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Hello and welcome to module 6 on source coding. Let us look at the outline for today’s

talk. We do a brief recap on Huffman Coding which we studied in the previous lecture,

then  we  will  look  at  something  called  Arithmetic  Coding,  followed  by  Lempel  Ziv

coding and then do something called Run Length Coding. So, these all are source coding

algorithms and we would definitely look at some examples, so that is the agenda for the

day 



(Refer Slide Time: 00:53)

We start with a brief recap. We did look at source coding theorem, it tells us what is the

best  we  can  do in  terms  of  compression.  We then  defined  the  efficiency  of  a  code

followed by some examples on Huffman Coding. We also saw that coding in blocks

helps.  So let  us quickly refresh what we did regarding the Huffman Coding with an

example.

(Refer Slide Time: 01:20)

So, Huffman Coding requires you to first arrange the all the probabilities in a decreasing

order.  So,  we  write  the  symbols  and  write  down  the  corresponding  probabilities  in



decreasing order, what we do is we combine the bottom 2 1 into a composite symbol

with a probability P n plus P n minus 1 and then we combine the next bottom two and so

on so forth to add up the probabilities and this tree keeps elongating and the probabilities

keep adding up till we reach 1.

(Refer Slide Time: 01:55)
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We did this following example where we had the 7 symbols and the probabilities were

arranged  in  decreasing  order  and  we  constructed  this  Huffman  tree  based  on  the

probability. So, if you see the last two combined to give 0.03 and 0.04 and 0.03 add up to



0.07 and so and so forth and we grew up tree and we quickly see that it adds up to 1. And

now finding out the code words is pretty simple going backwards, so for example for x 4,

we start right at the model node and we follow the path back to the desired symbol. But

each time we bifurcate, we add either a 1 or a 0. If you go down the ladder, we add up 1 ;

if you go up the ladder, we add a 0 or we could interchange these.

So, for example, if explorer was to be encoded, I go down. So, 1 1 1 and up mean 0, so I

will get x 4 to be 1 1 1 0 and this is called the Huffman Tree. You can always plug in the

values of probabilities to determine H of X and R bar which is the average codeword

length for this.

(Refer Slide Time: 03:21)

If you look at the formula H of X is nothing, but with a negative sign summation P x i

log to the base 2 P x i over all is or in this case k and you get the values of H of X and

similarly R bar is the average codeword lengths and you can get the value of the average

codeword length. So, efficiency is the ratio is less than 1 in this case 

So, this example is illustrative in the sense that the self information as shown in this

table, they are not integers and we will see this is the biggest problem with prefix codes

like Huffman which are unable to exactly map it.



(Refer Slide Time: 04:05)

We also saw in the last class that if we work block by block, then we have a better

chance to do. So, and this is the reason why, suppose we encode a block of b symbols at

a time right. Then we write the equivalent source coding theorem as B of H X less than

or equal to R B which is the average length for 1 block of b symbols and so on and so

forth less than BH X plus 1 coming back from the source coding theorem. 

And we saw in the last class that if you divide both sides by B, you see that your H of X

is the lower bound, but now the symbol per symbol if you find out the number of bits per

symbol which is RB bar divided by B is limited upper bounded by H of X plus 1 over B.

So, this is important as we increase the block size B, I can pinch it harder from the top

and squeeze it to become closer and closer to H of X right that is the whole thing 

 (Refer Slide Time: 05:29)



If we look at a practical example of this, suppose we have our friend tossing a coin. So,

we have a source A and this guys tossing a coin, but this coin is a fair coin and every

once again he tosses a coin; if a head comes it says 1, if a tail comes it say 0 0 0 1 1 it

turns out this bit stream 

But the other hand I  have another source B which is another person with a habit  of

chewing a gum. So, he has stuck some chewing gum on 1 side of the coin and this time it

is a biased coin, but his definition work definition is the same. He tosses the coin once

every second and spits out 1 0 0 1 randomly.

Now, if you see source A the H of X is 1 bit whereas, in this case H of X is less than 1.

