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Hello and welcome to module 5 of Source Coding. Let us look at the brief outline for

today’s lecture.

(Refer Slide Time: 00:22)

We will  revisit  source  coding theorem,  we will  again  look at  what  do  we mean by

efficiency of a code. Then we will look at one practical prefix coding scheme called the

Huffman coding scheme. And then we will explore coding in blocks not one symbol at a

time, but coding several blocks at a time. And finally, we will look at some examples.

So, this is the broad outline for today’s talk. We start with a quick recap of what we did

in the previous lectures.



(Refer Slide Time: 01:00)

We have established that whenever symbols occur with different probabilities there is

scope for compression that is there is a possibility to represent them more efficiently.

That brought us to the notion of variable length codes which means that symbols may

have different lengths of codewords attached to them.

We looked at Kraft inequality and we started to scratch the surface of the source coding

theorem.

(Refer Slide Time: 01:40)



So, let us recap a quick example of a prefix code we did this example in the previous

class. We have the first 8 alphabet of the English language ABCD up to H and we have a

corresponding codeword.

So, this whole set is a code a code is a collection of cod words and what we observed in

the previous lecture is that no codeword forms the prefix of any other codeword. We can

do a quick sanity check for example, 0 0 which is a codeword of A; nothing begins with

a 0 0 or 0 1 1 which is a corresponding code word for C none of the codewords start with

0 1 1 this means not no codeword is a prefix of any other codeword; this is the basic

essence of this code.

(Refer Slide Time: 02:37)

This condition that no codeword forms the prefix of any other codeword is called the

prefix condition right. And since, these codes are such that we do not have to wait to

declare the results. If we have an input bit stream coming the moment we find a sequence

of bits corresponding to any valid codeword from a table, we declare the result then in

there we do not have to wait for it. Therefore, these codes are also called instantaneous

codes please note that suppose we make this condition suffix codes as opposed to prefix

code.

Then we probably  cannot  instantaneously  declare  the  results  ok.  So,  we have  to  go

through  several  code  words  coming  back  and  then  we  have  to  walk  backwards  to

understand what was really sent. So, prefix codes work whereas, suffix code may not



work though both are uniquely decodable. We also saw examples of codes which are not

uniquely decodable that is you can have multiple possible answers to the bit stream that

you receive.

(Refer Slide Time: 03:56)

We observed  in  the  previous  class  the  Kraft  inequality  which  is  shown  as  follows

summation k is equal to 1, through L 2 is for minus k n k less than or equal to 1 right this

is a condition for prefix condition.

(Refer Slide Time: 04:17)



Let us look at the source coding theorem that we talked about here we have L output

symbols from a source; the source has a finite entropy H of X. Now each of the symbols

x k have an associated probability P of x k then the source coding theorem says that it is

possible to construct a code that satisfies the prefix condition and also has an average

length R bar which is limited by H of X as the lower bound and H of X plus 1 as the

upper bound the units are in bits.

So, please note that R bar which is the average length of the code provided it follows the

prefix condition is pretty efficient. The best you can do is to take it down up to H of X,

but even if you cannot and sometimes it will not be in your control to make the average

length of the code down up to H of X; if it is a prefix code it will at worst be upper

limited by HX plus 1.

 (Refer Slide Time: 05:45)

So, it is off by 1-bit not too bad. So, it is worth exploring what R bar is when we have a

prefix code. It also tells us that once we have a prefix code that satisfies R bar is equal to

H of X, we should abandon further search because we have reached the ultimate. And

intuitively the source coding theorem tells us that if a source is higher entropy H of X

then on an average we require more number of bits to represent the symbols; please note

the key word is on an average.



(Refer Slide Time: 06:21)

We also defined the efficiency of a code as a ratio of H of X divided by R bar. So, clearly

it  is  less than or equal  to  1 efficiency of the code really  tells  us how much we can

compress the source symbols.  And we will  use this  source coding to compress data,

speech, text, audio, image, X-ray data any samples that you get from the vibrations of the

bridge,  any  signal  that  you get  wherever  there  is  redundancy  we  should  be  able  to

compress  it  and  we  must  compress  it.  Because  today  the  storage  of  bits  and  the

transmission of bits both require resources and is expensive.

