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Random Variables & Random Processes: 

Introduction to Random Process

Good morning. Welcome to another lecture on Random Processes. So, we are on lecture

number 5, and in this lecture we will start looking into the random processes. So, first we

will define what a random processes. And then we will see some examples of random

processes.  So,  as  we  have  said  random  processes  are  used  to  model  noise  and

information sources and they are very central to the study of digital communication. 

And finally, after is taking 4 lectures on random variables we are here to discuss random

processes. So, let us start, before starting discussion on random process we will revisit

what are random variables.
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So, as I have said in the case of random variables we have a sample space which is

denoted by this capital omega, and within a sample space you have various outcomes of

an experiment.  So,  these dots represents outcome of an experiment  and we use little

omega to represent the outcome of an experiment. Now, in the random variable if you

remember, a random variable is a function which takes in outcome of an experiment little



omega and it provides a numerical value to this outcome of an experiment. So, basically,

we have set this numerical values are mostly real numbers and in this case we have a real

random variable, ok. So, a real random variable or we also call this as a random variable

is a function which maps the sample space to the set of real numbers.

Similarly, we can define random process almost we have the same analogy again we

have the sample space, and again in the sample space you can have various outcomes of

an experiment. And now again same as in this case we can have a function which takes

in  an  outcome  of  an  experiment,  but  now  this  function  maps  an  outcome  of  an

experiment to a signal and then this function is known as the random process. So, let us

differentiate or letters appreciate the difference between a random variable and a random

process.  Random variable  is  a function that  provides a  mapping between the sample

space  and  the  set  of  real  numbers  whereas,  a  random  process  is  a  function  which

provides mapping between the sample space and set of signals. And these signals can

also be real valued signals. 

For most of the discussion we will assume the signals to be real valued signals and thus

the process these random processes can also be called as real valued random processes,

ok. We will focus our attention basically to these real valued random processes where the

signals to which these outcomes of an experiment are mapped are also real valued. So,

we will  always assume a real valued random processes. Now, if you see that,  if  you

revise from the basic signals and systems you can see that the signal is also of two kinds,

you can have continuous time signals or you can have a discrete time signals, alright. So,

if my signal is a continuous time signal then this random process is also known as CT

random process. 
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So, if outcome is mapped to a CT real valued signal, my random process is also known

as CT real valued random process. And if my outcome is mapped to a DT: Discrete Time

real valued signal, my process is known as DT real valued random process, ok. So, the

random processes can be of several kinds it can be complex valued random process, it

can be a CT random process, it can be a DT random process and so on and so forth. So,

but for this course in discussion we always assume that my random process is a CT real

valued random process and rather than always saying this CT real valued random process

I will just say it as random process. 

So, random process when I say random process in the back of your head you should

think this as a CT real valued random process, ok. If there are other special instances that

we will see of other kinds of random processes I will explicitly mention it right, but the

random process try to think this only as a CT real valued random process, ok.
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Now, there is nothing better than taking an example to understand further this random

process. And for this example, let me assume that I have a sample space, and this sample

space consist of N harmonic oscillators. So, I have N harmonic oscillators in my sample

space. Now, a given harmonic oscillator produces a sin wave. Let us assume that a given

harmonic oscillator produces a completely deterministic sinusoidal waveform, where A is

an amplitude of this sin wave, phi is the frequency of this sin wave and theta is the phase

of the sin wave.

Now, for a given harmonic oscillator  these parameters  are  fixed that  means,  a given

harmonic  oscillator  produces  a  specific  effect  sinusoidal  waveform.  But  if  you  are

thinking about N harmonic oscillators depending upon which harmonic oscillator you

may choose the value of amplitude, frequency and phase may differ. That means, the

amplitude frequency and phase depends upon which harmonic oscillator you choose but

for a given harmonic oscillator these quantities are deterministic, right. 

