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Hello and welcome to our next lecture on Channel Capacity and Coding. Let us start

with the outline of today’s talk.

(Refer Slide Time: 00:28)

We will revisit some of the channel models that we have studied and then we will ask

ourselves this most important question; how many bits per second can I send through a

given channel? We will talk about symmetric channels and then we will introduce this

noisy  channel  coding  theorem.  So,  that  is  the  brief  outline  for  today’s  talk  and

everywhere we will sprinkle some examples.



(Refer Slide Time: 01:04)

So, let us see where we were what we learnt in the previous classes is that it is important

to efficiently represent information before transmission because storage and transmission

both require resources and hence money. So, it is worthwhile to compress and then save

or send; now we have several kinds of channels that we typically use; they could be

telephone lines, optical fibers, wireless channels, underwater channels. It could be long

distance, space channels that we do for intergana; galactic communication if you will or

any other kind of channel that you can imagine.

Now, most  of  these  channels;  in  fact,  all  real  world  channels  are  affected  by  this

interesting thing called noise. These are this unwanted waves that tend to disturb the

transmission  and  processing  of  the  wanted  signals  in  a  communication  signals.  The

sources of noise could be many it could be external or internal, it could be atmospheric

noise, man generated noise, thermal noise, short noise, you can have several kinds of

noise that you can have in the channel and it  really  affects  the communication most

importantly the rate of reliable communication.

So, aim of today’s lecture is to understand what limits the rate at which we can transmit

information over a given channel. And this channel itself will have the noise component

as a part of it. The bottom line is what we send is normally not what we receive. So, the

channel ends up flipping some of the bits at random and this is what the noises supposed

to do.
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So, what have we studied; so, far in terms of channel models? We have looked at the

binary symmetric channels and if you look at it in a more generic manner; you can have

if you see this is the channel we start from the center you can see this channel.

Now, in order to send waveforms over this channel we need a modulator; if you do not

put in a modulator our signal will not travel far because most of the channels are band

limited.  So,  one  of  the  jobs  of  the  modulator  is  to  position  the  signal  in  the  right

frequency band so that  it  transmits  over  the channel  and it  travels  to  the  distance  it

required to be transmitted.

Before the modulator we have this channel encoder;  now this is where the binary bit

stream which goes into the channel encoder, the binary another binary bit stream comes

in with a modulator takes in a binary bit stream and converts it into a waveform. At the

other, end at the receiver end we have the demodulator which takes the analog input the

modulated waveform and demodulates it and converts it back to your bit stream and then

the channel decoder does its job. We have not formally introduced the channel encoder

and  decoder  whose  job  is  essentially  to  recover  from  the  errors  introduced  by  the

channel.

 But if you look at this dotted rectangle, it tells me that this composite channel has binary

input  and  binary  output  it  could  be  M-ary  also  in  general,  but  just  for  the  sake  of

discussion  we are  saying this  composite  channel  takes  in  bit  stream and throws out



another  bit  stream.  So,  this  is  the  dotted  rectangle  that  we will  represent  using  our

channel models fine.

So,  any error,  distortion  introduced  by the  modulator  gets  coupled  into  that  generic

channel model which so, far we have looked at the binary symmetric channel. And we

have also looked at just the binary channel which is not necessarily symmetric. 

(Refer Slide Time: 05:45)

So, let us go a little bit further; let us talk about a discrete input, discrete output channel.

Clearly the modulator has been plugged inside the channel composite channel. So, if you

are talking about a binary discrete input discrete output channel; there is a set X which is

the possible input and set Y which is the possible output. Here we have 0 1 as 2 possible

inputs and 0 1 has 2 possible outputs.

But we should not be too comfortable assuming that there will be 2 inputs and 2 outputs,

you can have 2 inputs 3 outputs, 2 inputs 4 outputs, 3 inputs 2 outputs. We have to talk

whether that is a useful channel or not m inputs, n outputs nothing stops me from having

m possible symbols as inputs and n possible symbols as output.

But what is interesting is that each time I send a symbol across a channel there is a

probability a conditional probability associated with it. So, for a simple binary symmetric

channel; if you send a 0 we hope and we pray that it goes as a 0, but once in a while the

channel makes an error, but what do you mean by the channel? We cannot blame the



channel is the noise in the channel and several other factors which together couple and

make a 0 appear as a 1 we make a mistake at the decoding end.