So, it is important that whatever can be compressed should be compressed.
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Since this prefix code is such a good case to argue for we should look at an example how

to come up with a prefix code. And this was introduced in 1952 by Huffman as a variable

length encoding algorithm. What it requires is the source symbol probabilities P x i; so,

suppose there are L possible symbols each one has an associated probability P x i.

Now, this  Huffman  coding  is  optimal  in  the  sense  that  the  average  number  of  bits

required to represent the source symbol is a minimum we cannot do any better than this

on an average and it also meets the prefix condition.

(Refer Slide Time: 08:13)



So, let us look at it how do we do Huffman coding the first thing is that you collect all

the  source  symbol  probabilities  and  arrange  them in  a  decreasing  order.  So,  in  this

example let us have 1 2 3 4 up to n probabilities of course, we are not showing p 1 p 2 p

3, but right at the bottom we have p n as the lowest probability p n minus 1, little higher

p n minus 2 higher than that and so and so, forth.

So, we always start with the bottom of the ladder. So, on this ladder they have arranged

all the probabilities of occurrences of the symbols, but bottom is the smallest and top is

the highest. So, we focus our attention on the bottom on the later. So, what we do is take

the bottom 2. And we will explain the rational behind it,  but first idea is to take the

bottom 2 and combine them how do how do you combine them you tie them up together

and add their probabilities.

So, in a sense we are making one complex signal from the bottom 2 symbols which are

least  probable.  And  then  once  we  add  them  we  write  the  net  probabilities  because

probabilities will add up.

(Refer Slide Time: 09:47)

Now what we do is we will repeat this step for 2 symbols at a time as we go along for

example,  now  p  n  and  n  minus  1  together  have  formed  one  complex  signal.  That

becomes the lowermost provided p n minus 1 plus p n the sum of the probabilities is still

lower than p n minus 2. Otherwise, you have to rearrange this complex symbol along the

ladder and place it as a level where it is again in the decreasing order.



So, each time we perform the combination of 2 symbols. Obviously, we reduce the total

number of the symbol by 1. So, at every step we lose one symbol and as we go along we

will end up finally, with one symbol and that symbol has probabilities of all the symbols

added up and it should add up to 1 because the probabilities must add up to 1. So, here

we have taken the bottom 2 symbol labeled them as a complex symbol it is still lower

than p n minus 2.

So, it occupies a lower level and then we combine p n minus 2, the probability with this

probability to give another combined symbol. So, after 2 steps out of these 3 possible

symbols we are only left with one at every step we will lose one symbol and now we

write the combined probability here.

(Refer Slide Time: 11:37)

Let us look at an example suppose there is a discrete memory less source with only 7

possible symbols x i 1 through 7 and we have the corresponding probabilities. So, in this

table we write the probabilities. Just for reference suppose these probabilities were all

equal suppose the symbols were equiprobable then in order to represent 7 or even 8

symbols we would clearly require 3 bits per symbol; log to the base 2 8 will give me 3.

So, 3 symbols 3 bits are sufficient to represent the symbols, but can we do better? That is

the question and here we have the probabilities.

So, first step is we have arranged them in a decreasing order x 1 most probable x 7 least

probable.
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Now here is the arrangement in the decreasing order; we start with the bottom 2 0.01 and

0.02 I  combine  them up and I  am glad to  see that  0.03 still  less  than 0.04.  So,  my

decreasing order is 0.37, 0.33 going up to 0.04 and then point 0 3. So, I still have now

instead of 7 we have effectively 6 symbols with their probabilities right here ok. Now we

continue this process we combine now this 0.03 with 0.04 it will add up to 7 and then

0.07 combine with 7 and so and so, forth. So, I keep adding them up and I form this

structure ok.