Consequently we should say that we should be able to use fewer number of bits on an

average to  send the output  of source B as opposed to source A. But  here I  am at a

dilemma because source B is also saying 1 bit every second because the person is tossing

a coin and if a head or tail comes its speaks out 0 or 1. 

So, the way to go about it is we can always look at say blocks of b and we already know

that probability of head for example, is 0.2 and probability of tail is 0.2 0.8. For example,

so they add up to 1, then it is easy to form a table right from 0 0 0 0 0 1 right up to 1 1 1

and we have this associated probabilities right. So, this will be 0.2 raised to the power 3

and this y will be 0.8 raised to the power 3 and somewhere in the middle and they add up

to 1.



So, you will see that we have now these are my new symbols and this source B does not

have to say a 1 or a 0 or a 0 or a 1 depending upon the outcome of the head or a tail. It

will be till 3 tosses and look at this combined symbol and it is a probability. So, these can

be written as your ABCD so and so forth and they have the own Huffman Code 

So, a variable length code will be actually used to send out these composite symbols and

if you see on an average you will be able to have the average bits per symbols were to

say will  be less than 1 bit  in this  case.  So,  you actually  require  fewer than 1 bit  to

represent the outcome of this biased coin tossing, but this logic will not be true for fair

coin where if you combine them in blocks of 3, 4, B does not matter. 

They are all equiprobable and you will not be able to get any compression because of the

combination into symbols. So, this is a simple example that illustrates why, if you do

block by block coding you should be able to do things better.

(Refer Slide Time: 09:37)

We also  get  a  simple  example  where  we  had  three  x  1,  x  2,  x  3  with  associated

probabilities and the self information and the code words and we calculated H of x to be

1.5589 bits and R bar the average bits per symbol 1.6 bits and the efficiency was 0.97. 



(Refer Slide Time: 10:01)

Now, we did a simple experiment we made pairs. So, my B block length is 2. So, I have

x 1 x 1, x 1 x 2 and so on and so forth up to x 3 x 3 and I can multiply the probabilities to

get the net probabilities here. We calculate the self information and we do an a Huffman

Coding to get this following table 

Again if we calculate the average bits per symbol it comes out to be 1.588 and H of X is

1.5589 bits. Now, how does it compare with the previous one? Well previous one the

efficiency was 0.97 and this time we have improved upon R efficiency 

So, we are going closer and closer to your 1.55 in this case. We have been able to get to

1.58, but maybe 3 4 10 blocks at a time we can reach better and better of course, it comes

at a cost. The cost is the computational complexity that is involved in both encoding and

decoding 
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So, that brings us to the problem of this prefix codes right. The Prefix code try to match

the self information of the symbols with the length of the code words, but the lengths as

we observed are integer. So, sometimes you are better sometimes you are worse off. The

exact match is possible if and only if the self information is an integral number of bits 

So, let us look at this more emphatically. So, when trying to see when does that happen;

when does the exact number of bits and self information is an integer.

(Refer Slide Time: 11:54)



So, we look at this table quickly. Again we have this very special 7 symbols with very

unique probabilities such that the self information is integer and the code word length is

easy to match and they match exactly, but this is possible only because of a very unique

probability distribution fine 

(Refer Slide Time: 12:21)

So, we now again look at why prefix code work, but they can work better what are the

problems with prefix codes where do they fail. So, Prefix code as we saw are based on

trees. So, Huffman Tree helps you to make the Huffman Code.
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So, let us look at another example where you may have the symbols A B C D E and F

and suppose they are decreasing order of probability. So, P 1, P 2 so and so forth right P

3, P 4, P 5, P 6 and you combine the bottom two to achieve this Huffman Tree ok. It is

fairly mechanical.

