variance of a normal random

variable is 1.

So, what we will end up with is just summation K phi K T 1 into phi K T 2. So, this is

the covariance at time instance t 1 and t 2. Now, this we have obtained assuming that Z K

are iid normal random variable. You can use the same steps and if we assume that Z K

are iid Gaussian with zero mean; mean is 0, but variance is not 1, that is the difference.

So, we did for a case where they were iid and normal. So, variance was one here you can

generalize it to the case where this is Gaussian. So, still  we are assuming zero mean

because mean is not so important we can always plug in the mean or take out the mean

that is not so important. 

So, in this case if I am assuming this case you can prove that the covariance is nothing,

but sigma square summation K by K t 1 times phi K t 2. A similar expression the only

thing that changes here is instead of 1, I would have sigma square where sigma square

will be the variance of these random variables. 
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Let me write down this result again that if I have a process, then the covariance function

of this process is sigma square times summation K phi K t 1 times phi K t 2 ok. If I am

given that Z K are iid with zero mean and variance of sigma square ok.



Now, let us assume that phi K t. So, now, if we are specializing it to the case where phi K

t is nothing, but the sinc function. So, as in the previous examples also I have illustrated

the case where we assume this phi K t as a sinc function. So, what is the covariance;

what is the covariance? If my phi K t takes a sinc form, let us see, it is interesting. 
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So, we would have K Z t 1 t 2 sigma square summation K would have sinc, it is t minus

K T by T. So, this is taking time t 1, so, we would have t 1 here into sinc t 2 minus K T

by T.

Simplifying this part requires some trick and the trick that we would use is the sampling

theorem.  So,  if  I  state  again  the  sampling  theorem  which  we  discussed  before  so,

sampling theorem says that if I have a function or a signal which is band limited to 1 by

2T. So, if this function is band limited to 1 by 2T, then I can think about the signal by

putting sinc caps around the samples collected at integer multiples of T and again the K

takes all possible values ok. So, this is the sampling theorem you can think about the

signal from it is sample. So, u KT are the samples of u t collected at integer multiples of

T and around these samples you need to put the sinc cap and then you can recover back u

t. So, this is the sampling theorem it was if u t is band limited to 1 by 2T.
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So, using sampling theorem let us assume that u t is sinc t minus t 1 by T. So, using

sampling theorem then I can say that this is sinc t minus t 1 by T should be nothing, but

sinc I have to substitute t as KT minus t 1 by T into sinc t minus KT by T. So, just using

the sampling theorem; so, from sampling theorem I have this and then I have substituted

u t as this function, then I get such an expression.

Now, if we look carefully and if I now choose t as t 2 what I would get is sinc t 2 minus t

1 by T is summation K sinc; now, I make one more change here because sinc is an even

function. So, whether I write this as KT minus t 1 or t 1 minus K t does not matter. So, I

am using the property that sinc is an even function, so, I can write this as this into sinc.

Now, this t has been replaced by t 2, so, we would have this.

Now, this was the summation in which we were interested. So, let me go back and let us

see.  So,  I  was interested  in  calculating  this  summation  and now I  exactly  have  this

summation and from the sampling theorem I can say that this summation is nothing, but

this quantity.
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So, covariance becomes sigma square times sinc t 2 minus t 1 by T. So, I am replacing

the whole summation this summation with the simpler quantity. So, using this I have got

this ok, so, this is the final result. So, we have started with a process let me show you the

process again. So, we have started with this process and after starting with this process,

assuming that this Z K’s are iid with zero mean and variance of sigma square we have

calculated  this  covariance;  where  covariance  we  found  out  in  terms  of  orthogonal

functions. Then specializing these orthogonal functions to take sinc form the final answer

that we have got is the covariance is nothing, but this.

Now,  there  is  something  interesting  that  has  happened  here  and  that  is  now  this

covariance function is not dependent on t 2 and t 1. It is not a function the covariance

function is not a function of t 2 and t 1 rather it is a function of difference in t 2 and t 1.

Such processes are very important processes they fall under the umbrella of what are

known as a stationary process, right. 

So, we will look about this and then we will define more carefully what I mean by a

stationary  process,  but  let  me  give  you  some  hint  that  such  processes  where  the

covariance is not a function of absolute values of time, but rather it  is a function of

difference  of  the  time  instances.  Those  classes  of  processes  are  really  important

processes and useful processes and these are the kinds of processes with which we work,

ok alright.



So, let us now quickly revisit what we have done today. So, we have started with an

example of random process which is a key example of a random process, where the

random process is expressed in terms of orthogonal functions and we have also defined

the mean and covariance of a random process. And we have looked as what happens if

you take this as a random process what happens to the covariance of such a random

process.  And  there  we have  noted  something  very  interesting  that  if  you take  these

orthogonal  functions  as  sinc  functions,  something  interesting  happens  is  that  a

covariance does not depend upon the absolute values of time rather it is a function of

difference in time instances.

So, with this we will conclude this lecture and in the next lecture, we will continue with

the  discussion  of  random  processes  and  we  will  they  discuss  a  very  important  in

significant class of random process and that is a Gaussian process. 

Thank you. 


