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Hello and welcome to module 4 on Source Coding. Let us look at the outline for today’s

presentation.  We will start with variable length codes, then we will follow it up with

Kraft inequality.
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Then we will talk about the source coding theorem, and finally we will discuss what do

we mean by the efficiency of a code? 
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But  let  us  start  with  a  quick  recap  of  what  we have  done  and we will  refresh  our

memories.

So, what we have done so far is we have looked at information measures for continuous

random  variables;  wherein  we  looked  at  the  notion  of  differential  entropy,  we  will

quickly revisit it again. Then we talked about average conditional entropy for continuous

random variable,  then we measured the similarity between 2 distributions in terms of

relative entropy which is also called the Kullback Leibler distance.  We looked at the

asymmetry  of  that  and  then  looked  at  Jensen  Shannon  distance.  And  finally,  we

introduced the notion of Prefix Codes.
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So, let us start a quick memory refresh. We started off with self information of the event

x is equal to x i, which we saw had a logarithmic measure for information. Then we said

that it is important to have the average self information also called entropy defined as H

of X right.  So,  it  is  with a  negative  sign P x i  log P x i  summed over  all  possible

occurrences.
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We also defined mutual information between x is equal to xi and y is equal to y j. So,

between 2 events as x i of xi semicolon y j and we found out that it is mathematically

equivalent to the mutual information between y j semicolon xi.

This  we realized could also be negative  then we looked at  the definition  of average

mutual information which is i capital  X semicolon Y which is defined with a double

summation and we also discovered that this quantity is non-negative. We then moved to

continuous random variables where we defined the differential entropy denoted by small

h of X as follows.
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But we emphasized again and again that there is no physical meaning attached to it. So, I

can plug in the value of p of x and compute it will come out to be finite, but we all know

that the average self  information for a continuous random variable is indeed infinite.

Therefore, differential entropy really does not have a physical meaning attached to it. We

also looked at the chain rule for differential entropy given as follows.
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 After that we asked ourselves a question how do you say how similar are 2 probability

mass functions p x and q x.  And we defined the relative entropy also known as the

Kullback Leibler distance D p parallel  q as follows and it can be seen as simply the

expected value of log of p x or q of x.

So, it goes without saying that if p x equals to q of x log 1 is 0 and there is the distance

reduces to 0; that is there is no difference between the distributions p and q. On the other

hand quick observation of this equation tells us that this is not symmetric that is to say

the D p parallel q is not the same as the D q parallel p this is important to note and

therefore, it does not follow the symmetry property.

We also found out that this relative entropy or the Kullback Leibler distance, does not

satisfy  the  triangle  inequality.  So,  it  does  not  follow  2  of  the  3  requirements  for  a

distance measure; it is only non negative. It does not follow the symmetry property or the

triangle inequality.
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To overcome this problem of symmetry Jensen Shannon Distance was defined again it is

the  distance  between 2  probability  mass  functions  p  x and q  x and it  is  defined  as

follows. And we found out  that if  the base of the log is  2 then the Jensen Shannon

distance lies between 0 and 1. In literature this Jensen Shannon distance is also called

Jensen Shannon divergence or sometimes information radius, but why are we doing all of

this?
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Well, are ultimate aim is to efficiently represent symbols, we would like to code them so,

that we use minimum number of bits to represent the symbols. For that we defined codes

and codewords; so, a code is a set of vectors called codewords. And we could have a

fixed length code for example,  for the English alphabet and since we have 26 letters

about 5 bits should suffice because 2 raised to power 5 is 32.

So, we will have some additional codewords available, but a fixed length code should

suffice for an English alphabet. However, there is a simple observation that we can make

not all letters are equiprobable what does it mean? We should not really allocate equal

number of bits for less probable as opposed to more frequently appearing letters.