But when whenever we go back and whenever we hit any of the bifurcations, we have to

take a decision whether to go up or to go down right and we always attach 1 bit either

which way? Whether we go up or go down, but what is telling us right because these two

branches are the sum of the probabilities. So, suppose here the probabilities are 0.1 and

0.1, then going up and going down requires a decision of 1 bit. On the other hand, if it

was 0.1 and 0.2, then things are not the same because information theoretically right; we

should not ascribe the decision to go down or up does not warrant equal number of bits

because they are not probabilistically equal 

So, if you look at the slide, if we have a case of point 5 to 0.5 as opposed to 0.9 to 0.1.

We should not give equal number of bits in both the cases, why? In the latter case of 0.9

and 0.1 because suppose these two branches finally, add up to 1 right. It would only take

0.15 bits to select the first branch and 3.32 bits to select the second branch because 0.1 is

rarer than 0.9 probability and therefore, I need more number of bits to represent that the,

but the Huffman code will always ascribe 1 bit per decision 

(Refer Slide Time: 15:14)



So, the D-adic probability distribution which we saw is the unique case where we have

this decision at all stages you will have 1. So, if you look at this D-adic case, we have x

1, x 2, x 3 x 5, x 6 and x 7 and if you look at the probabilities it is 1 by 2 raised to the

power 6, 1 by 2 raised to the power 5, 1 by 2 raised to the power 4, cubed 2 squared and

half very special distribution. Special in the sense both sides are equiprobable and they

add up to 1 by 2 raised to the power 5 

(Refer Slide Time: 15:32)

Again when we go for combining both sides are equiprobable. So, you will get 1 2 raised

to  the  power  4.  Again  when  we  go  for  a  combination  very  unique,  but  they  are

equiprobable. So, whenever we assign 1 bit going up or down, we are doing justice again

and so on and s forth. 

So, you will see at all stages, this is the only distribution that going up going down will

add up to 1 and this tells us that why this D-adic distribution and only this one will allow

us to really reach the efficiency of 1. This is an example, why we should be able to get

the best possible compression in this case using Huffman Code. So, efficiency is clearly

1 in this D-adic probability distribution 



(Refer Slide Time: 17:19)

So, we need to get around this problem and for that we propose this technique called

arithmetic coding that does not have this restriction of this integer bits being assigned.

We need to get on the real line because the probabilities can be as fine as possible ok. So,

we definitely should not restrict ourselves to assigning code words right in the beginning.

Let us play along the real line where we can have as much resolution as possible and

only at the end should we talk about coding it into bits. Very simple logic, let us see how

we do it.

So, it  works by representing the file to be encoded. What do you mean by file to be

encoded? Let us say, we have symbols your English language text. You can have images,

you can have any other representation a string of symbols, but in this case let us just talk

about a series of English alphabet. So, we have to compress this file which has several

English  alpha.  So,  what  we  do  is  we  keep  subdividing  the  line  between  0  and  1

subsequently successively as a symbols coming and we go deeper and deeper into the

line.



(Refer Slide Time: 18:50)

So, let us look at a simple example suppose we have only 3 symbols consisting of A, B

and C. So, whatever be a bit steam, it is only as some combination of AA CC BA ABC or

any other random combination. This is just a toy example for illustration.

Now, suppose we have the probabilities associated with it, only when the probabilities

are different. Do we have a scope for compression? So, in this example let us say P A is

0.5, P B is 0.25 and P C is 0.25 again.

So, how do we begin? We have a real line from 0 to 1,  we divided into 3 intervals

proportional  to their  probabilities.  So,  look numbers are resources.  this  real  line is  a

resources it is a real estate. We would like to divide this real estate into this equal for P B

and P C which have 0.25 probabilities whereas, P A which has a higher probability will

require 0.5, so half the line.
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So, let us graphically look at it. We have 0 and 1. This is a scratch pad, this is where we

are going to work. Now we have this 3 probabilities 0.5, 0.25 and 0.25. So, why do not

we divide it? So, half the line is the domain for P. What does it mean? From 0 to 0.5 is

my region for A, 0.5 to 0.75 is my region for B and 0.75 to 1 is C. So, very mechanical I

am just distributing the resource.

