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Hello and welcome to a lecture on Physical Layer Security. Here is a brief outline for

today’s talk. We will start with Shannon’s notion of security. We will follow it up with

the  wiretap  model;  we  will  then  talk  about  the  degraded  wiretap  model.  We will

introduce the notion of secrecy capacity. Then we will talk about a practical wireless

scenario. Of course we will sprinkle in some examples along the way; of course, let us

first start with a basic concept.
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So, as we know secret communication can be approached from two directions. The first

is to look at a hard mathematical Problem and introduce it in the communication system.

So, the eavesdropper or the adversary has to solve a difficult mathematical problem in

finite duration of time. The other approach is to use the inherent and noisy nature of the

channel and provide security. Today’s talk focuses on this approach which utilizes the

inherent noisiness of the channel and uses information theoretic measures.

(Refer Slide Time: 01:50)



So, what is physical layer security? So, far we have assumed that there exists a secret key

which is shared between the transmitter and the legitimate receiver. Now, this key is the

place  where  security  is  achieved,  it  is  it  known difficult  problem to  solve.  And we

assume that there is finite computing and time resources available at the hacker. Now, the

problem is that today computer systems are becoming more and more sophisticated. And

in the day and age of network computing systems, the threat is genuine.
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So, the other school of thought which relies on information theoretic security does not

make any assumption about the resources both computational and time available with the

adversary. This information theoretic encryption was first proposed by Shannon and the

idea is not to let information is released to the eavesdropper. In many practical systems,

for example, in wireless communication systems, the eavesdropper may have a worse

that  is  a  noisier  channel  than  the  receiver.  And  we  might  use  this  advantage  to

communicate with a legitimate receiver secretly.
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So, let  us start  with Shannon’s notion of security. So,  the first  assumptions  Shannon

made is that both the main and eavesdroppers channels are noiseless. So, the channels

are ideal and no data is lost, because of the noise in the channel. He also assumed the

availability of a common secret key between the transmitter and the legitimate receiver,

but not at the eavesdropper. 

So,  Shannon defined his  notion of  perfect  security  if  and only if  the entropy of the

message M given that the eavesdroppers observations Z to be equal to the entropy of the

original message M that is H M given Z is the same as H M this simply means Z does

not contain any information about M.
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So, let  us look at  this  block diagram. We have a message which is  encoded by this

encoder using this key K and we obtain Z. This is received by the decoder which has the

same knowledge about key K, and it decodes it to give M. The eavesdropper however

only has Z as it is input. Now, since the mutual information can be expressed as I M

semicolon Z is equal to H M minus H M given Z. We conclude that I M semicolon Z

should be equal to 0 for perfect secrecy. In other words perfect secrecy is achieved if

code words Z and M are statistically independent.

(Refer Slide Time: 05:11)



So,  Shannon  did  not  assume  anything  about  the  deco  decoding  strategy  or  the

computational power available at the eavesdropper. So, we start with our first definition

the leakage of information to the eavesdropper is given by the mutual information I M

semicolon Z. Shannon then proved that the perfectly secure communication system can

happen if and only if the entropy of the shared key K is at least equal to that of the

message that is entropy of key K H of K should be greater than or equal to H of M the

entropy of the message. 

This implies that is necessary to use at least one secret key bit for every message bit in

order to achieve perfect secrecy, which means your key should be equal to even greater

than the size of the message M, now is that practical.
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So, for the case when both key and message are binary encoded, perfect secrecy can be

achieved when H of K is greater than or equal to H of M. And this can be achieved by a

strategy called One-Time-Pads, it was first proposed by Vernam in 1926. So, you have a

message M binary XORed with key K binary, and then you get encoded message which

is binary. It is again XORed back with key K to get back M binary. The eavesdropper has

to make do with encrypted message.
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Now, this initial work was exciting, but it was revisited almost 25 years later by Wyner;

and he made some improvements. He talked about the wiretap model. So, you have the

source. The encoder encodes it to get X of n; and n represents the length of the code in

terms of the code word length. It is sent over the main channel which is tapped by the

eavesdropper, and he gets Z n. So, clearly the legitimate receiver who is here with the

decoder works on Y of n while as the wiretapped channel yields Z of n. So, Y of n is not

same as Z of n. This is the wiretap channel.
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Here, X, is the transmitted signal and Y is the received signal at the legitimate receiver.