Similarly, a 1 conditionally you can say that it goes to 1 as with probability 1 minus p,

but once in a while the channel flips this data. But when we blame it on the channel, we

clearly know that we are talking about this composite channel which has bits coming in

and bits going out. Now, if you look at a discrete memoryless channel which has Q-ary

symbols. So, let the inputs be x 0 x 1 x 2 up to x small q minus 1 lowercase q minus 1.

(Refer Slide Time: 08:00)

 And the output again has capital Q; uppercase Q; so, Q-ary symbols. So, output could be

any one of them y 0, y 1 up to y uppercase Q minus 1. And clearly we have small q into

big Q number of lines connecting the inputs to the outputs, this is 1 2 3 4 up to small q

minus 1 and here again 0 1 2 3 4 up to capital Q minus 1. And if, you see how many lines

are connected there are small q into capital Q and this is the general right model for a

discrete memoryless channel and conditional probabilities are written on each one of

them.

So, it will be great to represent these conditional probabilities using a matrix which is

called the channel transition probability matrix. What does it show well it tells us that

most of the time my x 0 can go as y 0, but several times we make a mistake similarly x q

minus 1 then go to y 0, y 1 up to y q minus 1. 
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So, if you consider these input alphabets; X and output alphabet Y alphabet means it is a

set, set of symbols. So, I have small q symbols as input and here I have changed to r; so,

r symbols as output.

Now, we are more interested in finding out is the channel doing a good job how much

information  is  it  really  transmitting?  So,  we  write  the  expression  for  the  mutual

information average. So, average mutual information I X semicolon Y it is given by this

double summation right this we have come across earlier, this is P x j comma y i; if you

multiply this out log this is the conditional probability P y i given x j over P y i, but what

we  realize  here  these  are  the  probabilities  associated  with  the  channel  the  channel

transition probability matrix is have these probabilities as the inputs.
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So, we now finally talk about the capacity of a discrete memoryless channel it is by

being one of the most important parameter which will characterize a channel ok. So,

what is it defined as? It is defined as the maximum average mutual information in any

single use of the channel where the maximization is done over all input probabilities. So,

let us understand this jargon; we define the capacity as C it is a number what is it? Well

we  maximize  the  average  mutual  information  I  X  semicolon  Y,  over  all  input

probabilities there is a strong physical  meaning attach to this  and we will  go over it

shortly once we complete it.

So, please recall that average mutual information is symmetric; so, it as well could be I y

semicolon x. So, what have we written down? We maximize overall input probabilities P

x j and this is the expression for the average mutual information. So, we are giving the

benefit of the doubt to the channel we say skew the probabilities to the extent you want

to, choose the probabilities at the input the way you want to do what you want.

But give me what is the best you can do in terms of maximizing the mutual information

in the average sense. And whatever will be the value will be the capacity of the channel;

what  will  be  the  units?  Well,  this  average  mutual  information  has  the  units  of  bits

provided the loggers of the base 2, but what we are seeing is for any single use of the

channel; that is every time we use the channel how many bits can effectively send every

time I use the channel.



So, it makes sense to include that sentiment into the definition and the units. So, C will

be defined as maximum average mutual information with the units bits per use. So, for

every time we use the channel some bits get transferred and that will be the capacity. So,

please note maximization is done over the input probabilities; let us look at a little bit of

intuition that is attached to this.

So, let us draw a simple channel. So, I have got a 0 and a 1 and I have a 0 and a 1.

(Refer Slide Time: 13:26)

 And clearly this channel makes a mistake once in a while; same with my 1, most of the

time a 1 goes as a 1, but sometimes the one appears as a 0 at the decoder we make

mistakes.  But what  is  interesting is  that  the channel  is  partial  let  us say the channel

makes a mistake.

So, with the 10 percent probability as 0 becomes a 1, but 90 percent of the time 0 appears

as a 0. On the other hand my 1 is not a favorite of the channel. So, 70 percent of the time

or we can flip it; 70 percent of the time a 1 appears as a 1, but 30 percent of the time the

1 goes as a 0.