So, there could be a better strategy than to allocate equal number of bits for all the letters

in the English alphabet.
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So, we start off with an example; we did it in the previous class as well we have only the

first 8 letters in the English alphabet for this example A, B, C, D, E, F, G and H and the

simplest in the most obvious thing is 8 letters no problem, 3 bits per letter we have 8

possible codewords. So, codewords are from 0 0 0 up to 1 1 1 and this set of codewords

is called a code. So, in this table we have the fixed length code, but nobody stops us from

making a variable length code and how do we do that? Well a particular example is as

follows I have A being represented as 0 0 just 2 bits, B with 3 bits so and so, forth and

since we ran out of 2 bit or 3 bit we could also say that G and H also have 4 bits.



So,  it  is  clearly  a  variable  length  code it  goes  without  saying that  there  are  several

possible variable length codes available for these 8 letters.
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So, let us take a toy example A BAD CAB we would like to encode it. So, if we use the

fixed length code we can use it to encode it and we get 21 bits whereas, for the variable

length code; we have only eighteen bits to represent A BAD CAB.

So, we have fewer number of bits actually representing the variable length code right.

So, we would like to now see is this the only possibility or what else can be done for

representing A BAD CAB ok; I am a request somebody to please close the door, ok. So,

we get back to this example of A BAD CAB.
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So, let us try another possible variable length code. So, here we are trying to be more

aggressive again we have A B C D up to H and instead of 2 bits or 3 bits. We start up

with 0 1 0 0 0 1 and this appears to be even more efficient because we are using fewer

number of bits to represent it.

So, just compare the variable length code 1 and variable length code 2 and we come up

with this remarkable observation that the second variable length code actually needs half

the number of bits for this particular case A BAD CAB. But let us see is this true is this

good enough, is there a problem with this representation.



(Refer Slide Time: 10:19)

So, we come to the question of uniquely decodable codes even though the variable length

code 2 had only 9 bits to represent A BAD CAB, when you come to the other side of the

table  and  decode  it  you  are  in  trouble.  Because,  simply  we  have  several  possible

decoding you could have A EAB AAD or another decoding possible AB AAB because

we really do not know when does one codeword end and one codeword begin.

So, in today’s lecture we would like to see is there an efficient way to do variable length

codes which are uniquely decodable.
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So, let us revisit variable length code 1 and code 2 we established that with variable

length code 2 unique decodability is not a possibility, but for variable length code 1; you

can see that no codeword forms the prefix of any other codeword. So, let us emphasize

that no codeword is a starting point of any other codeword. For example, if you consider

A it is 0 0 you can go through the entire list; no codeword begins with 0 0. If you look at

any other 0 1 0 for B no codeword starts with that.

Now, this means that no codeword is a prefix of any other codeword; consequently the

moment we receive a codeword which is valid, which belongs to this set we declare it as

received and we proceed further so decoding is possible.
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This condition is called prefix conditions and such codes where no codeword forms the

prefix of any other codeword; they are called prefix codes. We also we saw that such

codes can immediately give you the answer, give you the decoded symbol stream and

hence they are called instantaneous codes.
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Now, let us look at a very interesting inequality called the Kraft inequality a necessary

and sufficient condition for the existence of a binary code with codewords having lengths

n 1 less than or equal to n 2 so and so, forth up to n sub l which satisfies the prefix

condition  is  for as follows summation  over all  possible  codewords 2 raised power n

minus k is less than or equal to 1. This inequality is called Kraft inequality. For non

binary case, for alphabet size of M. We have the same equivalent Kraft inequality with 2

being replaced by M as follows. We will use this extensively in our lecture.

(Refer Slide Time: 13:40)



Now, let  us  consider  the  construction  of  a  prefix  code  because  they  are  great  that

instantaneous they uniquely decodable. So, it is better to find out how we can make or

construct a prefix code using a binary tree. So, we start with a mother node and proceed

towards terminal nodes of a binary tree. So, what is a binary tree? So, let us have a look

at it we can go horizontal.
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So, we can have a mother node and we can always have 2 daughters and either we take a

1 going up 0 going down and so and so forth. So, this is a binary tree and it can go on

forever right.
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So, there are always 2 branches emanating from a binary tree but let us take this a little

further. And if we say this guy is 1 and this is 0 and then we go up here and we add 1 to

this one. So, we get 1 1 and we can add 0 because we went down, we can add 1 0 and

then 0 1 and 0 0. So, what are these? These are our options options for what; options for

forming codewords because I can then go further down and have right from 1 1 1 going

down up to 0 0 0. As we go down the depth of the tree, the length of the codeword

increases; so, this is the possible length.