So, the first assumption is that the wiretap is necessarily a degraded version of the main

channel. So, the basic property that enable secret communication in this case even in the

absence of a shared secret  key is  that  the eavesdropper’s channel  is  noisier  than the

receiver’s channel.
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So,  Wyner  provided  two  relaxations  in  the  earlier  assumptions.  First  the  noiseless

communication assumption;  So, Wyner  considered a noisy main channel  and a noisy

eavesdropper’s  channel  as  opposed  to  a  noiseless  main  channel  and  a  noiseless

eavesdropper’s channel by Shannon ok.
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And relaxation number two the perfect secrecy assumption. What Wyner desired was that

the leakage of information at the eavesdropper to go to 0, when normalized by the block

length of the code that  is limit  n tends to infinity, n is the block length of the code

normalization factor 1 over n mutual information I between M and Z n the observation of

the  eavesdropper  should  tends  to  0  as  n  tends  to  infinity. This  is  the  weak secrecy

constraint. So, we have the second assumption where the perfect security assumption has

been relaxed. And the weak secrecy constraint is slightly weaker than the perfect secrecy

assumption made by Shannon.
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So, what are these strong and weak secrecy notions.  Strong Secrecy implies that the

message and the eavesdropper observations are almost independent, while weak secrecy

implies that the normalized mutual information between the message and eavesdropper

vanishes. So, the strong secrecy it is not normalized by 1 over n and weak secrecy is

normalized by the block length. 

Note that in this model the presence of the ‘wiretapper’ is known to the transmitter and

legitimate user. The idea is to career secure communications even in the presence of the

eavesdropper. In classical ‘wiretapping’ as soon as the wiretapper has discovered you

would discontinue communication until the wiretapper disengaged. This is not the case

we cannot wait forever we will carry out communication even in the presence of the

eavesdropper.
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Let us start with the quick example. Let the secret message M be a random integer taken

from a set of 1, 2 dot dot dot dot dot. This message is transmitted using the channel n

times,  so we are looking at  n  channel  users.  Now if  all  the elements  of  the set  are

equiprobable then the entropy of the messages simply given by H of M is equal to n R.

And the secrecy communication rate can be written as R is equal to H of S normalized by

n bits per channel use.
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So, in these n instances of channel use, the transmitter sends a coded signal X n as X 1,

X 2 up to X n, what the legitimate receiver receives is slightly different from X 1, X 2 to

X n because it is a noisy channel. So, the receiver receives Y n as Y 1, Y 2 up to Y n. So,

since the main channel is noisy the receiver decodes the receive message with some error

probability P e, where message which is decoded which not the same as message being

sent.
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Now, the eavesdropper’s channel is a degraded version of the main channel. This is the

assumption of the degraded wiretapped channel, we call it DWTC. The eavesdropper’s

channel can be represented as follows it is the transition probability matrix p Z n given X

n is nothing but the product of p Z n given Y n into p Y n given X n. And we have stated

earlier that the message over heard by the eavesdropper is Z n; Z 1, Z 2 up to Z n. Then

the residual uncertainty regarding the message M, having received Z n is simply given by

the conditional entropy H M given Z n.
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So, let us talk about the Degraded Wiretap Channel. It consists of a random source at the

encoder. A message set M of the size 2 raise to the power n R. And encoding function f

which maps the message to the code words. So, this is important. Then coding function is

a  part  of  the  definition  of  the  degraded  wiretap  channel.  And of  course,  we need a

decoding function at the legitimate receiver which maps the channel observation back to

m. 