So, because these values depends upon the outcome of an experiment or it depends upon

which harmonic  oscillator  you choose,  these  quantities  A,  phi  and theta  are  random

variables, ok. A, phi and theta are random variables because they are real numbers first

of all and these values of these real numbers or the values of this constant depends upon

the outcome of an experiment.



Now, if you want to think similarly what is a random process. So, I can write a random

process as A sin phi t plus theta. Now, first thing that you should appreciate is that this

random process is a function of two independent variables. So, it depends upon time and

it depends upon omega, omega represents the outcome of an experiment. So, random

process is a function of two independent variables, it is a function of time and it is a

function of omega, right. So, what I mean with this is it is a function of time right, you

see that there is a time sitting over here and it is a function of omega because the values

of A phi and theta depends upon the outcome of the experiment.

Remember, contrast this from the from random variable where random variable is not a

function of time it is just a number right, it is not a function of time So, this is the main

difference between a random process and a random variable that random process is a

function of time whereas, the random variable is not a function of time, ok.
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So, to understand more about this let me pose a question to you, that what do you think is

this  quantity  X of  t  1  omega.  Now, before you can start  thinking about  what  is  the

meaning of this quantity let me explain the meaning of the notations that I have chosen.

In most of the digital communication books and digital communication is a hard subject

mainly because of inconsistency in notation.  So, it is very important that you clearly

understand what notations are used right.



So,  here  in  this  course  the  notation  that  we use is  suppose  I  choose  t,  now t  is  an

independent variable. So, t can take any value in the set of real numbers. So, t belongs to

the set of real numbers, so t is a variable. But when I write this as t 1, so now, 1 in the

subscript this means in this context or we would assume the meaning of this t 1 to be the,

t 1 is a specific instance of t, right. So, t 1 is a number right it is not a variable anymore

when I am writing X of t 1 omega that means, I am interested in the random process at a

specific time instance. This was a specific time instance. This is not at time this is not

denoting that this is a function of time but we are asking what is this quantity, what is

this  random  process,  when  you  are  looking  this  random  process  at  a  specific  time

instances or at t 1.

Now, to think about this what we are saying is suppose I have different sample functions

as I had; so what I am saying is what happens if I evaluate or if I look down this random

process at a specific time instances that is t 1. So, let us see what happens if I put t 1 in

the earlier expression. So, in the earlier expression X of t omega was A sin phi t plus

theta. Now, I am trying to think that what is this quantity at a specific time instances, that

is t 1. So, I just replace t by t 1. Now, if you look at this quantity, this quantity is not a

function  of  time anymore  this  is  just  in  number. So,  this  is  just  a number. And this

number  depends upon the  outcome of  an experiment  because this  number would be

decided by what values A, phi n theta takes and the value of A, phi and theta depends

upon the outcome of an experiment. 

So,  in  this  context  this  is  not  a  process  but  this  is  a  random variable,  ok.  So,  the

difference between this quantity, this quantity was a function of time, this we say is a

random process, but when you evaluate a random process at a specific time instance this

does not remain a function of time but this becomes a number and this now becomes a

random variable. So, what I am saying is if you look a random process at a specific time

instance what you would end up with is a random variable. Now, let me ask a different

question what happens if you evaluate or if you look this random process at a specific

outcome?
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So now, I have frozen omega, so now, I am looking this random process at a specific

outcome. So, the meaning is suppose you have a sample space which was consisting of

different outcomes, and here let us say that the function corresponding to this sample

space. So, you have got some function corresponding to this outcome. Let me assume

that a function corresponding to this is a different sinusoidal waveform. Let me assume if

function corresponding to this is some other sinusoidal waveform.

So, what I am saying is if I have frozen one outcome that means, I have said that this

outcome has happened what I get is just one function, right and we call this as a sample

function. If you look at the random process from this direction that means, if you are

looking outcome of an experiment a specific outcome of an experiment the outcome that

you get is known as a sample function. Now, as I can see that a random process is built

up of a family of sample functions right, there is a sample function corresponding to this

outcome, there is a sample function corresponding to this outcome and so on so forth.