So,  please note 0.01 plus  0.02 is  0.03;  0.03 plus 0.04 bottom 2;  0.07 0.07 0.07 big

question which is bigger? Well we can toss a coin to choose which one is bigger right

now let us say point this 0.07 is lower than this, but nothing stops me from putting this

symbol higher up than this. We will look at a subsequent example to prove this. So, 0.07

plus 0.07 0.14 still lower than 0.16; so, the probabilities at this stage is 0.37, 0.33, 0.16

and 0.14 great we combined bottom 2; 0.30 probability of 0.37, 0.33, 0.30 still in the

decreasing order I have got deeper into the tree and so and so forth I keep combining

0.66 and so and so forth. We can take it up to 1, we can flip this also, but whether the last

stage. So, 1 means I have added all of them correctly.

Now, suppose having constructed this Huffman coding tree; I am curious to find out

what  should be all  the codewords  associated  with x 1 to  x 7 let  us  choose x 4 for

example, all we have to do is follow this tree backwards. So, this is the mother node and



we go up to x 4 by following it up. So, I go here I have a choice I go up or go down I

need to go to x 4. So, I go down the moment I go down I add 1. So, whenever I have to

take a choice go up I will add a 0 go down I add up as one therefore, these are labeled 0 1

0 1 0 1 and so and so, forth.

Since my target symbol is x 4 1 and I go down one and I need to go down 1, but now to

go to x where I go up and I get 0. So, I add 1 1 1 and 0 and that should be my symbol the

codeword for x 4 and so and so forth. So, what is unique what is interesting is as follows;

please note the highest the higher the probability, the fewer bifurcations  it  has to go

through. So, this particular guy x 1 most probable had to just go through 1 bifurcation.

So, it just gets the number 0, but this guy probably had to go to 1 2 3 bifurcations.

So,  as  we  go  down  the  ladder;  we  will  have  to  carry  on  through  more  steps  and

consequently I will have a larger representation for less probable symbols right. Now I

have got these probabilities; so, it is very easy for me to calculate the H of X again I

could have corresponding codewords. So, it is very easy for me to multiply the length of

the  codeword  with  the  probability  of  occurrence  and  average  it  out  to  find  out  the

average codeword length.

So, invariably I will calculate H of X, plug in the values I get some numbers. So, answer

is 2.152 bits and I get the R bar average codeword length as 2.17 bits. It is not surprising

to see that R bar is greater than the H of X H of X is the Holy Grail the best we can do

and I can take the ratio and I can give you the efficiency of the code.
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So, here is a detailed calculation how I received H of X and R bar H of X is nothing but

summation over all symbols 7 P x k log to the base 2 P x k if you solve this you get this

value  and  similarly  for  the  average  codeword  length;  length  of  the  codeword  into

probability  of utterance.  So, this  one is 1 bit  long and 0.37; so, I multiplied it  1 the

second one is 2 bit long multiplied by 0.33 and so and so forth. So, I get 2.17 bits and

efficiency is 0.97.

 Now let us look at it a little bit more carefully what have we done? So, far we had this 9

symbols x 1 through x 7 and then I reached in the decreasing order of the probability and

we have been able to find the codewords associated with them. Categorically for x 4 we

had found 1 1 1 0. Similarly we find for all others, but what we have added is this table

for self information. Clearly x 1 which is more probable has a less self information as

compared  to  x  7  which  is  very  very  rare  remember  self  information  inversely

proportional to the probability of occurrence.

So, clearly the self information which necessarily does not have to be an integer are all

over the place right from 1.43 right up to 6.64. Codewords on the other hands must be

integers fine; so, we cannot really fine tune too much in terms of the codeword lengths as

opposed  to  self  information.  Where  does  the  compression  come  from?  Well  if  the

information is less I should use fewer bits because units of information is also bits.