Now, we introduce the notion of Equivocation,  which is  a measure of the confusion

created at the eavesdropper; it is given by H M given Z n. So, if the code C n with block

length n is used we can define the equivocation as E of C n equivocation equal to the H

entropy of M message given Z n and C n. So, C n also used as a condition.
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So, please note equivocation is explicitly conditioned on C n, because it is assumed that

the eavesdropper has complete knowledge about the code. What he does not know is

which  specific  code  word  was  transmitted  that  is  where  the  confusion  is  in  this

framework the leakage of information to the eavesdropper is expressed as L leakage of

course is the function of the code used is nothing but the mutual information I between

M and Z n conditioned on C n. 

But please note we must also ensure that the message is communicated reliably, because

we are  working  over  the  noisy  channels.  The  reliability  is  measure  in  terms  of  the

average probability of error P e; again this is the function of the code used.
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Now, let us look at an example of a degraded wiretap channel. So, we have the message

M encoder gives X m goes to the legitimate receiver he uses the decoder to get back M.

Basically  M hat.  But my friend eavesdropper taps n,  but his  tap channel  is a binary

erasure channel. So, 0 codes usually as a 0 but occasionally it ends up as an erasure bit

one goes as one, but once in a while turns up at the erasure bit. So, this channel never

makes a mistake; it never flips a 0 to 1 or a 1 to 0, but once in a while we get erasure ok.
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So, it is assumed that different messages are always encoded with different code words,

so that the transmission rate is 1 over n H M, which is nothing but 1 over n log M

because all messages are equiprobable suppose there are only two possible messages just

for the sake of elastration and they belong to the set 1 and 2 then H of M is 1. So, we had

pointed out earlier that the encoding strategy forms a part of the definition of the dictated

wireless channel. 

So,  here  is  r  encoding  strategy  for  this  example  message  1  is  sent  using  a  binary

sequence of length n with odd parity and message 2 is sent using a binary sequence of

length n with even parity. Observe that there can be several sequences of length n with

either even or odd parity and this is where the confusion arises.

(Refer Slide Time: 15:56)

So, the eavesdropper will perfectly know the code word if no erasures occur otherwise

there will be confusion at the eavesdropper since the parity of the received vector will be

altered.  So, let  us model a random variable e equal to 0 if two erasures occur and 1

otherwise. So, let us talk about the equivocation at the eavesdropper H of M given is

observations Z of n is now greater than or equal to H of M given Z n comma E because

conditioning does not increase entropy.
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So, the probability that there are no erasures in the vectors Z n is simply 1 minus epsilon

probability of no erasure all are independent, so raise to the power n and the probability

that at least one bit in erasure is 1 minus p N E is this 1 minus bracket open 1 minus

epsilon raise to the power n.
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So, we now look at the equivocation H M given Z n comma E is weighted with the p E

and p N E and it is calculated as follows. Now, we observation that H of M given Z n

when the case when erasure occurs is M, because even if one bit is erased there will be



confusion at the eavesdropper, and the entropy of the message will not be reduced on the

other hand for E is equal to 0 when there are no erasures, then the eavesdropper will have

complete knowledge about the message because 0 always goes as a 0 and 1 always goes

as a 1 in a binaracy erasure channel unless there is an a erasure.
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So, using these observations, we can simply write that I M semicolon Z n is nothing but

H of M minus H of M given Z n is less than or equal to 1 minus epsilon raise to the

power n. Now, what is interesting is epsilon is small, but greater than 0. So, 1 minus

epsilon is less than 1 raise to the power n as n tends to infinity it vanishes, so the mutual

information between the message and the observation of the eavesdropper vanishes as n

tends to infinity does this coding strategy is secure.
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So, what are the observations the encoding and decoding strategy forms a part of the

security  system  and  ultimately  affects  the  amount  of  information  leaked  to  the

eavesdropper. Here we had employed a parity based strategy and it  turned out to be

secure and the equivocation is a direct result of how degraded the wiretap channel is that

is the trick we are playing on.
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So, if you continue the example on the x axis we plot the block length n on the y axis we

provide the mutual information I M given I M semicolon Z n, so this is the information



leaked to the eavesdropper this is for epsilon is equal to 0.01, so very very low erasure

probability fairly good channel, so information leakages high but as soon as the erasure

probability  increases,  the  equivocation  also  increase.  So,  the  poorer  channel  of  the

eavesdropper the better is the security of the system this is also highly intitule.
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So let us define something called as a equivocation rate. The equivocation rate is the

normalized equivocation expressed as delta is equal to H of M given Z n normalized by