So, we are dealing with a variable length code. So, our problem of finding codeword

tantamounts  to  choosing  some  of  the  nodes  within  this  tree  because  each  node  is

associated with a bit pattern which forms our codeword. So, let us understand the prefix

code from this binary tree. So, let us look at this daughter node and from there we have;

so, from the mother node we have 2 daughter nodes and then they multiply they grew

exponentially and we have this neat looking binary tree.
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Now, comes the question of labeling of the branches; so, it is our choice we can label the

upper branch 0 lower branch 1 or we can exchange it without loss of generality and we

can label the upper branch 1 and the lower branch 0 and then we can label the nodes as

being codewords right. So, we have labeled in the previous one n 00, n 01, n 010, n 011,

n 0110.

So, basically n 0 happens to be the mother node and whatever branch we are taking; we

add that branch label to the name of the node. So, this is n 0 1 and so on and so forth I

went up over a 0 branch I added n 0 1 0 and so and so forth.
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So, we keep going and we follow it and we can now have a possibility of understanding

how to have a prefix code?
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So,  what  is  the  constraint  for  a  prefix  code?  No codeword is  a  prefix  of  any other

codeword. So, let us start somewhere; suppose we have 4 symbols to encode; so, we go

to the first daughter node of course, we could have also gone on this side and let us

declare this one n 00 has one of the valid codewords.



Now, what we observe in a binary tree is that whenever we go below on to the further

depths  of the tree;  we keep adding is  1 0 0 1,  but  since we are adding we lose the

condition of being prefix. So, if you have declared the node n 0 0 as a valid codeword no

daughter nodes below it can be valid nodes for codewords. So, we have to kind of wipe

them off the screen and make sure that we never use any of these daughter nodes here

because we have declared this one.

So, how the tree is gone? But we have the other half left since we would like to search

the prefix codes within these trees. So, we proceed further because of the 4 codewords

we want we have only found one.  So, we proceed to the next level  and we declare

another valid codeword as belonging to the node n 0 1 0. Once we declare it the brief

prefix condition requires us to declare any of the daughter nodes from this point onwards

invalid.

So, we again kind of wipe them out from the board and once we have declared these 2 as

valid codewords; we have nothing left here. But then we still have the quarter of the tree

left and we proceed further and with a sign of relief we see that we still have 2 nodes left

and so, we declare these 4 as valid codewords.

Please note if we took encode 5 symbols we could not declare the results right at this

stage we would have to go deeper into the tree. The point to be noted in this example is

that all valid prefix codes can be picked up from this tree. And I can easily extend this

example to an M-ary tree for non binary codes, but let us just focus on binary codes here.
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Now, the question is about the Kraft inequality does it really hold and we can check it.

So, the Kraft inequality if you go back and see it is a an upper bound summation over all

possible codewords; 2 raised power minus n k what is n k? It is the length of the code the

length of the codeword because it is a variable length code. So, different codewords will

have different lengths and the summation should be bounded by 1.

So, we let us check this case for the code we just constructed. So, within this binary tree

we have constructed a prefix code having 4 codewords and they are 0 1 0 1 1 0 and 1 1 1.

So length equal to 1 length equal to 2 3 and 3; so,  if  you substitute  it  in this  Kraft

inequality: so, we substitute the length of n k. So, 1 2 for the second 1 3 and 3 we add it

up you get 1; so, the inequality is satisfied.
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Now, we come to a very important theorem called the source coding theorem ok. It deals

directly with the amount of compression we can achieve; so, let x be the ensemble of

letters from a discrete memoryless source with finite entropy H of X. And the output

symbols be x k where k is equal to 1 2 3 up to L; so, we have got L distinct symbols and

these symbols are not equiprobable. Please note we have already guessed intuitively, if

the  symbols  are  equiprobable  compression  is  not  likely  why?  Because  we  have  to

allocate  equal  number  of  bits  to  all  of  the  symbols,  but  only  in  the cases  when the

symbols are non equiprobable; we have the possibility to tweak.