So, clearly this channel is partial  can this be a real life channel? Well  sure it can be

suppose we assign different amount of energy per bit for 0 and a 1. Then I might end up

making more errors when transmission transmitting as 1 rather than transmitting a 0. So,



this binary channel it is clearly not symmetric is a candidate that we want to investigate

further.

Now, clearly I can calculate the capacity of this channel. So, we would like to maximize

over P x i right and I X semicolon Y. Now we would like to build in the intuitive part into

this; it really does not make sense for us to have this calculation done when probabilities

are half and half, this is very clear because if the channel is more favorable towards

transmission of a 0.

Then it will be advantageous to have more 0s in the input bit stream than 1s because the

channel is treating 0 better than 1. Should I have all 0s? That is not right because even 4;

0s it is of making an error. So, I must adjust the ratios of 0s and 1 into the input bit

stream. So, clearly there will be more 0s and there will be fewer ones right such that the

mutual information is maximized.

So, this q in this channel forces me to have such a distribution at the input probabilities

which will maximize this quantity. It will become clear very soon that the ratio of 1s and

0s should not be the ratios of 0.3 and 0.9 because if you have say m inputs and n outputs;

this logic will not hold true.

(Refer Slide Time: 17:00)

So, we come back to our slide and we say that we have this binary symmetric channel. In

this case we have put the symmetry; so the probability of error is same for 1 and for 0. 



In that case, it is clearly we must have the input probabilities as 0.5 and 0.5 for both 0s

and 1s because channel is treating both 0 and 1 equally well. The probability of error of a

0 is the same as the probability of error for a 1. So, we would rather have the input

probabilities this is this maximization; obviously, we know that this will be maximized

when input probabilities they are equiprobable.

And if we do; so, we can write the capacity of the channel as follows C equal to 1 plus p

log to the base 2 p plus 1 minus p log to the base 2 1 minus p; this comes from a simple

observation of the entropy function that we have defined earlier. And we have seen that

this capacity which is obtained by putting in the input probabilities is 0.5 and 0.5 right; it

can be now written as C equal to 1 minus H p where H p is the binary entropy function.

So, this is a toy example nonetheless a very useful example; it tells me that a capacity the

capacity for this binary symmetric channel goes as 1 minus H p. So, what does it mean in

reality?

(Refer Slide Time: 18:53)

We have our favorite binary symmetric channel, but let us look at the entropy function

right. And once we subtract this entropy function 1 minus H of p we have the capacity

ok. So, on the y axis we have the capacity for this binary symmetric channel let us get it

out of the way. And on the x axis we have the probability of error which is the crossover

probabilities small p.



Intuitively it is clear that if you start from a very low probability of error; the capacity is

high how high? Let us say we have an ideal channel; so, we draw an ideal channel.

(Refer Slide Time: 19:50)

So, we are just putting the transition probabilities such that 0 always goes as a 0 and a 1

always goes as a 1. So, this is your ideal channel we would like the world to be like this,

but it is never. So, and then a lot of people who make money out of error control codes

will be out of business.

So, let us let this be a toy problem. So, this says that every time I use the channel; I sent a

0 and it is received as a 0, every time I send a 1 it is received as a 1 and this channel

never makes a mistake. So, intuitively this channel can transmit 1 bit per use that is every

time I use the channel, I am able to send 1 bit. So, this is shown. So, if you go back to

your graph here right here top when the probability of error the probability of flipping a

1 into a 0 or vice versa is 0 we have the capacity 1.

But here the magic begins the moment we have even a small probability of error; it drops

drastically there is a sharp drop. So, by that time your probability of error is 0.1 or even

less you have dropped 20 percent and it keeps dropping. So, this is fitting our intuition as

the probability of error increases, the channel is becoming worse I am able to send fewer

and fewer bits across the channel per use, but this is on an average.



So, please know the units is bits per use now you cannot say hey how are you sending

0.6 bits every time I use the channel; it is on an average. So, when I am down to point 2 I

am really down to this thing; so, the capacity is falling.

But then it starts slowing down and when we hit 0.5; we hit rock bottom and the capacity

is 0 what does it mean? We look at the channel once again. So, this 0 goes as a 0, but it is

equally likely that it goes as a 1. So, we have 0.5 and 0.5 at the same time if you have a

1; it goes as a 1 half the time and rest half of the time it shows up as a 0.

