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Hello and welcome to module 7 on Source Coding. Let us start with a brief outline of

today’s talk.

(Refer Slide Time: 00:23)

We will discuss the practical applications of source coding and we will start with an

Optimal Quantizer. We will discuss about entropy rate and then finally, some practical

applications of source coding, leading to JPEG compression and of course, we will look

at some examples so that is the road map for today. 
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We begin by a quick recap we have already done Huffman coding, which gives us a

prefix code. We saw arithmetic coding how it is done, how it is better than Huffman

coding because we go on the real line between 0 and 1. But both Huffman coding and

arithmetic coding required the input probabilities a priori.

If we do not have the input probabilities, both at the transmission side and the receiving

side we are in trouble. Lempel Ziv coding on the other hand does not required you to

have the measurement or estimate of the input probabilities, before you start encoding, so

that is the good part. We also looked at this notion of run length coding.

What is a run? It is a long sequence of 1 or a long sequence of 0’s. These are typically

found in facts data or in images or sometimes in peculiar encoding, that is required to be

done. So, run length coding takes care of this long runs of 1’s and 0’s in which you pretty

much encode. How many of what that is the basic idea behind run length coding, and we

looked at some examples in the last class. 
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 Now let us look at an optimum quantizer design, this is a practical problem and we

would see how the concept of source coding can be applied here. So, let us consider a

continuous amplitude signal whose amplitude is to be quantized, because amplitude is

not uniformly distributed is this a good assumption well.  In many real life cases this

happens to be true even if I take my speech or I measure the vibrations of a bridge most

slightly the amplitude is distributed closer to the mean value and the very high, or very

low values on either side of 0 happens rarely.

So,  let  us  have  this  continuous  amplitude  signal  whose  amplitude  is  not  uniformly

distributed. We also do something else the probability density function of this amplitude

varies and it is given by p of x. Now we wish to design an optimum scalar quantizer that

minimizes some function of the quantization error ok. So, quantization error q is x tilde

minus x where x tilde is the quantized value of x.

Now, we define the distortion as D, it is integrated from minus infinity to infinity some

function of x tilde minus x. So, this is the kind of quantization error f is a function of that

weighted with a probability distribution of the amplitude p of x t of x fine. So, I can have

any function of properly defined function f of x tilde minus x. 
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Now, an optimum quantizer is one that, minimizes D by optimally selecting the output

levels  and  the  corresponding  input  range  of  each  output  level  basically  that  is  the

problem of a quantizer design. So, if you do not want to do any of this hard work, you

have a uniform quantizer but that is clearly not going to solve our problem correctly,

because the amplitude itself is non-uniformly distributed.

So, this kind of a problem was first formulated by Lloyd Max and it is called the Lloyd

Max quantizer. Now suppose we have one levels of this quantizer the distortion is simply

given by D, equal to summation over all the levels k is equal to 1 through l and then I

have this integration of f of this quantization error x k tilde minus x. So, this time it is xk

and weighted by px dx.
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So, the necessary conditions for minimum distortion are obtained by differentiating D

with respect to xk and xk tilde. And if you do that basic math you will come up with a

condition that f xk tilde minus xk is equal to f xk plus 1 tilde minus xk for k is equal to 1

to up to l minus 1 right.
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And then  if  you take  a  special  case  of  mean  square  error. So,  I  want  to  design  an

optimum quantizer that minimizes the mean square error it is a good function to take.

You come up with these levels the quantization levels xk given as xk tilde plus xk plus 1



tilde by 2. And we have this condition that xk tilde minus x px dx integration over 1

interval is equal to 0. So, this is just an example of how you solve it. But the question is

now how do we fit in source coding here?
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So, these non uniform quantizers are optimized with respect to distortion that is what we

have done. So, we have defined a distortion measure and we optimized according to that,

but the question is each quantized sample is represented by equal number of bits.