H of M. So the higher the equivocation rate the more secure is the communication let us

consider two extreme scenarios suppose H of M given Z n is H M, that is the output of

the eavesdropper’s channel conveys absolutely no information about the secret message

and hence does not reduce the uncertainty about M.
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In  that  case,  we  have  delta  equal  to  1,  the  other  extreme  is  if  the  output  of  the

eavesdroppers channel conveys everything about the secret message that is H of M given

Z n is 0 then delta is 0, does we have two objectives to fulfill simultaneously number 1

that  is  about  reliability  we  need  to  have  reliable  communication  at  a  reasonable

transmission  rate  R  and  at  the  same  time  secret  communication  at  a  reasonable

equivocation rate delta. So, transmission rate R and equivocation rate delta, so they form

a pair.
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So, let us talk about rate-equivocation pair a weak rate-equivocation pair R comma R sub

e is achievable for a degraded wiretap channel if there exists a sequence of 2 raise by n R

comma n codes C n such that limit n tends to infinity probability of error C n is equal to

0, the first condition is about the reliability at the same time limit n tends to infinity 1

over n E C n greater than or equal to R e ok. The second conditions pertains to week

secrecy condition note both this conditions may not get satisfied simultaneously.
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We can now start talking about something called as the rate-equivocation region. A weak

rate-equivocation region for a degraded wiretap channel is given by R is the closure of

the set  R comma R sub e where R comma R sub e is achievable.  So, we make the

following observations if the rate-equivocation pair R comma R sub e is achievable then

the pair R comma R sub e prime is also achievable if, R is greater than or equal to R e

sub e prime. And the second observation is also very intuitive the rate-equivocation pair

R comma 0 is clearly always achievable.
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What does the typical rate-equivocation region look like here is a plot the x axis is your

R the y axis is your R sub e, so we are talking about the information transmission rate

and the secrecy rate. And you can have a region where you have the rate-equivocation.
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So, if a rate is equivocation pair R comma R sub e is achievable with R is equal to R e

then R is full secrecy rate that is R e is equal to limit n tends to infinity 1 over n H of M

given Z n which is a equal to limit n tends to bar over m H of M is equal to R. So, R e

equal to R what does it mean, full secrecy implies that the entire message is hidden from



the eavesdropper and is also sometimes referred to as perfect secrecy. However, we must

note that the Shannon’s definition of perfect secrecy is even stricter and requires exact

statistical independence, here we have normalized it with respect to n going to infinity.
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Let us now define a very useful quantity called the secrecy capacity. What is secrecy

capacity,  secrecy  capacity  is  the  maximum possible  transmission  rate  for  which  the

eavesdropper is unable to decode any information.  Here the eavesdropper is assumed

have  unlimited  computing  resources  and  time  resources  consequently  the  secrecy  is

provable. 

So, we cannot make this assumption that the eavesdropper must have only so much time

or so much computing resources you can have whatever you want in the world right. So,

secrecy capacity is the maximum rate at which secret information may be sent to the

receiver under perfect secrecy. This is a very intuitive definition also.
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So, what is the secrecy capacity of a degraded wiretap channel, it is represented as C sub

s for the secrecy capacity of the degraded wiretap channel as the maximum over input

probability p of X mutual information I between X semicolon Y given Z. This is nothing

but max over p X input probabilities I X semicolon Y minus I X semicolon Z.
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So,  consider  the  case  when  the  eavesdropper  received  the  same  information  as  the

intended receiver. So, there is no degradation in the wiretap channel Z is equal to Y in

that case I X semicolon Y given Z is 0 and hence, the secrecy capacity is 0. Physically,



this implies that the information theoretic security cannot be achieved over a noiseless is

eavesdropper’s channel. For noiseless channels secret key must be used for obtaining

security. So, our best way it is to have an eavesdroppers channel which is worse of there

are main channel. 