So, in principle I should actually use 1.43 bits to represent this first symbol, but I am

using 1-bit I should use 1.599 bits to represent the second symbol, but I am using 2 bits

wasteful, but I have no choice; either I use 1-bit represent or 2 bits to represent and so

on. So, for this is my dilemma 2.64 this symbol x 3 only commands information worth

2.64 bits, but unfortunately Huffman has allocated 3 bits wasteful and I will be paying in

terms of my poor R bar and hence the poorer efficiency of the code.

Where are we losing the efficiency? It is all here I just do not have a choice look at x 6 it

requires 5.64 bits to represent it and I have got 1 2 3 4 5 6 or estimated, but all is not bad

x 7 requires 6.64 bits, but again I have got only 6 bits. So, win some lose some, but in on

an average I am a little off than my H of X H of X is completely determined by the self

information  average  self  information  is  H of  X ok;  so,  this  is  the  first  weakness  of

Huffman code.

(Refer Slide Time: 21:16)

Let us look at another example again we have are 7 symbols hm; please note if we had

equiprobable then we would have no choice, but to represent 3 bits per symbol please

note here.
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In the previous example, we were able to reach up to 2.17 bits instead of the worst case

analysis of 3 bits per symbol. But in this example let us see what we have again we have

probabilities  and  I  have  taken  the  liberty  to  arrange  them  in  decreasing  order  of

probability.

(Refer Slide Time: 21:53)

The  construction  of  the  Huffman  tree  is  pretty  mechanical  decreasing  order  of

probabilities, take the bottom to combine. So, 0.01 plus 0.02 combine to get 0.03; 0.03

plus 0.03 0.06, but what is going on? 0.03 and 0.03 that the same nobody is holier than



the other one there is no reason why this symbol should be lower than this or for the time

being less keep them like this. But we should be able to switch them also, but what is this

0.03 0.03 add up to 0.06 I have to compare again because they have to be in decreasing

order of probability.

So, there is no reason why this 0.06 should be lower than 0.06 here, but we have no

choice.  So, let  us keep it here, but we could have tossed a coin and put this symbol

higher up than this, but today is not my day 0.12 and 0.12 again they are equal. Maybe I

should exchange them in terms of ordering. So, the decreasing order probability ladders

say is 0.46, 0.30 0.1 to 0.12, but this 0.12 can be higher up than this 0.1 and then we have

0.24 and so on so forth.

So, if you do this and again calculate the H of X it comes out to be 1.9781 bits and R bar

as expected is larger than H of X is cos is equal to 1.99 bits for this different example.

So, please note 7 bits in this example. I change the probabilities, but my R bar and H of

X both have changed its obvious if I change probabilities H of X will change and R bar

will also change.

(Refer Slide Time: 24:00)

 Now we change our thinking and we say look this 0.03 should be rated higher than this

0.03. This 0.06 should be above this 0.06. So, if what if we change the probabilities?

What if we change the ordering? So, same probabilities 0.46, 0.30, 0.12 you can check

with the previous example, but this time when I get 0.01 plus 0.02 as 0.03; I put this



above;  above what? This peer. So,  this  one goes down please not it  will  change the

codeword  because  whether  you  take  the  upper  branch  or  lower  branch  will  decide

whether you add a 0 and a 1 0.06 again 0.06 I said this guy is higher up than this guy. So,

again I interchange 0.12; again I play the same creek this 0.12 goes up this 0.12 comes

down.

So, see how convoluted this second cases as opposed to the previous case where each

one time when I had an option; I have really twisted the arms each time of the Huffman

tree and so on. So, when I add up to one. So, I am sure that my addition is correct; so,

well taking this 0.03 and switched it over.

Now what do we find? Well we can again calculate H of X it goes without saying that H

of X is the same as previous one because I have not touched the input probabilities. H of

X only depends on the input probabilities; so it is the same, but what about R bar? Well,

R part is also same; so, the average codeword length has not changed.

The codewords would have changed for sure have they? Why do not we look at it.