So,  so  far  what  we  have  done  is  broken  up  the  total  range  of  the  amplitude  into

quantization levels, but then suppose there are 8 quantization levels we would put 3 bits

per  sample,  but  that  is  not clearly the best way to do things.  Because of the px the

amplitude distribution all quantization levels are not equally likely.

So, I will treat the quantization levels as symbols they are not equally likely just like my

example  earlier. Suppose  I  am talking  and my voice  has  been  recorded  I  will  have

probably more samples closer to the mean value and I scream only once in a while. So,

very high values are taken very rarely. So, what we do is we would like to have a more

efficient variable length coding for this optimum quantizer, which was optimized for the

distortion measure, and these probabilities are then used to design the efficient variable

length code therefore, the source coding.



So, quantization itself is a compression to begin with why I have this continuous signal

and it has infinite information content. Take any sample and you should require infinite

number of bits to quantize and represent it, but the moment we quantize it we have a

finite number of bits.

The number of levels of the quantizer actually decides how many bits, but sample, but

we are not content with that what we would like to further do is understand that different

samples occur with different probabilities and we will do Huffman coding on that alright.
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So, let us look at an example. So, we have 8 level quantizers, but my amplitude is not

uniformly  distributed  and therefore,  I  have  a  simple  xk  which  tells  me  how I  have

distributed my levels. So, if you look at this graphically. 
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So, you have this amplitude and you have this quantization levels. So, you can have 0

and you have 0.5 as one level and minus 0.5 as these two levels. And then you do not

have exactly at 1, but you have at 1.0 5 the next level had it been a uniform quantizer I

probably  should  have  equal  lengths.  And  here  I  have  minus  1.05  this  is  my  sorry

somewhere here minus 1.05. 

So, now if we can just redraw this, so that there is not much scope for confusion. So, we

have an amplitude and I have got 0.5 minus 0.5 and then we have 1.05 and then minus

1.05. And then we do not go up to 1.5 we go right up and we have this 1.748 and then we

again here have minus 1.748 ok.

So, we have these kind of quantization levels which we can define and so and so forth.

Now  please  note  that  if  you  look  at  this  table  the  p  of  x  pxk  you  have  different

probabilities associated with the different levels ok. Clearly it means that level 0 and

level  0.5  they  are  almost  close  to  20  percent  probable,  so  0.19  is  a  probability  of

occurrence. So, 40 percent of my time my signal is captured by these 2 levels.

But then as we move away yes I get low signal values and very high signal values with

lower probabilities and even higher with even less probability ok. So, clearly I have got a

range of probabilities associated with different levels and it should not stop me from

forming the Huffman code which is giving as the last column. And I have represented the



more frequently occurring levels quantization values as with fewer number of bits as

opposed to they are rarely occurring very high and very low values.

So, level 1 if you would like to call it compression happened when I quantized it. The

infinite number of bits which was supposed to be used to represent a continuous random

variable got represented with finite number of bits. But here in this case ideally I should

have had 3 bits for every level, but looking at the different probabilities I have put a more

efficient Huffman code ok. 
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Just to complete this example we have now a distortion value D is equal to 0.0345 which

is can be represented in terms of dB is minus 14.62 dB. So, you can compare 2 different

quantizers  with respect to  the distortions.  If  I  have defined mean square error  and 2

people are selling you 2 quantizers you can calculate the distortions with the respective

mean square error and then choose to buy any one.

Now clearly we did not go for R is equal to 3 bits per symbol, we chose not to have equal

number of bits per level. And since we did Huffman coding we ended up having 2.88 bits

per sample as opposed to 3. And of course, if you look at this P of Xx and calculate the

theoretical limit it tells you that it is 2.82 bits per sample that I could have achieved the

best it is not in my control.



In this practical scenario I can at best give you 2.88 bits per sample on an average. So,

that is the 3 most critical words on an average, it is not just if you just pick up it is my

bad day and a very very high value of the sample comes in of course I am spending 4 bits

per symbol. 