So, you get a family of sample functions and this family of sample functions is also

known as ensemble.

So, what is ensemble? Ensemble is nothing but it is a family of sample functions. Now, if

I have got this ensemble which is a family of sample functions and then if I say or define

a probability rule which tells me what is the probability that the sample function might

occur. So, let us say this the probability is P 1, this probability P 1 tells me the ability that



this sample function occurs. And similarly, I can say that the probability that this sample

function occurs let us assume that is P 2 the probability that this sample function occurs

let us assume that this is P 3.

So, what I am saying is I have now a probability rule which tells me the probability of

each sample function occurring and then I have an ensemble which is a family of sample

functions, and collectively combining both of these things together that means, having a

probability rule and having an ensemble leads to a random process. This is another way

in which you can think about a random process.

So, what I have said is random process consists of a family of sample functions. This

family of sample functions is known as ensemble. And then I should also tell you what is

the probability, that this sample function might occur. The probability  of this  sample

function to occur is the same as probability of this outcome to occur. So, you have a

probability for each sample function once, then it tells me everything about the random

process. So, let me now do one trick here, it is not a trick we are just trying to understand

this better. Let me now choose a specific time instances. Let me choose specific time

instances, let me choose t 1. 

So, if I choose and I look down this ensemble at a specific time instances t 1, what I

would end up with is I would end up with some numerical value here x 1. Let us say that

numerical  value is  x 1 and I  may get another  numerical  value corresponding to this

sample function which is x 2, I get another numerical value corresponding to this sample

function which is x 3. Now, I know that if I am interested in plotting the probability mass

function that means, let us say that I have. Now, got 3 numerical values x 1, x 2 and x 3

and let us say that x 1 happens with the probability P 1, x 2 happens with the probability

P 2 and x 3 happens with a probability P 3. So, if the probability that this sample function

occurs happens with the probability P 1 this is the probability is P 1 then the probability

that I get a numerical value x 1 is also P 1. 

The probability that I get a numerical value x 2 is P 2, probability that I get a numerical

value x 3 is P 3. That means, I have now created a probability mass function, and this is

nothing  but  a  random  variable.  So,  if  I  investigate  this  thing  at  a  particular  time

instances, I can collect various numerical values and to each numerical value I can assign

a probability and I can construct a probability mass function. So, this is nothing but if I



investigate this random process at a specific time instances this is nothing but a random

variable.
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So, to conclude what we have defined is I have a sample space. The sample space may

lead to different sample functions may consist of family of sample functions. Sample

function  is  nothing  but  it  is  an  outcome  of  a  given  experiment,  right.  So,  for  each

outcome I have some sample function, right. So, sample function is nothing but it is the

outcome of an experiment,  right,  it  is a function corresponding to the outcome of an

experiment.

If you look down to the ensemble which is a family of sample functions at a specific time

instance right, then what you get is a random variable. You get several numerical values

and you can obtain the probabilities with which these numerical values might occur. So,

this is this will help us to construct a random variable. So, looking down the random

process  in  this  direction  we  get  a  random  variable,  and  looking  down  the  random

processes from this direction we get sample functions, ok.

Now, let us introduce few more notations. There are several notations that run in this

course. Another notation is that now we have said that a random process is a function of

two independent  variables,  means it  is  a function of time and it  is  a function of the

outcome of an experiment. But because we do not like to write this all the time I use or

we can use a simpler notation like this and this notation stands for a random process.
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Now, I have omitted or ignored this omega, I have not retained this omega what I just

now have caught is that this random process is just a function of time. But at the back of

your head you should remember random process is not only a function of time it is also

the function of outcome of an experiment, right. Now, you might wonder that this is also

a function of time. This is a signal, and this is a random process. How do we differentiate

between the two? So, the notation that we have used for the random process is that we

have used a capital letter X and for the signals we use generally a small letter x. So, this

will tell me that this is a signal and this is a random process, ok.