(Refer Slide Time: 26:16)

So, this table tells us the 2 different realizations of the Huffman tree for the same set of

input probabilities ok. So, what are those?; so, we have x 1 through x 7 and you can

verify that the probabilities are the same. And needless to say the self information must



also be the same right, but in the first case we did not reorder the equal probabilities

whereas, in the second case we reordered them.

So, we ended up with different sets of codewords ok. So, here the third one x 3 was 0 1 0

here x 3 0 1 1 x 4 is 0 1 1 0 here 0 1 0 1 and so and so forth. The bottom one the least

probable is 0 1 1 1 1 1 1 1 and here it is 0 1 0 0 0 1. Now what is to be noted is since it is

based on a binary tree; the prefix condition will always be satisfied. So, you can verify

that no codeword either in case 1 or in case 2 is a prefix of any other codeword. And

finally, we write the codeword length the codeword lengths are also the same.

So, clearly when I find R bar I multiply 1 into 0.46 plus 2 into 0.30 into plus 3 into 0.12

and so and so forth 6 into 0.01 add them up I get the same answer as this, but mind you

this always does not have to be. I could have done additional jugglery in between by

choosing not to have all of them switched, I could have flipped the first one and flipped

the third one, but not flipped this one and I will get another set of codewords. And they

may not be of equal lengths correspondingly still the R bar magically will come out to be

the same.

So, in this both the cases H of X and R bar are the same. So, if you look at the efficiency

of the code.
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You can divide  the  H of  X by R bar  to  get  0.9940.  So,  both  the codes  are  equally

efficient, but it tells us that Huffman codes are not unique for a given set of probabilities

ok. You can have more than one realization, but efficiency is the same ok. So, that is the

take home message that we can have multiple realizations of the Huffman code for the

same input probabilities.

(Refer Slide Time: 29:30)

So, let  us explore a little  bit  deeper  and look at  another  example;  again our discrete

memory less source is generating possibly 7 different kinds of outputs x 1 1 up to 7. And

then these probabilities are associated with these symbols. So, x 1 has probability 1 by 2,

x 2 1 by 4 x 3 1 by 8 appears to be a pattern to respond minus 1; 2 respond minus 2 to

respond minus 3 upto to respond minus 6, but this one last one I need all the probabilities

to add up to 1 such again 2 respond minus 6.

So, how does it work? Add these 2 up you get 2 raise to minus 5, add these 2 up 2 raised

to minus 4 2 raised to minus 3 keep adding and it will add up to one. So, the probabilities

add up to one it is a valid probability measure, but having put this probability in this

funny manner we note another very interesting thing. We find that the self information a

are all integers; log to the base 1 over P x i; so, here it is 1, 2 right up to 6.

Suppose we will do Huffman coding on it we get this following prefix code. Now we

write  the  corresponding  codeword  length  side  by  side  what  we  observe  is  very

interesting; finally, the codeword length which has to be integer is the same as the self



information which is by design and integer. We have been able to finally, map the length

to the self information length 1 to 1. So, x 4 has the self information 4 and we have done

justice to it we have only allocated 4 bits the real event x 7 has self information 6 bits

and I have given it 6 bits.

So,  we  have  really  done  allocation  optimally  bits  are  resources  we  have  not  over

allocated or under allocated, we have matched it. So, what it means is this very very

unique distribution only allows us to do this. And this should not be a surprise if you

calculate the H of X it is 1.9688 bits and if we calculate the average codeword length it is

also 1.9688 bits.

So, we clearly have the efficiency equal to 1; we have reached we have reached the rock

bottom the best we can do. This special  probability distribution and only this special

probability distribution allows me to reach R bar equal to the lower bound H of X. And

this also tells you why in all other cases my R bar will be greater than H of X because I

just cannot match the self information with the integer codeword length fine.

(Refer Slide Time: 33:16)

So, this probability distribution is called D addict. So, the distribution probabilities are D

respond minus n for some integer n the Huffman coding scheme has been able to match

the codeword lengths exactly to the probabilities and hence the self information of the

symbol. And therefore, we have been able to achieve eta equal to 1 the efficiency equal

to 1, but this kind of a nice beautiful distribution is not always found in the real world.