So, the source coding theorem tells us that it is possible to construct a code that satisfies

the prefix condition and also has an average length that satisfies the following inequality.

This  R bar is  the average  length  and it  says that  the average  length  for  this  for the

symbols from this DMS is lower bounded by the entropy of the source H of X and is

upper  bounded by H of  X plus  1;  please  note units  are  bits.  So,  it  has  far  reaching

consequences;  it  tells  you  the  absolute  limit  to  which  I  can  compress  the  symbols

emanating from the source.
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So, let us quickly look at this theorem and consider the lower bound of the inequality. So,

in order to prove that let us start with H of X minus R bar. So, we are trying to prove the

left hand side H of X less than or equal to R bar to do so, we start with H of X minus R

bar and we substitute this values. So, H of X is nothing but P x log 1 over P x and R bar

which is the average codeword length is nothing but n x; the length of the codeword x k

and multiplied with the probability P x k and this gives the average codeword length; you

group them together and you get this expression.

Now, we have another inequality ln x less than or equal to x minus 1. So, we would like

to substitute it, but before that we must change the base of the log. So, we get outside log

to the base to e and this log gets replaced by ln. So, this ln and this quantity is x. So, we

replace ln x by x minus 1 with an inequality. So, here you get the inequality and you get

x minus 1 alright. And then if you take this P of x and multiply it out and carry out the

summation clearly this minus 1 with P of x all probabilities added up adds up to 1 and P

x k; P x k cancels out and you have this summation k is equal to 1 to l 2 raised power n

minus k and this is clearly less than 0 from the Kraft inequality.

So, what is less than or equal to 0? H X minus R bar is less than or equal to 0 and

consequently you have this left hand side H of X less than or equal to R bar. Now let us

consider the upper bound; so, first let us select codewords of length n k such that 2 raised

power minus n k less than or equal to the probability P of x k less than or equal to 2



raised power n k plus 1. So, we are hoping that we can do so, in due course we will find

out that it indeed we can do so.

So, just consider the left hand side of this what are we considering? 2 raised power n

minus k less than or equal to P x k. Now summing both sides from k is equal to L

through l right we get that indeed this is the Kraft inequality and hence whatever we

thought in the beginning we can do. So now, consider the right hand side P x k less than

or equal to 2 raised to power minus n k plus 1 we take log on both sides. So, it becomes

log to the base 2 P x k and of course, log to the base 2. Hence, this 2 goes away and we

have minus n k plus 1 and we reshuffle it and we can write n k is less than equal to 1

minus log to the base 2 P x k.

Now, what do we do with this quantity? Well we multiply this both sides with P x k. So,

we have P x k multiplied with n k here P x k minus P x k log to the base 2 P x k.
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And if we sum it over all k is equal to 1 through L; on the left hand side we have P x k n

k summation. Again summation P x k and we have this summation. But suddenly we can

see a very simple formula emerging from it this left hand side is nothing but the average

codeword length R bar and it is less than this quantity which is 1 plus this is the entropy.

So, you can show the upper bound for the source coding theorem. So, lower bound was

proved using the Kraft inequality and we also use the Kraft inequality in parts for the



upper  bound.  So,  what  is  the  implication  of  the  source  coding  theorem?  First  and

foremost remember we use the condition of the prefix code.
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So, the source coding theorem deals with codes that satisfy the prefix condition ok. So,

what does it tell us? It tells us something about the minimum number of bits required to

represent source symbol, it gives us the lower bound and upper bound.

So, it says that the minimum number of bits required to represent source symbols on an

average because remember we have used H of X which is the average self information.

So, always it will never happen, but on an average the minimum number of bits required

to represent the source symbol must be at least equal to the entropy of the source. That

means, a source with a larger entropy would require larger of number of bits to represent

it; it fits in very well intuitively.