Another high value sample comes in again I end up spending 4 bits, but then the law of

averages will take over soon or later I will start getting values closer to the mean and

then I will have 2 bits per symbol and so on and so forth, and the average out will be

roughly 2.88. So, this is a an example where we have been able to use source coding to

reduce the bits per sample to be sent. 
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Now, we change gears and we talk about something called as Entropy Rate. Now we

observed in the last class when we talked about using blocks for coding, and trying to

achieve  the source code theoretical  limit.  We observe that  a simple extension of the

source coding theorem is that n H of X bits are sufficient on an average to describe n

independent and identically distributed random variables, each with entropy H of X it is

just very intuitive.

But in real world we do encounter random variables that are dependent and the question

is what if the random variables form a stationary process. We do encounter that quite a

bit in electrical engineering. So, how do we define the corresponding entropy for that do

we have a different measure? 
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So, let us define a stochastic process is said to be stationary if the joint distribution of

any subset of the sequence of random variables is invariant with respect to shifts in the

time index. So, if see in this definition earlier, but we put it again together and here this

lambda is actually dot dot dot.

So, we have X 1 is equal to x 1 capital X 2 is equal to x 2 dot dot dot up to X n equal to x

n right is given therefore, every shift m. So, I have shifted the indices 1 plus m 2 plus m

n plus m and therefore, this kind of a definition tells us that the stochastic process is

indeed stationary ok. 
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Now we go a little bit further and we define what is a Markov Process or a Markov

chain. So, a discrete stochastic process X 1, X 2 dot dot dot. So, it can go up to infinity is

said to be a Markov Chain or a Markov Process. If for n is equal to 1, 2 dot dot dot, so it

can go up to infinity is defined as the conditional probability p x n plus 1 should be equal

to x n plus 1 given all the previous one is nothing, but the conditional probability p x n

plus 1 given xn that is it just depends on the previous sample for all x 1, x 2 dot dot dot

up to x n.

Therefore the probability density function of a Markov process can be written as p x 1, x

2 this is dot dot dot dot up to x n is nothing, but px 1 times p x 2 given x 1, but rest do

not matter times p x 3 given x 2, the rest do not matter dot dot dot up to x n given xn

minus 1. So, that is the beauty of a Markov process. 
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So, why are we talking about Markov process all of a sudden? We will connect it quickly

if  we  have  a  sequence  of  n  random variables  please  note  a  sequence  of  n  random

variables it is interesting to explore how the entropy of the sequence grows within. So, it

is a question we have posed to ourselves. So, entropy rate is used to define the rate of

growth.

So, let us understand the physical significance we have a sequence of random variables,

and they are not independent that dependent ok. So, the occurrence of each one probably

depends on the previous one, and possibly the previous to previous one and so and so

forth.

Now there random variables there dependent, so there is an entropy associated with it.

But I led this sequence play along and as n increases how do you define this rate of

growth? So, we define it the entropy rate of a stochastic process x is given by H of X,

where limit n tends to infinity normalized by 1 over n H X X 1, X 2 dot dot dot dot up to

X n provided the limit exists, so it is possible that the limit may not exist.

So, what do we already know we know H joined entropy H of X 1 comma X 2 dot dot

dot up to X n right. What are these n? These are these n random variables. So, we are

talking about the joint entropy and have normalized it with them and I am letting this n

tend to infinity.