So, let us keep our notation the state and now then what would be this X of t 1. X of t 1

would tell you that if you have a random process which is built up of different sample

functions. So, this is X of t. So, we have ensemble and then you also know: what is the

probability  with which each sample function occurs and if  you evaluate  this  random

process at a specific time instances t 1, as I have said you get a random variable. So, X of

t 1 is nothing but it is a random variable. 

Now, similarly you can choose other time instances the time instances are also known as

e pochs, there is another word that is commonly used as e poch. So, I can choose another

e poch t 2, I can choose another e poch at t 3 and so what I end up with is I get several

random variables, all right.
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Now, as  we have already learned about  the joint  CDF. So, we can construct  a  joint

cumulative distribution function also in this case. So, if I am interested let us say in this

picture as I have said let us assume that I have collected 3 random variables. So, I can

define the joint cumulative distribution function for these 3 random variables, this is a

random variable X of t 1. 

So,  what  does  this  mean?  It  means,  it  tells  me  what  is  the  probability  that  random

variable  X t  1 takes in a value less than equals to x 1? What is  the probability  that

random variable X t 2 takes in a value less than equals to x 2? What is the probability

that random variable X t 3 takes in a value less than or equals to x 3? And we want all

these things should happen at the same time, ok. I can also put a comma here.

So,  this  tells  me this  is  a  joint  cumulative  distribution  function.  And how have you

obtained these  3 random variables?  By looking at  the  random process  at  different  e

pochs,  right.  You can generalize this  and you can define a joint  CDF at countable e

pochs, which will tell me what is the probability. So, you can obtain a joint cumulative

distribution function by taking countable e poch. So, here for example, let us assume that

l is some positive integer. So, let I have assumed l random variables and I can construct a

joint cumulative distribution function for this random process.

So, if you look at this expression, this expression might have started to give you sleepless

nights.  This  expression  looks  very  scary  because  now  I  have  l  random  variables



involved, and to fully characterize a random process what we have to do is we have to

write such an expression for all possible values of l and for all possible e pochs t 1 t 2

and t l, and for all possible arguments does writing down such an expression to fully

characterize a random processes difficult. But before thinking about how can we simplify

all this let me conclude this by deriving its probability density function.
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So,  if  you  write  the  probability  density  function  remember  that  probability  density

function can be obtained by partial derivative of CDF. So, this can be obtained through

partial  derivative  of  joint  CDF,  ok.  So,  we  have  obtained  an  expression  for  joint

probability density function. Now, this expression is also as scary as the last one. This

does not, is not a simplified expression or whatsoever it is still very impractical to use

such an expression to characterize a random process.

The good news but is that most of the random processes that we deal in this course or are

of interest to us can be completely characterized by the first moment and second moment

of  the  random process.  So,  we  do  not  have  to  worry  about  writing  down the  joint

probability  density function.  The first moment and second moment would be enough

most of the time to fully characterize the random process, ok.

So,  now we have  defined  the  random process  and it  is  the  time  to  look into  some

examples of random processes. And the first important example that we would like to



look into is IID random process. IID stands for Independent and Identically Distributed

Random Process.
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So, let us try to understand what I mean by IID random process. And to understand that

let us do a small experiment. So, in this experiment let us assume that you have a bag

and this bag contains several balls. These balls are of different colors. So, you have blue

balls, red balls, and if we have let us say green balls.

Now, what do you do is you reach out to this bag and you randomly select a ball, ok. So,

this is the experiment, it is a simple experiment, reaching out to the bag and selecting a

ball. So, if you randomly select a ball let us assume that this ball that you get is a red

colored ball, you took this red colored ball and you have kept in a different bag, ok. So,

this is the experiment simple trivial experiment. Now, you do this experiment again you

searched the bag and you again look for a ball and then you probably get a different color

ball, at the second time you get it let us assume that you get a green color ball.