Now, the  capacity  of  this  channel  is  0  what  it  means  is  that  this  channel  fails  to

communicate any useful information from the X to the Y. So, this mutual information

between X and Y; the average mutual information goes to 0. Intuitively it means that the

channel is practically broken; what do you get? Half the time you get a 0, half the time

you get a 1 regardless of what you are sending.

So, might as well throw away the channels, take a fair coin at the receiver and toss it and

whatever you record is mathematically equivalent to what was being received through

this channel; it is a useless channel the capacity is 0. So, this we go back to our slide this

rock bottom point C equal to 0 happens for probability 0.5. But then the magic continues

and we see that we go up slightly going up gradually what is happening is even we make

the channel even worse are we? We are increasing the probability of error even further,

but the capacity improves to the extent that it goes up and finally, we get a channel which

always makes a mistake is it a bad channel? Not really.
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So, this channel always makes a mistake. Again if we do the calculation, the capacity is

equal to 1 bit per use; it is back to your ideal channel. All we have to do is flip the bit at

the receiver; just flip the bit and you are home safe. You have been able to achieve 1 bit

for per use, it never really makes a mistake always making a mistake that amounts to

never really making a mistake. So, this is again a practically useful channel.

(Refer Slide Time: 25:27)

So, these are the observation that are now given here that we look at the 2 cases when p

is equal to 0, noise free channel we have the capacity 1 bit per use. But the worst case



and  probability  of  error  is  0.5  the  channel  is  practically  broken  and it  is  really  not

communicating any useful information across this channel ok.

And we have also seen that between 0.5 and 1. The capacity still increases because you

are not really making the channel any worse. So, since p is a monotonically decreasing

function of SNR the capacity of binary symmetric channel is monotonically increasing

function of SNR.

(Refer Slide Time: 26:20)

Let us look at another example and this is also a very very instructive example; it  is

called the binary erasure channel. Here we have 2 symbols as the input, but we have 3

symbols as a possible output. So, you are small q and big Q that we were talking about in

the earlier part of the lecture, they are not necessarily the same; now can this happen?

Well why not.

Suppose,  my channel  sends  0 as  minus  5 volts  and 1 as  plus  5  volts,  but  over  the

transmission period; there is attenuation, there is noise. So, we put in a guard band and

we say even though plus 5 is 1 and minus 5 is 0. We will put in a guard band and say

anything between plus 2 and minus 2 we will not take a call, we will say that it is erased

it is an erasure.

Anything lower than minus 2 volts will be a 0 anything above plus plus 2 volts will be a

1. So, this is could be a simple strategy which will say that yes at the receiver; I will



either get a 0 or a 1 or do not know. So, there are 3 possible outputs and this is an

example of a binary erasure channel.

Now can we apply; what we have learnt regarding the capacity for this erasure channel.

(Refer Slide Time: 28:00)

So, the formulas are the same we would like to find out the capacity C and it is nothing,

but maximizing the average mutual information over input probabilities ok. But we know

that I X semicolon Y can be expanded as H of Y minus H of Y given X; this is the

entropy of Y minus conditional entropy H of Y; given X. But we look back and see what

is this entropy in Layman’s language; it is the uncertainty; entropy is the uncertainty.

What is the uncertainty of Y given X? So, we go back to the question; suppose I give you

X X; what is X? Well either a 0 or 1; so, given X what is the uncertainty of Y. So, here Y

can be a 0 or an erasure it cannot be a 1.

So, there is a probability that it will become a 0 with 1 minus epsilon and probably that

will be the erasure with probability epsilon. So, what is the entropy? Well, entropy there

are 2 probabilities. So, 1 minus epsilon log 1 over 1 minus epsilon plus epsilon log 1

over epsilon which is the entropy function and so this will be nothing, but H of epsilon

same is the logic for 1.

So, what are we trying to do? We are trying to find this quantity H of Y given X; suppose

X was 1 then again there are 2 possibilities either we will get a 1 or we will get a relation



with an associated probabilities what is the entropy there? Again H of epsilon; so, for

both 0 and 1 we have H of epsilon. So, on an average H of Y given X is nothing, but H of

X epsilon.