(Refer Slide Time: 21:08)

Now, let us continue with an example. Suppose the bit stream to be encoded is B A C A

so, B comes first. So, we focus our attention on B. Since B has come, if you consider the



previous example, B lies between 0.5 and 0.75. So, that is the thing we go, but then we

scale at this 0.5 and 0.75 stretch it up and we will use this as a real estate to divide

further between A B and C in the same ratios. So, B which was the first symbol that

came in chose this subinterval 0.5 to 0.75.

Now, this sub interval will be further subdivided into 3 regions, A B and C half quarter

and quarter depending upon the probabilities of A B and C. So, now 0.5 to 0.75, if you

divide it half then it will become 0.5 to 0.625 belonging to A 0.625 to 0.6875 to B and

0.687521 for C.

(Refer Slide Time: 22:28)

So, let us look at it graphically again. We started with this real line 0 to 1, A had the line

share of 0.5, B quarter of 8 and C of in quarter of the line. First symbol to come was B

right. It is not very visible, but this B has come in first and so I take this section for B

which belongs from 0.5 to 0.75 and stretch it.

So, the upper limit is 0.75 and the lower limit is 0.5 and again I quickly divided it into 3

portions equal to auto portion to the probability. So, A gets again half of it, but what is

half of it 0.5 and 0.75, add it up and divide by 2, 0.625. So, that is the line for A and then

subsequently divides 0.625 and 0.75. So, add them up and by 2 you get 0.6875 and so

and so forth.



Now, please make an observation. But as we proceed, the boundaries are represented by

numbers decimal points, but these are becoming larger and larger. So, earlier it was 0 0.5,

0.75 and 1.  Now it  is  0.5 0.6253 digits;  0.68754 digits,  0.752 digits.  So,  I  am now

requiring more and mo more numbers to represent my boundaries 

Anyway so, I was working with B and then next number that comes in, the next symbol

that comes in is A. So, the A comes in my boundaries become from 0.5 to 0.625, so I

stretch it up. So, 0.5 remains 0. 5; and this one becomes the upper limit. So, now, I am at

this  is  my real  estate  to  divide  and rest  is  mechanical  half  of  it.  So,  midway point

nothing, but 0.5 plus 0.625 add them up and divide by 2. So, you get 0.56 to 5 and then

same with 0.59375 more surprise I  am using more number of larger points after  the

decimal to represent the boundaries. 

Next come see; so, I have already encoded B A and now go to C and it is the same

mechanical I stretch it out to 0.625 as a top and 0.59375 as a bottom and when a comes

in again I get the middle point and you get the feeling right. So, this is the way to go

about doing this arithmetic coding and suppose, I say I have had enough why do not you

not tell you what is the code word for B A C A right. What is the codeword? Well I am

not giving you 1 symbol at a time, I am giving you the entire codeword for B A C A and

the answer is 0.59375 any number between these two boundaries 0.59375 and 0.609375

any number pick at random is a valid codeword for B A C A 

Student: (Refer Time: 26:09). 

Pardon.

Student: So, there could be infinite numbers can be used.

Ok the question being asked is there can be infinite choices. The answer is no problem.

At the end, I should be able to uniquely decoded and how do we decoded when it is the

same thing? Suppose I say, look I have received 0.59375 at the receiver; tell me what

was sent? That is it no problem.

Let us look at it when is 0.59375. So, I go my go to my real line between 0 and 1 and see

where is it located where should this number 0.59375 lie? I said oh this number should

lie in this region somewhere. I do not care where just this region. So, say oh this is the



region for B. So, first decoded symbol is B, but I am I d 1 with no. So, I go further. So, I

divide this B section here and it still asked my question tell me where is 0.59375 would

lie? And then I said oh 0.593, it is bigger than 0.5, but it is less than 0.6 to 5, it should lie

in this region. I do not care where exactly it lies, it is in this region. Fair enough.

So, my second decoded symbol is A, but I am not done yet.  So, I expanded further.