Now, what you can observe or you can understand appreciate whatever is that when you

are doing experiment the number of different colored balls have changed. So, number of

different colored balls have changed from experiment 1 to experiment 2, in experiment 2

you have a fewer red balls and in experiment 1. So, because the number have changed its

probability mass function has also changed, and because the probability mass function

has changed the outcome of experiment will depend upon the previous outcome. So, the



outcome  in  the  second  experiment  is  a  function  of  what  you  obtained  in  the  first

experiment, right.

So, similarly if you can if you keep on doing this experiment the number of different

colored  balls  will  keep  on  changing,  the  probability  mass  function  also  keeps  on

changing  and  those  what  you  would  end  up  with  is  that  the  outcome  of  a  given

experiment begins to depend upon the previous experiment.  And if you envision this

process to create a sample function of random process what you would get is, you would

generate a sample function of a dependent, of a dependent random process. Dependent in

the sense that the outcome of a current experiment depends upon the previous outcomes

because, every outcome alters the probability mass function, alright.

Now, let us assume that I do this experiment in a different way. So, I pick a ball of a of a

specific color. I note down the color of that ball but after noting down the color of the

ball I put that ball back in the bag, right. So, I am not taking away the ball from the bag.

So, what it would do is that before every experiment the number of different colored ball

remains same, hence the probability mass function is not changing with my experiment.

So, every time I go and reach out to this bag, I will see identical let me write this it is

important, I will see an identical pmf, right. So, every time I am doing an experiment I

see an identical pmf.

So, now, the outcome of this experiment will not depend upon the previous outcome, and

what  this  will  lead to  is  you can use this  process to  generate  sample function of an

independent, an identically distributed. Identically because the pmf remains identical you

see the same pmf every time. So, this process or this method or this experiment can

generate a sample function of an independent and identically distributed random process,

all right.

So, this is a trivial example but I think that you probably do often is you must have used

a random number generator in the MATLAB. This random number generator  always

generates a number based on an identical pmf. So, the probability mass function remains

unchanged  right  or  you can  start  thinking about  this  random number  generator  as  a

generator which generates a sample function of an IID random process. And thus most of

the  modeling  and simulation  techniques  use  this  IID random process  and  this  is  an

important random process, ok.
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So, let me now revise when we talked about two random variables, and if these two

random variables were statistically independent what I said was that the joint probability

density function of these two random variables can be written down as just a product of

their marginal probability density functions. So, if x and y are statistically independent

the joint pdf can be written down as a product of the marginal pdfs of these random

variables. Similarly, in this case if I am thinking about an IID random process, I already

have written down the joint pdf for such a random process then I can write down this

joint pdf as a product of marginal pdfs of each random variable, alright. So, this will

happen if my process is IID random process.

So, before looking into some examples of random processes let me answer 3 annoying

questions that are sometimes posed in the context of random processes. The first question

is that suppose I make him receiver and this receiver would just see a sample function

right, it would just see one sample function. So, why do we worry about ensemble of

sample  functions?  Why  do  we  discuss  about  random  processes?  Because  a  mobile

receiver or a digital communication receiver would, just see one sample function in its

lifetime. The answer is a very simple, that when you are manufacturing a mobile phones

you should manufacture them in such a way that they accommodate the multiplicity of

sample functions, where they should be able to handle a multiplicity of sample function,

they should not be manufactured to handle a specific sample function because you then



do not know which sample function that mobile phone or digital communication receiver

would experience.

The second thing that  you should notice here is  the randomness  lies  in this  specific

context, lies only which outcome would turn up. So, what we say is before an experiment

or a priori there is some randomness because you do not know which outcome will turn

up. But a posteriori that means, after an experiment has happened because you know

which outcome has occurred then the outcome of this  random process is  completely

deterministic  because  as  we  have  seen  that  this  sinusoidal  waveform  is  completely

deterministic. There is no randomness here; so a posteriori you know that which outcome

has happened. So, there is no randomness after this outcome has happened but a priori

there is randomness involved because we do not know which one of these outcomes

would happen.