So, we are now the problem is now reduced to finding out the maximum of this quantity

H of Y minus H of epsilon over P x j clearly the second quantity is a constant, it depends

only on the erasure probability. So, we are now focused on H of Y; so, half the journey is

done; just by making an observation. Note that the given the input X; we have already

argued that 2 outcome 1 minus epsilon and epsilon are there. 

Now, we look at the other side let us look at this output Y; we have 3 cases. So, we have

3 cases well the output is 0 erasure 1 ok. So, let us assume that the probabilities at the

input are p and 1 minus p what do we mean by maximize over input probabilities? It is

telling us to find these values p what should be p and 1 minus p that is the maximization

problem.

So, what are the probabilities of the output P Y 0 is; p 1 minus epsilon P probability of e,

this is the erasure is epsilon and probability of 1 is 1 minus p; 1 minus epsilon, it clearly

comes from this one; you can find out the probabilities of 0 which is coming from 0,

probability of erasure this is p into epsilon plus 1 minus p into epsilon right. And again

probability of 1 which is nothing but 1 minus p into 1 minus epsilon ok; so, you have

these 3 probabilities why are we trying to find out these probabilities? If we have these

probabilities at Y, then we can easily find out H of Y. So, if you have these probabilities;

so, I plug in this in the formula and now capacity is maximizing over input probabilities

H Y minus H of epsilon and what is H Y? H Y we can easily find out right and you can

get 1 minus epsilon H of p plus H of epsilon minus H of epsilon which was there 

So, now we have to maximize over p 1 minus epsilon H of p. So, we have to maximize

this to clearly this H of p will be maximum because epsilon is a constant H of p will be a

maximum for p is equal to half equiprobable case and. So, maximization problem leads

us  to  the  value  of  p  is  equal  to  0.5 and somebody could  have  made  a  very simple

observation here and say look as far as the channel is concerned it is symmetric with

respect to 0 and one there is no reason why a higher value of 0 probability of 0 will

maximize this capacity versus one. So, intuitively this p should be 0.5 and 0.5, but we

should never take it right in the beginning 0.5 and 0.5 we should do some basic analysis



and thinking before assigning either  equiprobable  probabilities  or probabilities  which

will maximize 

So, our initial analysis has told us that to maximize H of p in order to maximize this right

hand side I must choose p is equal to 0.5. So, if I plug in 0.5 H p becomes one and I get

capacity as 1 minus epsilon. So, this simple expression has a lot of intuition attached to it

what is it well this result is quite intuitive let us say we transmit n bits or we use this

channel n times. So, it is like a 1 1 1 0 0 0 one some random bit stream is coming in and I

transmit it 

But each time I send a bit either it is correctly received or with epsilon probability it is

lost. So, if we keep repeating this experiment many many number of times then what I

get is that if n is the total number of bits that are sent on an average n times epsilon bits

will get lost and 1 minus epsilon times n bits will actually get correctly received 

So, this channel has a leak it loses out n epsilon bits for every n bit sent. So, how many

bits is it really transmitting well for every n bits that I sent 1 minus epsilon into n bits

actually get passed. So, on an average per channel use how many bits can this channel

send 1 minus epsilon.

So, if we increase the value of epsilon we are decreasing the capacity in the limiting case

when epsilon is 0 it is an ideal channel the capacity is one bit per use and if it is a worst

case epsilon is one each time I send a bit it is lost the capacity goes to 0. So, this is a very

intuitive example which tells us how effectively we can use the capacity.
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Now, please note that all real life channels are affected by noise and this noise is actually

causing these errors or erasures or mistakes in decoding. So, what is a typical value how

many errors does a channel introduce? Well, it is pretty easy to measure for example, it

should  depend on the  signal  to  noise  ratio  and if  you have  a  typical  noisy  wireless

channel, the probability of error for a bit may be as high as 10 raised to the power minus

2. It means that on an average 1 bit gets flipped out of every 100 bits that I send; it could

be better, it could be one in 1000, but that is the best you can push your luck.

So, this is the real life effort can I improve it? Yes I can do it by increasing my signal to

noise  ratio,  but  then  my battery  will  get  drained out  much faster. So,  in  a  practical

situation if I do not do much I will get roughly one bit flipped in a 100 or a 1000. Now is

this is this good or bad will I be able to carry on a single conversation without a call drop

on my mobile phone with this? So the answer is no, this is outrageous this level of error

will not let me carry out a single conversation completely nobody will pay for this level

of errors. So, what will people pay for? 