But we also have this upper limit the upper limit says that if you are using prefix code

then you are not too far away from the best you can do. What is the best you can do? H

of X you are only 1-bit off; so, even though a prefix code may or may not be able to

achieve the lower bound, it will never be too far away from the best you can do; prefix

codes are good that is the take home message wherever possible use prefix code.
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So, it also tells us that if we have found a prefix code that already satisfies this condition

R bar is equal to H of X; abandon further search you cannot better this, you have hit rock

bottom, you cannot compress it  any further. And this also tells  us that a source with

higher entropy, uncertainty requires on an average more number of bits to represent the

source symbols.

So, let us take an example; I have source A and I have source B; what is my source A?

We take our favorite example a person tossing a coin and let us say he is tossing a fair

coin. So, 1 0 0 1 how does he give these answers? Head speaks out one tail speaks out 0

and keeps tossing that is his only aim in life tossing a coin and calling out 1 1 0 1 0 and

so forth, but there is this guy B called source B habit of chewing on a gum; sticks the

gum on one side the coin becomes weighted unfair coin still tosses the coin and he reads

out 1 1 0 0 0 1 and so and so forth.

But  these 2 sources even though are emanating 1-bit  say every 1 second should not

required equal number of bits to present the outcomes because source coding theorem

says that look the entropies are different.
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So, we go back to our entropy map; so, binary entropy function on the x axis we have p

the  probability  of  occurrence  of  head  and  on  the  y  axis  we  have  the  average  self

information entropy H of X and we less mark the position of source A.

So, source A who is tossing a fair coin sits at the top of the curve with H of X is equal to

1 bit, but my chewing gum friend source B who is tossing a biased coin sits somewhere

low. So, source coding theorem tells us that if we figure out a way to efficiently represent

the source B symbols, we only need roughly 0.7 bits on an average not 1, but here is the

dilemma source B every second tosses the coin and shouts 1 0 0 0 1, but he should

actually be shouting information equal into 0.7 bits. He is using the entire 1-bit; he has to

do things differently. Maybe he has to toss 2 times and then speak out the output in an

encoded manner or possibly toss 3 times and whatever is the observed output should

speak out in terms of an encoded bit stream.

So, clearly source coding theorem tells us that hey it is unfair to allocate 1-bit per second

to source A and also 1-bit per second to source B where these are the 2 guys tossing a fair

and unfair coin once every second.



(Refer Slide Time: 35:00)

Now let us talk about the efficiency of a prefix code; clearly we cannot go better than H

of x. So, efficiency is a ratio which is less than or equal to 1 and eta is given as H of X

divided by R bar. So, it is clear from source coding theorem that eta is less than or equal

to 1 and it kind of represents the compression of data which is possible; this is routinely

used for compressing speech text image audio video and so and so forth.

So, how do we do for example, speech compression? So, let us look at it.
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So, we have a person who is speaking on a microphone and we have a waveform hello

how are you. And so, you first have to digitize it for that we sample and whatever the

values are there we quantize and these values need to be quantized in terms of 1001,

0100, 0001 and so on and so forth. Suppose I use 4 bits per sample, but how do we

compress?  Well,  to  compress  we  have  to  find  out  is  there  anything  which  is  more

frequently occurring is a; we less frequently occurring. So, we observe the waveform in

time and we look at the amplitude and we are curious because it is random why do not

we form a histogram of amplitude?

So, if we see that it jumps above 0 and below 0 and this is my 0 and this amplitude could

be in volts. And we can possibly have a distribution and this distribution tells me that for

this particular case my friend sticks normally around the 0 and once in a while screams.

And therefore, the amplitude goes up, but he is a generally soft spoken person.

So, it is a high probability that my signal should lie close to 0 as opposed to having very

high or very negative voltages, but it is a continuous random variable. So, we partition it

and  we  found  find  the  area  under  this  curves  which  will  tell  us  how  much  is  the

probability  of  occurrence.  As  is  clear  from  this  diagram  that  the  probability  of

occurrences for different segments are different; so it is clear that low amplitude signals

are more probable than high amplitude signals.

So, we should use fewer number of bits to represent low amplitude signals and so, and

so, forth and the rarely occurring values should probably be represented by more number

of bits.  In fact, I can do a prefix code for different amplitude levels and thereby get

compression. So, what we did earlier was not the best way because whether it was a high

amplitude value or a low amplitude sample; we were assigning equal number of bits

unfair, we can do it better by observing what is more frequent and what is less frequent.