The third point here rather is that you can envisage a random process. So, we have seen

several pictures of random process. We have seen a picture where we said that a random

process is made up of the sample functions, it is an ensemble and then there is some

probability rule, that is the one way you can think about the random process. The second

way that you can think about random process if you look at this expression carefully then

you know that a random process can also be thought as an ensemble of random variables.

So,  you have  a  random variable  happening  at  t  1  you can  have  a  random variable

happening at t 2 and t 3 and so on so forth. So, you can construct or you can think about

a random process also as an ensemble of random variables, ok.

Let us now take a second example and probably the most important example in this

context, second example of a random process well let me first write what I am coming

to. 
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So, I have a random process Z of t which I write in terms of orthogonal functions. So, phi

k t are orthogonal functions and Z ks are the coefficients of these orthogonal functions

and these that Z ks are random variables and you have to do this summation for all k. So,

I  can  think  about  a  retina  process  as  a  sum  of  random  variables  times  orthogonal

functions, ok. 

This is a very important concept, and this is also known as a signal space in which you

are trying to think about a random process in terms of orthogonal functions. So, this idea

that you can think about a random process like this is very useful, and it provides a

framework which  allows  us  to  model  physical  noise sources.  So,  this  is  really  very

important idea of trying to think random processes is the sum of random variables times

orthogonal  functions  or  trying  to  express  random process  in  terms  of  its  orthogonal

expansion.
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So, let us see why this can be correct. From the basics in signals and systems we know

that we ca we can express any given signal. Of course, it has to be a finite energy signal

and things like that, but let us assume that for broad class of signals we can expand a

signal in terms of the coefficients and orthogonal functions. So, for a series for example,

spins around this idea; so, we can take a signal, a finite energy signal, and we can express

a finite energy signal as a sum of coefficients times orthogonal functions, right. This is

the  basic  idea  that  you must  have  learned  in  signals  and systems and we have also

revised it in the unit one.

Now, taking the same idea forward, now I can take a sample function, sample function is

also a functions also a signal I can express a sample function in terms of the coefficients

times  the orthogonal  functions,  essentially  the  same idea.  I  can  take  another  sample

function and I would end up with different coefficients and I can express this sample

function again using the same orthogonal functions.

Now, how can I think about the random processes in terms of the sample functions. Now,

you see that when we are talking about the random process we should also know: what is

the  probability  that  this  sample  function  should  happen,  right.  So,  there  is  certain

probability let us say the probability P 1 that the sample function happens, the probability

P 2 there this sample function happens. So, when you are thinking about this together

what would happen is this Z 1 k or the coefficient for the sample functions Z 1 t would



happen with a certain probability, Z 2 k will happen with a certain probability. So, you

can sum this entire thing you can construct a random process out of this by replacing all

these coefficients and their probabilities with a random variable.

So, Z k is a random variable. So, it tells me that that Z 1 k happens to the probability P 1,

Z 2 k happens with a probability P 2. So, this is a random variable. So, I can express a

random process as a sum of the random variables times orthogonal functions or I i can do

an orthogonal expansion of my random process. Now, one small point here can be that k

in general varies from 1 to infinity. Now, the point is if k varies from 1 to infinity, this

summation might not converge, right. 