The other observation is that the secrecy capacity is the difference between the rate of

information conveyed to the legitimate receiver vis-a-vis the rate of information leaked

to the eavesdropper. So, we are talking about the rate of information send to our desired

intended user vis-a-vis what is being leaked and this difference can keep growing as we

proceed a long time.
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Now, let us talk about weekly symmetric channels. A discrete memory less channel is

weakly symmetric if the rows of channel transition probability matrix are permutations

of each other and the column sums are independent. Our favorite example is the binary

symmetric channel shown here.
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The channel probability channel transition probabilities are given by this matrix for the

binary symmetric channel. And it is easy to verify that the rows of the channel transition

probabilities matrix are simply the permutations of each other and the column sums are

independent of y. Clearly the binary symmetric channel is a weekly symmetric channel.
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On  the  other  hand,  our  second  favorite  the  binary  erasure  channel  is  not  weakly

symmetric. Here the rows of the channel transition probability matrix are permutations of



each other. However, the column sums are clearly  not independent  of y, so it  is  not

weekly symmetric.
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So,  why are  we talking  about  weekly  symmetric  channels  here.  Well,  there  are  two

interesting  properties  is  for  weekly  symmetric  channels.  First  the  capacity  achieving

input distribution of a weekly symmetric channel is simply the uniform distribution over

X. 

And second if the main channel and the eavesdropper’s channel of a degraded wiretap

channel are both weekly symmetric, then it is very easy to calculate the secrecy capacity

of the degraded wiretap channel. What is it, it is simply difference between the capacity

of the main channel C m and the capacity of the eavesdropper’s channel C e. Please note

the condition is that both the main channel and the eavesdropper’s channel are weekly

symmetric channels.
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Let us look at an example. My sender X trying to communicate with X the legitimate

receiver and somewhere Z has tapped the channel by it is a degraded wiretap channel.

So, the composite channel for Z is the concatenation of the main channel and the wiretap

channel.  But  note  that  the  main  channel  is  binary  symmetric  channel  hence  weakly

symmetric, so is the second wiretap channel.

So the capacity of the eavesdropper’s channel is C e capacity of the main channel is C m

and C m is nothing but 1 minus H of p where H p is the entropy of the binary symmetric

channel we have seen it before. Similarly, C e which is the composite of two binary

symmetric channel is also an effective binary symmetric channel is 1 minus H p plus q

minus 2 p q. So, the secrecy capacity of this degraded wireless degraded wiretap channel

is simply given by C m minus C e is H p plus q minus 2 p q minus H of p, it is very easy

to calculate.
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How does it look? Well, on the x-axis, we have plotted the probabilities of q the wiretap

channel; on the y-axis, we have p the probability of error for the main channel; on the z

axis, we have the secrecy capacity. Please note whenever p is 0 then the C s is 0 for the

main channel is useless then there is no notion of secrecy capacity has been greater than

0. On the other hand, when p is not equal to 0 and when q approaches 0.5 on either side

that is it is a poor channel for the wiretap channel, we have higher secrecy capacity.
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So, this is summarized in this slide that when p is equal to 0.5, it will render the C s equal

to 0 regardless of the value of q.
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Now, Cheong  and  Hellman  extended  Wyner’s wiretap  model  to  Gaussian  Channels,

because  they  are  also  very  popular.  Additive  white-Gaussian  noise  channel  are

commonly  encountered  in  wireless  communications.  And  they  made  the  following

assumptions. 

Number 1, the noise process over the main and wire-tap channels are independent and

identically  distributed  Gaussian  over  different  channel  uses.  Number  2,  the  noise

processes over the main and wiretap channels have zero mean and variances sigma 1

squared  and  sigma  2  squared  respectively.  The  average  power  constraint  for  the

transmitted symbols is P.
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So, let us talk little bit more about this Gaussian wire-tap channel. It can be shown that

the maximum achievable secure rate of communication with a weak secrecy constraint

for the Gaussian wire-tap channel is C s equal to C m minus C e with a superscript plus

sign which is x super plus is nothing but max of x of 0. So, it cannot be negative it can at

best b 0 minimum.