Mechanical  and I said where does 0.59375 lie? Now, I go ahead and say this is this

region C right. It could have been anything above it also, but it is this way and then I said

third symbol is C and I expand it further and I see where does it this lie and then I get the

answer as A and you will be surprised to see that any one of the numbers in this region

would give you the same answer, but if somebody does not tell me when to stop, I will

keep going. After B A C A, I can give you a few more C C A B B D or D is not there, but

A B B A. 

So, I  need a way to tell  me when to stop.  So, stopping flank or a q is  required for

arithmetic coding, but in this example we just found out that how arithmetic coding can

be effectively done. So, my 0.59375 could be now represented as bits and sent. So, this. 

Student: At the time up inputting, we have to know all the symbols at a time means all

the  symbols  otherwise  if  you  do  not  (Refer  Time:  29:08)  if  I  using  arithmetic

programming.

Ok. So, the question being asked is are we required to know the entire symbol stream to

do that? Well the answer is yes because unless we keep going symbol by symbol and

encoding, we will not be able to reach the final 0.59375 as an answer. 

So, yes we decide to go by blocks and that helps us in the decoding process. So, it is a so,

to say protocol for example, to say that I will only encode 50 symbols at a time. So, I

take 50 symbols and then send anything I do not declared my codeword till I encode the

50 symbols and then I have some answer 0.593722192275 whatever and then that can be

represented as bits and transmitted. 

Student: Sir, the amount of number of bits you required to represent such a fine number,

it can be more than the actually number needed to encode ABCD side? 



So let me rephrase the question. The question being asked is, is it possible that the actual

number bits required to represent this fine decimal number? We actually more than what

we would have done otherwise say by doing Huffman Coding because after all I have

these probabilities; So, nothing stops me from using a Huffman Code. The answer is no.

Arithmetic coding offers a much better compression than your standard Huffman Coding

and the reason is because it keeps working on this real line and it starts matching the

occurrences of A B and C to as fine as possible.

This goes very fine, nowhere at any stage by putting a restriction on the self information

being matched to the actual number of bits because nobody is talking about bits. This bits

will  come at  the end.  So, it  will  come out  to  be a  winner  as  compared to Huffman

Coding. You can try this out, but the reason why it works is it is not in a plagued by the

problem of trying to match the interior number of bits in the codeword to the average self

information that is the reason why this works much much better ok, but it is worthwhile

trying out a simple example to compare the efficiency of arithmetic coding to Huffman

Coding 

So, both Arithmetic Coding and Huffman Coding form a part of the jpeg compression

standards. But both of them have this requirement and the requirement is that you need

the probabilities of A B and C A priori without that I cannot even take the first step 

Now, it also does not have any. So, this say bias towards whether B A C are dependent on

each  other?  We are  treating  them  as  independent;  same  with  Huffman  same  with

Arithmetic, but if it is an English language ing come in a pair, the are more frequent. So,

q followed by u is more common it does not take care of that and the problem is that in

reality who can tell me what is the probabilities of A B and C can be work around this

problem.
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And the answer was proposed by Lempel and Ziv in their algorithm. So, the shortcoming

of Huffman is that it requires symbol probabilities. So, does arithmetic coding right

But in most real life scenarios symbol probabilities may not be known in advance or

even if you do they may be changing over time the symbol may not be time invariant you

would  the  probabilities  might  just  change and Huffman Coding is  great  for  discrete

memoryless source ok. So, occurrence of one symbol does not affect the occurrence of

the subsequent symbol and occurrence of a q will not influence whether a u will appear

after that, but that is asking for too much 

So, clearly Huffman Coding is not the choice not the best choice really for a source with

memory  where  we have  those  sources  in  real  life  and we looked at  this  example  q

followed by u or t h or i n g do occur more frequently.
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So, we are talking about compression of an arbitrary sequence of bits and it is possible

by coding a series of 0 s and 1 as some previous such string plus 1 new bit. So, the basic

philosophy of Lempel Ziv algorithm is as follows. It tries to represent any future string

as something that is already arrived. So, it encodes future strings in terms of past strings 

So,  the  new string  found  by  adding  a  new bit  to  the  previously  used  prefix  string

becomes a potential prefix string for future strings. So, thus these variable length blocks

are called phrases and phrases are listed in a dictionary which stores the existing phrases

and their location. So, all we have to say is location number so and so plus an innovation

bit which makes a different. In encoding a new phrase, we specify the location of the

existing phrase in the dictionary and append the new letter. We will look at an example. 