If  this  quantity  exists  that  is  defined  as  the  entropy  rate  ok.  So,  this  thing  has  an

equivalent definition for stationary Markov chain. So, we know stationarity, we know

Markov chain. So, for stationary Markov chain the entropy rate is given by H of X again

limit n tends to infinity X n given, X n minus 1 dot dot dot dot up to X 1 and that can be

simplified as n tends to infinity limit X n given X n minus 1. It is simply equal to H X 2

given X 1 using the properties of the Markov chain. 
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So, let us look at a simple example. So, let us consider a two state Markov chain with the

probability transition matrix, such that I have got state one by the red dot, state two with

the blue dot. So, this state transitions into the blue dot with probability p 1, and it goes

back to red dot with probability p 2, and sometimes it stays as it is with probability 1

minus p 2. Similarly the red dot stays back with probability 1 minus p 1, so this is a

simple state diagram of a two state Markov chain, they are fairly easy to understand this. 
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So, for stationary distribution, the net probability distribution across any cut set in the

state transition graph should be 0 that is a standard definition. So, let alpha and beta be

the stationary probabilities of the two states. What are we talking about? Well what is the

probability of being in red, or the probability of being in the blue state ok that can be

written as alpha is equal to p 2 over p 1 plus p 2 is a distribution stationary distribution

for alpha being the probability of state red.

And similarly beta is p 1 over p 1 plus p 2 it does not require too much thinking to note

that alpha plus beta should be 1, I should be either in state red or in state blue. But there

is a probability of being in red and the probability of being in blue and they keep flipping

with certain probabilities it switches back and forth sometimes it does not switch.

And therefore, I can determine what is the probability of being in state 1 and state 2?

And looking at the definition you have the H of X n, the entropy for state X n at any time

n can be written as well there only two possibilities. So, it is like tossing of the coin

sometimes head comes, sometimes tail comes, sometimes in alpha sometimes I am in

state blue, sometimes in state red. So, alpha and beta are their probabilities and I get H of

alpha comma beta right.
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So, if you want to find out the entropy rate of these two state Markov chain, it is given by

H X is H H of X 2 given X 1 right is the weighted probability, so p 2 over p 1 plus p 2

which is nothing, but alpha. So I have got alpha H p 1 plus beta H p 2.

(Refer Slide Time: 24:20)

So, this is a simple example of how you can apply your concepts to entropy rate and you

can define it. So, you could have 3 state; 4 state, up to n state Markov process alright.

So, now we come to a practical application of source coding. We have already looked at

the optimum quantizer, but  now let  us look at  a more widespread application  which



touches our lives almost on a daily basis. Whenever we download an image on a mobile

phone, or send a picture to our friend we most likely are using some kind of an image

compression technique.  And one of the most commonly used one is the JPEG which

stands for joint photographic experts group.

So,  even  though  it  is  almost  a  defacto  standard,  it  is  commonly  used  other  JPEG

standards available today. But JPEG is an image compression standard defacto which is

actually  description  of  several  25  distinct  coding  systems.  Why  there  are  so  many

approaches, because the users the needs of the users vary a lot with respect to the quality,

compression, and computation time. So, JPEG permits the user to probably have a poor

quality image which is compressed, but requires lesser time and uses fewer number of

bits.  But  let  us  describe  2  methods  that  we  have  studied  which  are  used  in  JPEG

compression standard. 
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So,  the  two techniques  that  we have  looked at  are  Huffman coding,  and Arithmetic

coding ok. So, some compression can be achieved if we can predict the next pixel using

the previous pixel and this kind of a differential coding is also used.

Now please note JPEG has two kinds of compression built into it one is lossy, where we

lose information, and one is lossless where we can completely reconstruct the image the

original image from the compressed image without any loss of data. So, we will talk

briefly about both of them. So, what are we going to explore in the next few slides. We



are looking at how lossy compression works? How lossless compression works and how

differential coding is used to our advantage in JPEG compression. 
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So, let us look at the nuts and bolts the basic building box the JPEG compression uses

something called discrete cosine transform. Just as Fourier transform takes you from say

time domain to frequency domain, or spatial domain to spatial frequency domain..

Similarly DCT takes you from the spatial domain to the spatial frequency domain. So, it

is defined as follows, so there is a two double double summation and then y i j is the

spatial domain, and capital Y kl represents the spatial frequency domain. 