Well, if you analyze people have different level of tolerances for different kinds of data.

Suppose  we  are  sending  voice  then  an  error  of  10  raised  to  the  power  minus  4  is

acceptable because I noise can interpolate noise are not so sensitive. So, it is a human

being thing. So, 10 raised to the power minus 4 which is still much much lower than 10

raised to the power minus 2 is ok; people might want to pay for 10 raised to the power



minus 4 noise. But if I am sending data nothing less than 10 raised to the power minus 6

probability of error would be acceptable, people will just not pay there will be too many

errors  in  the  SMS  that  you  receive,  your  calls  will  get  dropped.  So,  people  would

definitely not pay for data with errors 10 raised to the power minus 4. 

Now, if you go to much more sensitive data for example, medical data I have a digitized

an X-ray sample and the doctor is looking for white dots and any white dot might signals

the start of a disease; well we would not like to take a risk there. So, we would push the

tolerance to 10 raised to the power minus 7, the point is we are looking at much lower

orders of magnitude lower probabilities of error for any practically  salable system, a

system for which people will pay money for that.

So, we will come back to these numbers again and again and we will have to find a way

to do reliable communication over unreliable channel. Those the unreliable channel has

given with this figure of 10 raised to the power minus 2 or 10 raised to the power minus

3, which is the uncoded the raw error rate in a channel. We have to do some magic to

make this 10 raised to the power minus 2 down to 10 raised to the power minus 5 ok, but

let us just look at a few more things about channels and then we will get back to it.

(Refer Slide Time: 40:37)

So, quickly since this on the agenda we talked about the symmetric channel; a discrete

memoryless  channel  is  said  to  be  symmetric  if  the  rows  of  the  channel  transition

probability matrix are permutations of each other and columns are permutations of each



other. So,  just  by looking at  the matrix the channel  probability  matrix,  the transition

probability matrix we can find out whether the channel qualifies to be a symmetric or

not.

And the other hand a discrete memoryless channel is said to be weakly symmetric; if the

rows of the channel transition probability matrix are permutations of each other and the

column sums are  equal.  So,  there  are  2  conditions  symmetric  has  a  certain  kind  of

requirement and weakly symmetric  which is a subset of symmetric  channels it  has a

other requirement. Why are we doing this well if you have identified from observing the

channel transition probability matrix that a channel is indeed weakly symmetric. Then

the capacity of the weakly symmetric channel is simply given by log of Y minus H; row

transition matrix where this absolute value Y represents the cardinality of Y.

So,  the  point  is  we  do  not  have  to  go  through  that  big  double  summation  and

maximization  to  find  out  the  capacity  of  a  weakly  symmetric  channel.  If  you  have

identified that a particular channel is weakly symmetric, you go ahead and apply this

simple formula.

(Refer Slide Time: 42:15)

So, let us look at the probability of error that we said people are willing to pay for. So,

this is based on experiments talking to people, doing surveys other scientific techniques

and  the  acceptable  right.  Now this  acceptability  will  change  from people  to  people,

country to country, people are more tolerant, less tolerant depends on how much you are



paying for are you on a gold plan or a silver plan people have different tolerances. But,

typical probabilities of error that people are willing to pay for speech telephony 10 raised

to the power minus 4, voice band data 10 raised to the power minus 6 electronic mail

pretty much lot of internet stuff that we download 10 raised to the power minus 4, and

video telephony high speed computing medical data 10 raised to the power minus 7 or 10

to the minus 8.

(Refer Slide Time: 43:18)

Now, we come to a very interesting theorem called the noisy channel coding theorem.

So,  what  is  it?  We start  with  our  favorite  discrete  memoryless  source  which  is  an

alphabet X. So, alphabet is a set of symbols and it has an entropy H of X. So, clearly

there is a probability associated with each of the symbols.

But for a change, we have introduced time in our equations because we do not have all

days to send those 2 symbols. We have to get done with the job fast because the other

symbols to be transmitted. So, we introduced this T S which is kind of the time taken to

send a symbol. So, 1 over T S would have some implication on the symbol rate.