(Refer Slide Time: 35:46)

Suppose we wish to encode this long string 1 0 1 0 1 1 0 1 1 and so and so forth. Ok this

is our target bit stream to be encoded. We begin by doing something called parsing which

is a comma separated phrase that represent strings that can be represented by a previous

string 

So, let us again revisit this string 1 0 1 0 1 and so forth and I put a comma after the first 1

right because we are starting from scratch right. So, it is a null prefix and a 1. And then

we get a 0, so we express the second comma as after the 0. So, what it means is this 1, it

is right in the beginning; we cannot really express it in terms of any of the previous bit. It

is actually starting off with a 1 and a 0. In some realizations of Lempel Ziv, we already

assumed 1 0 being the first two entries of your codebook, but here we are starting from

scratch. Now, the real fun will begin.



(Refer Slide Time: 37:08)

So, far a dictionary contains a 1 and a 0,  it  is not a surprise because we are binary

encoding and everything will be represented in terms of 1’s and a 0. But now let us the

look at the further parsing of the string. So, we already have 1 comma 0 comma and then

we encountered  a  1,  but  we know that  1  is  already in  my dictionary  and that  time

location number 1, but 1 0 is not in my dictionary. So, this 0 makes this symbol, this is

my new symbol 1 0 different from what is present. So, this is 0 which made it different is

called the innovation bit.

So, now, I put a comma and then I proceed further. The next bit I encountered as a 1 I

look into my dictionary. So, this is my small dictionary a horizontal dictionary which has

3 entries 1 0 and 1 0, I encountered a next 1. Is it present? Of course, it is.

So, I proceed and I look at this 1 1, Is it present? I scan my dictionary and say no 1 1 is

not present. So, I put a comma behind 1 1 having put a comma, I now proceed further I

encountered  a  0.  So,  0  is  present  of  course,  it  is  present  that  time  location  2.  I

encountered a 1 so, 0 1. Is it present? No it is not. So, I put a comma because 0 1 is

another parsed symbol and then I proceed further from this point onwards I encountered

a 1. Is 1 present? Sure it is present at location number 1. Is 1 0 present? Oh yes it is

present location number 3.



So, I proceed further 1 0 1. Is 1 0 1 present? No it is not. So, I put a comma after 1 0 1

and I proceed further along the same lines. So, I get 0 1 0 comma and then 1 0 1 1

comma and so and so forth 

Now, if we make this observation as we go on parsing. These code words become longer

and longer. At this point it  is not fair to call  them code words, but these parsed bits

become longer and longer. So, 1 bit long, 2 bits long, 3 bit long, 4 bit long and so on so

forth. So, we end up representing future bit streams in terms of the past bit streams.

(Refer Slide Time: 39:57)

Now, if we complete this example, we can say that time is come to represent this past bit

stream as fixed length code words. So, look at the first one. It is null because it really

cannot be represented anything that comes before it. So, its 0 0 0 and innovation bit is 1,

so 1. So, why do not we bring it closer ok, so that is better.

So, now this 1 is represented as 0 0 0 1. The next one will be represented by a codeword.

Again 0 cannot be represented by anything before it. So, these are null 0 0 0 and the

innovation bit is 0 which makes it different. So, 0 then we look at 1 0. So, 1 0 of course,

has a 1 an innovation bit 0, 1 can be represented by a previous codeword, but where is it

present? Location 1, 1 is represent at location 1. So, the first 3 bits are only indicating the

location  where which codeword, it  says 0 0 1 location  number 1 and what  makes  a

different addition of a 0? So, 0 0 1 0. 