So, this is where we are; so, let us look at the Huffman coding from a slightly different

perspective. Let us look at a person whose job is to allocate bits alright. So, every time

he reached reaches a bifurcation this person has to traverse a path from this base up to

one of the valid symbols and allocate the codewords right. Let us look at even a simpler

example; so, what we are trying to do is try to help this person allocate a codeword to a

particular symbol and the way he does it is he either takes the upper path or the lower

path, but to take a path to take a decision he uses a bit ok.

So, the value of the decision is 1-bit which path to choose? The upper path or the lower

path, whenever you have to take a decision you have to invest in bits, but the problem

with this guy is whether the decision is easy or the decision is difficult he has to allocate

1-bit each time ok. What do you mean by decision is easy? Well if the probabilities are

0.9 and 0.1 right it is an easy decision.

But if it is 0.5 and 0.5 it is a difficult decision. So, that difficult decision warrants 1 bit,

but an easy decision does not require it to waste 1-bit for each 1 and that is the reason

why the resource allocation while going up to the end is not optimal. Only when the

bifurcation  is  equiprobable  say  0.6  and 0.6  then  it  is  worth  allocating  1-bit  for  this

decision.

But if I am mapping 0.46 and 0.50 they are not equiprobable each one does not deserve

1-bit or if I am doing some other 0.24 and 0.3 adding up to 0.5 4; again they do not each

desired resolved 1-bit. Why am I saying this? Tomorrow if you have to improve upon

this method we should be able to allocate fractional or proportionate amount of bits when

we go up and down; then we can do better than this. And we will come to a method

which  allows  us  to  allocate  bits  on  the  real  line,  but  right  now  we  are  stuck  with

allocating either a 1 or a 0 when we go up and down the stream ok.
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 Now let us look at a slightly different approach; we ask ourselves the question why do

we work only symbol wise? What if we combine 2 or more symbols together ok; so well

suppose we have a bit string and we do not work symbol by symbol, but by blocks of

simple alright. But, since they are independent if once the source has an entropy of H of

X; the blocks of b symbol would have an entropy BH of X. And if we apply source

coding theorem, because we treat this combined blocks as the super symbols. Then we

will have a corresponding RB and it is upper bounded by BH of X plus 1.

(Refer Slide Time: 38:25)



So, let me explain suppose we have a bit stream and we choose to take 3 bits at a time

and  declare  them  symbols  x  1  x  2  x  3.  Well,  these  themselves  have  their  own

probabilities p x 1 p x 2 p x 3 and so and so, forth. In fact, if you look at this example

you  have  right  from 0  0  0  0  0  1,  0  1  0  up  to  1  1  1  you  have  got  corresponding

probabilities p x 1 p x 2 and so on and so, forth up to p x 8; what is means is that I can

now do Huffman coding at this complex symbol levels.

Let us look at the equivalent source coding realization for that. So, we now have instead

of H of X we now have BH of X and RB is the number of average number of bits per

block ok. This happens to be might be; so, R B bar is the average number of bits per B

symbol block. So, we can divide all the sides by B and we can rewrite the bound as H of

X less than or equal to RB bar over B less than or equal to H X plus 1 over B. But R B

bar is the average number of bits required to represent B symbol block, but how many

symbols does it have? B symbols. So, RB bar divided by B is average number of bits per

symbol right and that is my R bar.

So, again we can compare apples with apples and I am left with H of X less than or equal

to just R bar less than H of X plus 1 by B. So, working block wise has been able to

pinch, squeeze the upper bound earlier it was H X plus 1. Now it is 1 over B and as I

make the block size be larger I try to squeeze the upper bound and the upper bound

squeezes and it tends to H of X. So, Huffman coding in blocks would be able to give me

a much higher efficiency.