Now, let a discrete memoryless channel that we are talking about have the capacity C

alright;  not only does it  have a capacity C we are using this channel every T sub C

seconds. So, it is not that I am using this channel every second to send something maybe

I am using it several times a second maybe 1 over T C times every second I use this



channel. So, that 2 independent things my source is generating a data and my channel is

sending the data.

Let us quickly look at it diagrammatically.

(Refer Slide Time: 45:00)

So, we have this channel a nice fat pipe and it has a capacity C right. We do not use this

channel  once a  second or  twice a  second,  but once every T C seconds,  we use this

channel. So, we have this T C independent of it I have a source which has an entropy. So,

this is my source and independent of this; it has this entropy H of X, but this entropy is

not enough, it generates a symbol every 1 over T S seconds; the rate is 1 over T S. So,

the point is this T S and this T C can be independent ok. This guy could be a person

tossing your coin and it has an associated H of X and I have instructed this person to toss

this coin once every T S second.

So, please note the independence of this side and this side I can pay this guy more and

ask him to toss the coin faster; independent of that I can start using this channel slowly or

more frequently. So, coming back to our slide the noisy channel coding theorem relates

the source rate what is the source rate? It is H of X divided by T of S. So, the left hand

side of the dotted line is related to the right hand side which is the ratio C divided by T C

and noisy channel coding theorem says that if this left hand side the source rate is less

than the C over T C.



Then there exists a coding scheme for which the source output can be transmitted over

this noisy channel and reconstructed with an arbitrarily low probability of error. Now this

is the real punch line arbitrarily low how low do you want it to be? 10 raised to the

power minus 5 no problem, 10 raised to the power minus 8 no problem you just make

sure that this condition is met.

Not so happy, not satisfied 10 raised to the power minus 10 no problem 10 raised to the

power minus 15 and nobody wants to go that low, but yes I can do that. There exists a

coding scheme that is what the noisy channel coding theorem says. But conversely, if

your friend H of X divided by T S the source rate happens to be greater than the rate at

which the capacity over T C ok. We will we will put a name to this if this exceeds then I

am sorry it is not possible to transmit information reliably and I cannot put a limit the

error rate.

So, what are we saying? We are saying that this  parameter  C over T C is  somehow

playing a very critical role and therefore, this is called the critical rate. So, if we restate

this noisy channel coding theorem; it says that if the source rate is less than the critical

rate, we are in business. There exists a coding scheme which will guarantee arbitrarily

low probability of error.

And conversely if your source rate exceeds the critical rate then very hard because you

will not be able to limit the probability of error. So, this C over T C happens to be the key

fortunately we know how to calculate C, we know how to calculate H X. So, we can

figure out how to choose. So, we have a design problem at hand we have a luxury to

choose this T S and T C such that I can hopefully do a reliable communication.
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So, this channel coding theorem is a very very important result information theory. In

fact, it specifies a fundamental limit on the rate at which the reliable communication be

carried  out  over  an  unreliable  channel.  What  I  will  be  talking  about?  Reliable

communication what is reliable communication? You define of course it is in terms of bit

error rate. So, for you reliable is 10 raised to the power minus 7, you got it. For you

reliable is 10 raised to the power minus 12; be my guest no problem; we will give you

reliable communication you choose the level over an unreliable channel just to meet the

condition ok. 

But this noisy channel coding theorem is good and bad; it tells us about the existence of

some codes ok. It will tell you, it will show you the carrot it exists it is an existence

proof, but it will never it does not give you the recipe of finding that code ok. It does not

tell you how to come up with those codes this channel codes which will ensure or give

you this wonderful reliable communication, but this is not a bad news for those who

make a living out of finding better  and better channel codes because they are still  in

business. So, this is the reason why it is a fundamental limit.
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So, let us look at what we have talked about in today’s lecture. We started off with a few

channel  models  and  then  we  introduced  this  very  very  important  notion  of  channel

capacity. We looked at  symmetric  channels  and how weakly symmetric  channels can

easily  be used to  determine the capacity  of a channel.  And finally, we scratched the

surface regarding the noisy channel coding theorem. And of course, we looked at a few

examples  like  the  binary  symmetric  channel  and  the  capacity  of  the  binary  erasure

channel.

With that, we come to the end of this module.