Let  us  look  at  this  1  1.  So,  the  first  one  is  previously  present,  location  number  1

represented by a location 0 0 1 and the innovation bit 1 just adds right here. Let us look

at 0 1 0 1 is 0 followed by a 1 0 where is it located? Location 2, location 2 is represented

by number 2 0 1 0 is number 2 and 1 makes it different. What about 1 0 1? 1 0 1 is

represented with this is at location 3 1 0. So location 3, 0 1 1 and innovation bit is 1 and

subsequently you can look at all of them. 

Please note that 1 bit is also represented as 4 bits ; so, expansion, 1 bit is represented as 4

bits; expansion, 2 bits as 4 bits, 2 bits at 4 bits, 3 bit as 4 bits, 3 bit as 4 bits, 4 bit as 4

bits. So, far we are losing in terms of being efficient in terms of coding, but please note

as we go along parsing longer and longer strings will be there, but all of them still be will

be represented by 4 bits. So, we will start getting our compression advantage as we go

along ok

So, the first few symbols will not actually yield compression, then end up expanding the

number of bits see; the number of bits on top is larger than the number of bits which are

originally present, but the case will drastically change as we go along.

(Refer Slide Time: 43:22)

So, what have we sent out as an encoded bit stream? Codeword at location 0 followed by

1, so 0 0 0 1 codeword at location 0 followed by 0 0 0 and so and so forth. So, if you just

write it out without the commas, I send out the 00010000 and so, this is my encoded bit

stream 



So, binary string encoded in to another binary sting. What do I do at the decoder? If a

decoder knows that we are doing a fixed length code. So, fixed length code means every

4 bits represents answer. So, I look at the first 4 bits, it is 0 0 0 1 within this. I also know

that the first 3 bits represent the location and the next one is my innovation bit,  but

makes a different 

So, location null location means it  is a starting 1. So, I have the first entry 1 in my

decoded. Does everybody see that? So, the first entry which I decode is the bit 1, first 4

bits are gone. I concentrate on my next 4 bits which is 0 0 0 0, I mean the first 3 bits

represent the location null location and the 4 th is a innovation bit 0. So, clearly I write

down immediately 0. So, the first two bits are 1 and 0 and the first 8 bits are decoded. So

9, 10, 11 and 12 bits, if you look at it and now you can actually see because these 2 are

the same; the upper bit stream, lower bit stream, but that represented by commas. So, the

decoder is actually looking at mentally, it is compartmentalizing it into 4 bits at a time.

So, we are now looking at the third bit, third to symbol it is 0 0 1 0. So, what is the

decoder do? It moves at the first few bits are the location huh. The first location, we have

found out is 0 0 1, but we already have decoded the first entry and what was that it was

1. So, it is 1 and the innovation bit is 0. So, it completely knows what was sent it is 1 0

and it again looks at the next 4 bits and its knows it is 1 1. But then it looks at this fifth

one, it says 0 1 0 second location. What is in a second location bit 0 and what is the

innovation bit 1? So, 0 1 so and so forth; so, decoding is pretty easy; It can be done very

simply in Lempel Ziv of encoding algorithm.

Student: Sir.

Yes.

Student:  At  a  code  was  longer,  then  it  will  be  (Refer  Time:  46:31)  more  bytes  to

represent the location. It would be able to (Refer Time: 46:37) location in 3 bits, then

will be needing say 5 bit strange sorry its number. There also at the it would not be

efficient.

So, let me tell the question, repeat the question. The question being asked is the number

of bits used to represent the location depends on the length of the table, the size of the

table right and as we form a longer and longer the encoding, we have size will increase.



Those  only  more  and  more  codewords  and  eventually  there  will  overflow.  The

observation  is  correct  and  so,  we  need  to  have  a  sufficiently  long  indicator  for  the

location. But the second observation is not correct that whether it will be less efficient. In

fact, it will still be a lot more efficient as we will see in the subsequent slides.