(Refer Slide Time: 41:47)

Let us look at an example this time let us have 3 symbols only with probabilities 0.4,

0.35, 0.25 and mechanically I find myself information for these 3 and I do a Huffman

coding and I get 1 0 0 0 1 as my 3 codewords, a very simple H of X is 1.55 and average

codeword length is 1.6 bits. So, clearly efficiency is less than 1 or how much is it is

0.9743 fair enough 3 bits given probabilities all the steps are mechanical this is the best I

can do.

But I now wonder can I work block by block? Theory says that I can do better why do

not we give it a try. So, what are my pairs I make B equal to 2?
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So, I pair up each one and I first find out the probabilities alright. So, what does it mean?

I have x 1 x 1, x 1 x 2, x 4 x 2, x 1 2 and so, forth up to x 3 x 3; so, 9 independent

probabilities multiply so, x 1 was 0.4; so, x 1 x 2 or x 1 x 1 is 0.16 right. X 3 is 0.25; so x

3 x 3 is 0.0625 and now I found the self information and I do a Huffman coding on it this

is pretty mechanical. But this time I find that if I do your H of X. So, we find for the

symbol which is 2 H of X is 3.1177 bits consequently H of X is 1.558 time and for a

block of 2 symbols; 2 R R bar is 3.175 bits and R bar that is per symbol is 1.588; how

does it compare with the previous one? Where this time R efficiency is 0.981, but what

was it last time? Well last time it was 0.9743. So, I have been able to squeeze a little bit

more efficiency its better than my previous case.

So, coding in blocks helps I will not stop here I can go beyond I can go to x 1 x 1 x 1 x 1

x 1 x 2 right  up to  x 3 x 3 x 3 and I  get  the probability  corresponding probability

distribution and I can write the self information and codeword and find it is better why is

it working better?.



(Refer Slide Time: 44:51)

The answer is pretty simple if you look at here, the self information is very coarse where

the probabilities of very coarse. There are 3 symbols 3 probabilities they must add up to

1; whatever I have I have written the self information. I am trying to match the codeword

length to the best; so, 1.3 is mapped to 1 length 1.5 is mapped 2 and 2 is mapped 2.

(Refer Slide Time: 45:26)

So, I have only done just its to x 3 in terms of allocation of the number of bits to the self

information value just all I have not done a good job. But if you look at this to symbol



pairs right; the number of elements now has gone up in my combined symbol list it is

now 9, but probabilities must add up to 1.

So, the granularity it is become much more fine; the distribution has become much more

distributed.  So, the self information values as you can see and not such discrete it  is

slightly easier to map them up; so, 2.8 is now mapped to 3 as opposed to 1.5 being

mapped 2.

(Refer Slide Time: 46:08)

What  a  poor  map;  so,  we  are  trying  to  understand  why  this  grouping  works;

mathematically it works, but we are trying to understand why it works.



(Refer Slide Time: 44:16)

So, if you can see again 2.83 its trying to map to 3 not a correct map, but a closer web

3.02 map to 3 I am doing a better job right and so and so, forth and somewhere of course,

it is not so, good. So, 3.5 is mapped to 4 not so, good. And therefore, a pay and a my

efficiency is farther away from 1, this 4 is mapped to 4. So, we have done a good job in

the end.

So,  the bottom line  is  if  you combine  if  you work in groups you have a  chance of

improving your efficiency. Price is the computational complexity goes up you can see the

size of the Huffman tree will increase exponentially and that itself will cause additional

problems at the cost of giving you a better efficiency ok



(Refer Slide Time: 47:22)

So, we now come to the end of this talk let  me summarize what  we have done;  we

revisited source coding theorem, we talked about the efficiency of a code very important

closely linked to the compression then we looked at Huffman coding.

We finally, looked at an example why coding in blocks helps and we of course, looked at

several examples throughout today’s lecture what if conditions, what if you interchange

probabilities, equal probabilities what if you distort the 2 Huffman tree twist the branches

and things like that and we got some insight into why Huffman tree works. And why it

does not work beyond a certain limit and probably, how you can make it work even more

efficiently.

So, we come to the end of this module.