So,  this  is  not  always  guaranteed  that  this  summation  converge,  but  for  this  course

because  we  are  only  dealing  with  simple  things  we  assume  that  this  summation

converges, ok. So, for most of the processes that we assume this summation will always

converge, ok. So, we will see again and again that this model or this idea of expressing a

random process in terms of orthogonal function is a very useful idea and it simplifies

almost everything. So, let me just take this idea a little bit forward and use this. So, this

is let us say this is an example number third for a binary PAM transmission.
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So, when we are talking about a binary PAM signal, let us assume that I have some

digital signal and this digital signal as you can see is composed of two bits 1 and 0. Let

me assume that to transmit 1 I use a pulse shape like this and to transmit 0 I use a pulse



shape like this. So, this pulse shape is nothing but it is a negative of this pulse. For 1

again I use pulse like this. So, I can construct a binary PAM signal by thinking about that

I have used two pulses. So, I have used basically a pulse like this to represent 1 and to

represent 0 I have used a pulse shape like this. So, if I call this as P t this will be minus P

t, ok.

Now, one point that you can see is that if suppose let me use a different color because

this is just to revise certain things that you must have studied, suppose I have a pulse P t

and I want to shift this pulse let us say I want to shift this by T units. So, I have a red

pulse P t and I have just shifted it by T units in time to produce a blue pulse which is

exactly the same pulse as P t but just shift it in time. So, this pulse can be expressed like

this, ok. I can I have to shift this P t, this t should change to t minus t and then the pulse

shifts to the right by T units.

(Refer Slide Time: 46:37)

So, I can now think about this signal as; so if I am writing an expression for a binary

palm signal the binary PAM signal can be taught as if it is a sum of B ks times P t minus

KT. 



(Refer Slide Time: 47:01)

So, what I am saying with this is I need suppose I have a pulse then, I shift it by T units

to get this pulse and I shift it by T units and I also multiply it with minus 1. So, in this

case I need to multiply it with minus 1 to get an inverted pulse. Then to get this pulse my

expression will be 1 times P t minus 2 t. So, let me write. So, if I focus on the first pulse

let me draw it again if I focus on this, and if I call this as 1 times P t and if I have to think

about this would be nothing but minus 1 times P t minus T, because I need to shift it by T

units. Then I have another pulse this could be expressed as plus 1 times P t plus minus 2T

because now this pulse is shifted by 2T and I can go on and on and construct a binary

PAM signal by thinking about this as this.

Remember that b k takes in two values, either takes a value 1 or it takes a value minus 1.

It takes a value minus 1 whenever it is representing a 0, and it takes a value 1 whenever

it is representing a value 1. So, I can write an expression for binary PAM transmission or

binary PAM signal like this. Now, this is just a sample function of binary PAM system.

Now, I have to if I want to convert this into a process, the idea remains the same. The b k

will become a random variable let us let us call this as capital B K. So, you can convert a

sample function to a random process simply by changing these coefficients  with the

random variable, ok.



(Refer Slide Time: 49:27)

Now, if you look at B k we have seen in the past as well this B k is a Bernoulli random

variable, this B k is a Bernoulli random variable. So, if I think about this B k it takes in

either value 1 or minus 1. Let us assume that it takes a value 1 with the probability P and

does it will take a value minus 1 with a probability 1 minus p. If I find the expected value

of B k this would be 1 times P minus 1 times 1 minus p, and if you assume that 1 and 0

are equally likely that means, P is half you would get expected value of B k as 0.

Similarly, I leave it to you to prove that variance of B k is 1. Try to work this out. So,

here we are saying that the variance of B k is 1. So, this is another example. Yet another

example as how thinking about a process in terms of orthogonal expansion helps us. So,

we can also visualize and understand a binary tram PAM transmission by thinking about

this in terms of orthogonal functions.

So, let us now try to make this thing little bit more specific by assuming that the P t that I

choose is nothing but the sync function. So, I have chosen as sync pulse and then I can

express B t as, all right. So, this is a specific case of binary PAM transmission when you

have chosen the pulses which are sync pulses.

We will continue with this in the next lecture, and we will see some other examples of

random processes some more useful examples of random processes, and then we will

define what is  mean and covariance of a random process and we will  think about  a

Gaussian processes. So, we have lot to cover in the next lecture. So, see you there.



Thank you. 