(Refer Slide Time: 47:31)

So, if we are to complete this example, we have this dictionary location. Now we made

this horizontal dictionary into a vertical 1. So, we have a dictionary location and we have

a  content  and we will  fixed  length  code.  As  observed,  if  the  dictionary  look length

increases,  the  length  the  fixed  length  codeword  will  have  to  be  longer  because  the

location for the dictionary right will required more number of bits. So, 3 bits can only

represent a dictionary of length 8, 4 bits can be represent 16, 5 bits 32, 6 bit 64. So, their

growing exponentially just adding 1 bit can double the size of the dictionary 

So, then itself, it tells us that this there is a lot of hope in this method, just adding 1 bit

takes care. So, once, I mean 1 0 2 4 adding I one more bit increases the size of the

dictionary by another thousand and then another two thousand and then 4 thousand.

So, I will be very happy when I am working with a long dictionary and in general we are

working with larger dictionaries, but we have to fix this a priori that is the catch.

We cannot say that we will decide this fixed length codeword at a later stage. If it has to

be 12, you tell me what is the anticipated size of the dictionary and fix the codeword



length accordingly. So, as you can see that this locations must correspond to the fixed

over there. Here we have 7 and therefore, we need 3 bits to represent the fixed length

codeword 

(Refer Slide Time: 49:28)

So, let us just comment a little bit on the length of the table. What should the length of

the  table  be  because  we just  now saw that  overflows  are  a  reality.  So,  in  practical

application regardless of the length of the table, it will eventually overflow. This problem

can be solved by pre-deciding a large enough size of the dictionary. Again it is the best

bet  we  can  have.  The  encoding  decoder  can  update  the  dictionaries  by  periodically

substituting the less used phrases from the dictionary by more frequently used 1’s. 



(Refer Slide Time: 50:04)

Now, we come to another encoding technique called the Run Length Encoding. It is an

interesting  source  coding  technique.  It  is  a  technique  used  to  reduce  the  size  of  a

repeating string of characters. So, it is not applicable everywhere, it is for only when we

have runs of lengths runs of 0’s or 1. So, what is the run? Well if you have a 0 0 0 0 0 0

many times over, it is a run of 0 similarly a run of 1.

So, run length coding could compress any type of data regardless of its  information

content right, but the content of the data the number of runs we have actually will decide

the efficiency of run length coding and it is supported by most bitmap file formats like

TIFF, JPG, BMP and so and so forth and very commonly used in fax machine because in

fax machine where we have the page mostly blank. And character is written on top, if

you represent a white pixel by a 0 and a black pixel by 1 with huge runs of 0’s. So, it is

very very efficient for fax machine.



(Refer Slide Time: 51:24)

Let us look at an example. Let us look at this strange bit stream. It has a long run of 1,

then a  run of 0,  then a run of 1.  We have taken this  peculiar  example  because this

effectively shows where run length encoding will work. So, what do we do we count the

number of 1’s and we say 15 1’s count the number of 0’s 1, 2, 3, 4 up to 19, 19 0’s and

then 4 1’s. So, that this long bit stream is nothing, but 15 comma 1, 19 comma 0, 4

comma 1 

So, it says how many and the after comma of what, how many of what how many of

what. So, here, if this is the maximum run is of 19, then we can represent it with 5 bits. If

you anticipate runs can be of the length thirty then also 5 bits or if the run lengths can be

as  large as 35,  40 up to  6 3 will  require  6 bits  to  represent.  But clearly  the simple

representation of this long bit stream shows the power of run length coding. In this case

the compression is 1 is to 2.1. In this simple toy example, it is very high for fax machine

applications.



(Refer Slide Time: 53:04)

So, let us now summarize today’s lecture. We revisited the Huffman Coding and figured

out why it works and where it fails. Then we looked at arithmetic coding which is a little

bit more efficient and then we looked at Lempel Ziv coding which does not require a

priori, the probabilities of the symbols and it will also works for sources with memory.

And finally, we looked at an example of run length coding; that brings us to the end of

module 6.