Now, please note this is a real transform it also does the job similar to Fourier it is a real

transform. And in images we would rather work with real transforms because we would

not like to put an additional effort to handle complex numbers. 
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So,  all  DCT multiplications  are  real  right.  So,  this  lowers  the  number  of  required

multiplications as compared to discrete Fourier transform. But why do we use this DCT,

what is so great about it. Well for most real world images most of the signal energy lies

at the low frequency, which appears at the upper left corner of the DCT, the lower right

values represent the higher frequency and often small values.
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So, let us understand this a little better.  Suppose we have a standard image ok. So, you

can have anything that you would like any standard image ok. Now if we take the DCT,



it  will  also give you another matrix,  but this  is in spatial  frequency domain.  We are

comfortable with time and frequency here we have space and frequency ok.

So, just as we have x and y we can have here k and l. But in some sense this k may

correspond to the spatial frequency along the x and this l may correspond to the spatial

frequency along y.

Now if you look at this, this is the low frequency and this is the high frequency. Again

this is the low and going down this is the high and of course, this is high and high. this

guy is the DC part. So, the first value is nothing, but the average of all the pixels taken.

So, add them up and divide by the number of total number of pixels and you get this DC

value, rest all of the coefficients are the AC coefficients. 

Now, why  DCT?  If  there  is  fair  amount  of  correlation  in  this  original  image,  then

maximum energy is compartmentalized in the lower terms. So, here, here, here, here,

here what does it mean? Please note this side represents low frequency as we go along

this axis it represents high frequency, but of what dealing with x.

If we go along this side the same is along y if this high frequency spatial frequency, then

you have high values here, but we live in a real world inertia dominates things do not

change very frequently. And so there is a lot of correlation within the image and if the

input image is highly correlated, then DCT does a great job of concentrating that energy

into the lower values the low frequency components.

So, ideally  I  would probably use a kl transform and show that  I  can squeeze in  the

maximum information  in  terms  of  the  frequency domain  representation  in  minimum

number of samples, but DCT does a great job if the input image is correlated. On the

other hand if I have a computer generated image which is totally uncorrelated the pixels

are not correlated then numbers will be all over the place here in DCT.

But  since  we  are  dealing  with  real  world  images  we are  able  to  focus  and  lead  to

maximum coefficients here and here all the coefficients become small, so small they tend

to 0. Now, this critical observation will go a long way in compressing your image. So, let

us see how DCT is applied. 
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So, the first step is that you take an image. And you do not work with the whole image at

a time you first divide the image into blocks. So, this could be 8 cross 8, or 16 cross 16,

or 32 cross 32, but let us just focus on 8 cross 8 blocks. Why do we divide? Well if you

take small blocks of 8 cross 8 you have much higher correlation, and this correlation will

play a critical  role in compression.  It goes without saying higher the correlation,  the

fewer number of bits are required to represent that block right. 



So, if we go back if the image is 256 by 256 pixels in size, we break it up into 32 by 32

square blocks of 8 by 8 pixels and treat each one of them independently. So, if this was

256 then I would have 1, 2, 3 up to 32, 1, 2, 3, up to 32. So, this will basically decide my

sub block size. 

Now, we only deal with 1 8 by 8 block at a time. So, this is where we start and the first

step of course, is to take a DCT. So, this will also result in an 8 cross 8 DCT samples

with the first one is a DC coefficient. So, we have taken a DCT here.

Now, what is what we observe is that first few coefficients have some larger values, but

as we go along they are extremely close to 0. Let us look at a an example here. 
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This is a toy example I have not taken a block 8 by 8, but I have taken a 4 by 4 block.

And for  a  real  world image if  you do a  DCT these are  the typical  values  you may

encounter. So, let us go through this example the first one is a DC coefficient rest all our

AC coefficients this one is just the average. So, 4.32 is average of the 4 point 4 cross 4

sized spatial image that we took rest all as you can see keep decreasing. And as we go to

the really high frequency part there is very little value here ok. 
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So, now what do we do? What JPEG compression standard suggests is take that and first

step is to quantize, I am going to do lossy compression, I am going to throw away things.