We can do the same for text, we already looked at an example of your English alphabet

with 8 characters, and we can also do it for video, audio, speech, text whatever you want.
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So, let us look at an example consider a source x which only generates 4 symbols Now

was it a practical source well this is a source which generates 4 voltages. So, it could be a

practical system, but these symbols are not equiprobable. So, I put P x 1 not visible equal

to 0.5 second symbol occurs with probability 0.3, 0.1 and 0.1.

So, first of all we would like to see how what is the best we can do H of X plug in the

values I multiply it out and I get 1.685 bits this is the entropy of this source. Now 4

symbols we have already done the binary tree; example we have 4 codewords which are

forming the prefix code 0, 10, 110 and 111. So, what is the average codeword length R

bar we plug in n k P x k summation of k equal to 1 to 4 and we get 1.7 bits. As expected

R bar is greater than 1.68 bits right, but not too far as we already know that my R bar

will be pretty close to H of X.
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If we talk about the efficiency of this code we calculate this ratio 1.685 over 1.7 and

pretty good 0.9912.

Now, suppose my symbols  were different  suppose instead  of  0.5,  0.3,  0.1 and 0.1 I

tweaked them and it becomes 0.5, 0.25, 0.125 and 0.125 you add them they add up to 1.

And this time I plug in the value into my R bar what is R bar? N k P x k summation over

k I get the value 1.750. If I plug in these changed probabilities into my expression for H

of X nothing but minus p x log p x I am surprised to see that R bar is equal to 1.75 bits is

equal to H of X. We have achieved the lower bound we have achieved the efficiency

equal to 1.

So, what is strange about this condition? Why were we able to achieve this? Well it is

easy to understand what is happening look at these probabilities P x 1 equal to 1 by 2, P x

2 equal to 1 by 4 P x 3 equal to 1 by 8, P x 4 equal to 1 by 8 and they add up to 1.
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Now if we look at the average self information of this entire code which is H of X right

you get 1.75 bits, but what is this average? Self information made out of it is made of

self information.

So, let us look at the self information because x 1 occurs with probability 1 by 2, but

what is the self information, how much respect does it command in terms of the bits?

Well, it is log 1 over P x 1 equal to 1 bit. So, if you look at this guy you will get log 1

over P x 2 equal to right and so and so, forth. So, we are at 3 bits and 3 bits; now this is

the  information  contained  in  these  occurrences,  but  they  do  not  occur  with  equal

probabilities they occur with 1 by 2. So, if you multiply 1 by 2 into this plus 1 by 4 into

this 1 by 8 into this 1 by 8 into this you get exactly this quantity.

Now, the good news is that I will use the more likely event probability 1 by 2 to be

represented with fewer number of bits and since this is an integer I can have a 1-bit

representation for this. So, as we had in the previous case we assign this as a 0; most

frequently occurring minimum number of bits how many? Well self information is 1-bit I

have given it 1-bit what about this guy? Well its self information is 2 bits; so, I give it 1 0

I give this guy 1 1 0 and 1 1 1.

. So, the only reason I could achieve the lower bound is because the self information is

an integer. And I have only the luxury to allocate a full bit or 2 bits or 3 bits 2 and a

certain outcome. I cannot if this had come out to be because of its probability 0.75, there



is no way I can offer 0.75 bit long codeword; the codeword length has to be an integer 1

2 3 3 and so and so forth.

And therefore, because of these very unique choices of probabilities which have the self

information being integers; I have been able to achieve the lower bound of which R bar

is equal to H of X and efficiency equal to 1 right. So, this is important to see where we

are; so in most of the cases we will be far away from H of X.
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So, now we kind of summarize what we have learnt today; we started off with variable

length codes because that said the premise for the source coding theorem. We looked at 2

different variable length code and we saw that one of them was uniquely decodable, the

other one was not uniquely decodable. Then we looked at Kraft’s inequality followed by

the  source  coding  theorem,  which  tells  us  the  absolute  minimum  we  can  go  for

compression, and finally we looked at the efficiency of code.

So, that brings us to the end of this module.