So, the eavesdropper’s channel is a concatenation of the main channel and the wiretap

channel. But we know the expression for the capacity of the Gaussian channel and if we

plug these values n then the capacity of the Gaussian channel. The secrecy capacity can

be expressed at C s equal to this is the capacity of the main Gaussian channel and this is

the capacity of wiretap channel. Please note since it is a concatenations, it is sigma 1

squared plus sigma 2 squared.
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So, just analyzing this expression, we have positive secrecy capacity if sigma 2 squared

is greater than 0 for any power P ok. So, we make the second term smaller than the first

term and we have a greater than 0 C s. What does it mean, as long as the eavesdropper’s

channel is noisier that is degraded than the main channel, we have a hope for C s, the

secrecy capacity greater than 0. 

This  is  assumption  is  reasonable  for  the  wire-tap  model,  which  is  good for  wireless

systems. But is it a faire assumption to make for wireless system. I mean in wireless

systems eavesdropper can be anywhere in the room, and it could also be closer to the

source than the legitimate receiver. Clearly the Gaussian wire-tap channel is interesting

academically, but for wireless scenario this may not be a very good assumption in any

case let us continue our discussion.
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So, looking at the expression for the secrecy capacity of the Gaussian wiretap channel,

and for large values of P this 1 can be neglected and this simplify into C s upper-bound

as follows where clearly the P has disappeared from the equation. So, for high values of

P, the secrecy capacity becomes independent of the transmit power P. 

If  we represent  the  main  channel  as  sigma m squared  the  noise  power  and  for  the

eavesdropper’s channel the sum as sigma e squared then C s upper-bound is nothing but

half log sigma e squared over sigma m squared. So, what is the take home message here,

the secrecy capacity does not increase unbounded like channel capacity ok.
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Here is a plot to illustrate the point. On the x-axis, we have sigma 2 squared; on this axis,

we have sigma 1 squared; on z axis, we have the upper-bound plotted. And the curve

look something like this.
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Now, let us look at the Practical Scenario. We have a transmitter; we have a receiver it is

a wireless channel so it is a main channel here. And clearly there is an eavesdropper

where there is a eavesdropper’s channel; these are independent and no assumptions are

made what is the location of the receiver which is legitimate and the eavesdropper.
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So, let us put the transmitter somewhere in the room. And we introduce are front the

legitimate receiver who is try to communicate with the transmitter. Now, with or without

a knowledge an eavesdropper walks into the room, and it does what it supposed to do

eavesdrop on the message is being sent from the transmitter to the receiver. Now, these

two the legitimate receiver and the eavesdropper can be located anywhere within the

room. 

And so happens that it is possible that the eavesdropper could be closer to the transmitter

then the legitimate receiver. Now, the channel quality depends on the distance between

the transmitter receiver pair. So, in this case, the eavesdropper ends up having a better

channel than the legitimate receiver. The relative quantities of and the quality of the main

channel and the eavesdropper’s channel can vary depending upon the relative locations.
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So, this degraded wiretap channel model is interesting mathematically, but not practical

for wireless scenarios, because in wireless scenario these eavesdropper can be present

anywhere and it can stick up the antenna and listen in, so that both the legitimate receiver

and eavesdropper are free to move around and the channels can be different better with

respect to each other we have no control on that.
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So, a quick definition a channel X-Z characterized by the channel transition probability

mat matrix P z given x is noisier than the channel X-Y characterized by P y given x if for



every random variable U satisfying the Markov chain U arrow X arrow X Y Z. I have the

mutual information I U semicolon Y greater than or equal to I U semicolon Z. A channel

is characterized by P y given x and is said to be more capable than the channel P z given

x if the mutual information I X semicolon Y is greater than or equal to I X semicolon Z

for all inputs X. So, less noisy implies more capable.
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So, let us summarize what we have learn today. We started off with Shannon’s notion of

security. We talked about the wiretap model. We then moved on the degraded wiretap

model.  Subsequently,  we  introduce  the  notion  of  secrecy  capacity.  We talked  about

wireless scenario and we lead grounds for outage capacity, which we will talk about in

the next class. We also looked at some examples along the way.

Thank you.