What am I going to throw away from this 4.32 I throw away 0.32, for this 3.12 I throw

away 0.1, for this 3.01 I throw away 0.01.It is just a toy example I can choose how much

to throw away, but I have quantized it.

So, I get from this really 4.32 to 3.12 to 3.01 kind of a table I get 4 3 3 2 3 2 2 2 and so

on so forth. Then I make another observation that this end is low low, this end is low

high, high low, high high in terms of frequency. So, the frequency gradually increases as

we move away from the center. So, we perform something called a zigzag coding, where

I go zigzag and this is the path we follow to encode. 

So, we do not do this raster line by line and line by line because this gradually decreases

4 3 3 2 jumps, 3 2 2 2 jumps, 0 0 2, so it does not make sense. So, we do this zigzag

encoding and what does it lead well if I read out the numbers 4 3 3 2 2 2. So, I get this 4

3 3 suddenly I start seeing runs ok. The moment I see a run I am likely to do my run

length coding, and this 3 3’s or 3 2’s will not really give me the compression..

But what is amazing is this, lot of these AC coefficients have become 0’s thanks to DCT

which put packed all the energy into the first few coefficients rest all as 0’s. So, of huge

runs of 0’s here 0 0 0 0 0 0 and efficiently I can do my run length coding here. Please



remember we are not talking about the whole image we are only talking about the sub

block. 
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Now, we do this same thing with all of them; now please note it is not just one block. So,

if you look at your image which you broke it up into blocks. Now let us take block 1, and

block 2, so let us consider these 2 blocks. Because these 2 blocks are close to each other

and their average values are likely to be similar. 



So,  let  us  just  write  down the  DCT coefficients  of  block  1  and block  2  which  are

adjacent.  Now the DC coefficient the first box please remember this is in the spatial

transform domain represents the average value, this represents the average value of the

next one, they are quite close to each other.

In fact, if you take the delta it is a very small number. So, we do the differential coding

between  these  two.  What  is  differential  coding?  Well  what  you  do  is  you  find  the

difference  and  I  do  this  for  blocks  2,  and  3;  blocks  3  and  4;  4  and  5  and  all  the

neighboring blocks. If we now just do an analysis if we plot on the x axis the delta x

which  is  the  difference  between  these  two values  and  the  histogram the  probability

measure of sorts and then we see a distribution that is very close to 0 we see lot of

samples which is not surprising because they do not change drastically.

But  as  we  move  away  from 0  the  probability  is  changing,  the  moment  we  have  a

distribution we should be able to do Huffman coding. You give me symbols or samples

with different probabilities associated with that and of course, I will do Huffman coding.

So,  differential  coding  plus  Huffman  coding,  or  differential  encoding  or  arithmetic

coding. Because we have learned both of them and we should be able to deliver a much

higher level of compression alright. 
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So, we would like to now summarize what we have done in today’s class. We started our

discussion  with  the  design  of  optimum  quantizer,  which  minimizes  a  predefined



distortion function. We took an example of mean square error distortion, once you get

that distortion measure and you minimize it you end up with the quantization levels.

Now if your input amplitude which is a continuous random variable it has a probability

distribution.  Based on that  we associate  probabilities  with  the different  levels  of  the

quantizer,  and  then  we  encode  them using  Huffman  coding.  So,  no  2  levels  of  the

quantizer would yield equal number of bits per simple. So, different samples require and

will be represented by different number of bits depending upon what kind of Huffman

coding we are doing.

We then looked at  entropy rate ok,  and then finally we discussed this  application of

source  coding  which  is  JPEG  compression.  We looked  at  how  Huffman  coding  or

arithmetic coding or even run length coding together can be used to compress the image.

So, that we also looked at some examples that brings us to the end of today’s module.

And we will look at other aspects of source coding in the subsequent module. 


